
Landmark Selection Strategies for Path Execution

Xiaotie Deng, Evangelos Milios, Andy Mirzaian

Department of Computer Science

York University

North York, Ontario, Canada M3J 1P3

fdeng,eem,andyg@cs.yorku.ca

March 17, 1997

Abstract

A mobile robot often executes a planned path by measuring its position relative to visible land-

marks at known positions and then using this information to estimate its own absolute position.

The minimum number of landmarks k required for self-location depends on the types of mea-

surements the robot can perform, such as visual angles using a video camera on a pan-tilt unit,

distances using a laser range �nder, or absolute orientation using a compass. The problem we

address is how to �nd which k landmarks the robot should detect and track over which segments

of a path, so that the cost of sensing (detection and tracking) is minimized. We assume that there

are more landmarks visible from each point of the robot's path than the minimum necessary,

and that their positions are known relative to the path. We present several formulations of this

problem in graph-theoretic terms, with di�erent amounts of
exibility, generality and complexity,

which can be solved by known graph-theoretic algorithms. We present uniform-cost algorithms

(all landmarks have equal cost of detection and tracking), and weighted-cost algorithms (each

landmark has di�erent cost). The complexity of these algorithms is low-order polynomial in the

number of landmarks k that must be simultaneously tracked at each point of the robot's path.

We also present an algorithm that can incorporate not only the sensing cost for each landmark,

but the suitability of the landmark con�gurations relative to the robot. The resulting complexity

is, in this case, exponential in the number of landmarks k tracked at each point of the robot path.

The algorithm is still practical, since k is typically a �xed small integer.

1

1 Introduction

Previous research in mobile robotics has typically addressed the following problems:

- path planning in the case of a perfectly known environment, perfect odometry information, and

perfect sensing. The optimality criterion in this class of problems has been the minimization of

energy required for path traversal between a start and end position speci�ed by their coordinates,

while obstacles are being avoided [17].

- path execution in the case of a known real environment. The focus here has typically been the

sensing required to accurately execute a preplanned path, and the main problem addressed is how

to match sensed data (vision, sonar, laser, infrared) against map information [3, 12, 7, 1, 15, 19, 4].

- exploration of an unknown world with perfect range sensing and odometry information [20].

- exploration of an unknown world with noisy range sensing [16, 6], and chapter 3 of vol. 1 and

chapter 4 of vol. 2 of [12].

A mobile robot typically operates in a partially known environment. A map of the permanent

features of its environment is available to the robot, but several additional temporary or time-

varying features may also exist along with the permanent features. Navigation of the robot, i.e.

execution of a preplanned path, is a nontrivial problem for the following reasons. First, the robot

always executes the commanded motion with a small error (due to physical realities like wheel

slippage). Second, odometry sensors, which measure the actually executed motions, also have a

small error themselves. As a result, for each step the robot makes along its preplanned path,

the error between the robot's knowledge of its position and the actual position increases with the

number of steps taken.

The only way to remedy the above problem is to register the robot's position with the real world

often enough to prevent the position error of the robot from becoming unacceptably high. This

introduces the issue of inaccuracies in sensor measurements (visual or range). It is, therefore,

useful to incorporate in the o�-line path planning not only the computation of the robot's path

so that it avoids obstacles and minimizes a distance measure, but also the planning of the sensory

operations that must be carried out to maintain the robot on its course. It is this second problem

that we address in this paper, assuming that the geometric path has already been computed.

An important way of observing the real world for position estimation is by focusing on landmarks.

A landmark is a localized physical feature that the robot can sense and use for the estimate of its

own position relative to a map that contains the landmarks' absolute positions. The robot can

2

measure relative visual angles between landmarks. An absolute visual angle is the angle between

the forward direction of the robot and the direction from the robot to the landmark. A relative

visual angle between two landmarks is the di�erence of their absolute visual angles. It should be

pointed out that the forward direction of the robot is known within some error margin, just as

the absolute position of the robot, and therefore the self-location process must determine it, as

well. The important question of how the geometric con�guration of the landmarks and the robot

a�ects the relation between angular error (in measuring relative visual angles between landmarks)

and localization error was addressed in [22, 23]. The question of selecting suitable landmarks for

navigation is addressed in [13], and of associating sensed features with map landmarks is addressed

in [14].

Recent research [18] has addressed the problem of path planning in the presence of motion and

odometry error, and assuming perfect sensing in speci�ed circular neighbourhoods of landmarks.

That work has shown that polynomial algorithms are possible for this problem, provided that the

directional error in the robot motion is bounded. It is also suggested that \inverse" problems are

also of importance, where the issue is where to place landmarks to facilitate path planning.

In this paper, we assume a known world populated with distinct landmarks that are �xed in

space and can be sensed by the robot if the line of sight between the robot and the landmark is

uninterrupted. The problem we address is landmark selection: which landmarks the robot should

detect and track at di�erent parts of a given path, so as to minimize the total cost of detecting

and tracking landmarks. The number of distinctly recognizable landmarks k required for position

estimation is an input parameter, and it depends on the type of sensor the robot is using. Di�erent

types of sensing include:

- visual angle sensing alone. In this case, sighting of a minimum of three distinctly recognizable

landmarks is required for unconstrained position estimation.

- visual angle sensing plus range sensing, or visual angle plus compass. In this case, sighting of

a minimum of two distinctly recognizable landmarks is required.

- visual angle sensing plus range sensing plus compass. In this case, a single distinctly recogniz-

able landmark is su�cient for self-location.

In general, sighting of more landmarks than the minimum required in each case leads to an

overdetermined problem. Use of statistical techniques (e.g. least squares minimization) to �nd

the robot location that is most compatible with the observed data leads to more robust self-

location. In this paper we assume that detecting and tracking landmarks is costly, so minimizing

3

this cost is worthwhile.

The sensing cost of the path is in general the sum of the computational cost of acquiring new

landmarks and the cost of tracking already acquired landmarks.

In this paper we address two versions of the landmark selection problem:

- the uniform cost version. Here we assume that the cost of acquiring a new landmark is equal

to one, and the cost of tracking a landmark negligible.

- the weighted cost version. Here each landmark is associated with a di�erent cost of acquisition

and tracking.

2 De�nitions

In this section, we brie
y review world models for robot navigation, and we present a formal model

of the landmark selection problem. We formally de�ne the world model for our discussion and

mathematically state our problem of guiding the navigation of a robot. Figure 1 shows a set of

polygonal obstacles and a planned path.

* The world is described as a 2{ or 3{dimensional space with opaque obstacles.

* An obstacle{free route P is chosen from the robot's origin to the goal, both speci�ed as points

in the world coordinate system.

* A set of potential landmarks L = fL1; L2; � � � ; Lng are speci�ed in the world. The posi-

tions of the landmarks are known in the world coordinate system. In Figure 1, landmarks

L1; L2; :::; L9 are shown. Landmarks can be anywhere in the world.

* The robot sensors can e�ectively detect these landmarks somewhere along the route P . A

maximal interval along which a landmark can be detected is called a window interval for

the landmark. We denote the landmark corresponding to a window interval e by l(e). In

general, a single landmark may incur several intervals in the route P , resulting from obstacles

blocking the robot's sensor along the route. We can visualize a landmark as a light source,

illuminating one or more window intervals along the robot's path.

* Without loss of generality, we assume that, along the route P , all the window intervals have

di�erent endpoints. We assign a linear order to the endpoints of the window intervals on the

4

Figure 1: A typical geometry is shown, including the robot path, shown as a solid piecewise linear
curve, four opaque polygonal obstacles, and nine landmarks. A window interval endpoint along the
path is de�ned by a straight line, shown as dotted here, that starts at a landmark, and is tangent
to an obstacle. The endpoint is the intersection of that line with the robot path, provided that
the line does not intersect an obstacle before intersecting with the path. Endpoints are indexed
by their distance from the origin of the path. Two successive endpoints due to the same landmark
de�ne a window interval. Landmarks visible from the origin or the goal de�ne window intervals
that have the origin or the goal as one of their endpoints. A single landmark typically de�nes
several window intervals. Intuitively, the window intervals correspond to the segments of the path
that are lit by each landmark, considering it as a light source. All the points of the path that
do not belong to any of the window intervals de�ned by a landmark are in the shadow of the
landmark.

5

route P . For each window interval e, let left(e) and right(e) be the point on the route P

closest to the origin and the goal respectively.

* Depending on the type of sensor and the required level of robustness, the robot needs to

maintain k landmarks at every point along its planned route. Such a set of landmarks over a

segment of the robot path is called a guiding set of landmarks for that segment. We want to

�nd guiding sets of landmarks with the minimum cost over the complete path of the robot.

We call this the landmark selection problem (LSP for short). As noted above, in this paper we

consider di�erent formulations of the problem of minimizing the computational cost of establishing

and tracking landmarks during navigation. The simplest formulation assumes that the cost of

detecting a landmark is one and the cost of maintaining it is zero, and therefore the problem

reduces to the minimization of the total number of landmarks that must be detected during the

navigation of the given path. We present an algorithm for this case in Section 3. A more general

formulation assumes that each landmark has its own cost of detection and tracking. This is

the weighted version. The simplest case, in which a single landmark su�ces, corresponds to the

practical situation when a robot is equipped with a laser range �nder on a pan/tilt unit and a

compass. We present an algorithm for this case in Section 4. In Section 5 we present a shortest

path algorithm for the general k-landmark weighted version. The algorithm represents explicitly

landmark groups that are tracked together, therefore the size of the formulation is exponential in

k. It has the advantage, though, that the usefulness of di�erent landmark groups over the same

path stretch can be taken into account. In Section 6, we obtain a min-cost max-
ow formulation

for solving the general weighted version, with k � 1, leading to a polynomial algorithm in k. This

method, however, cannot take into account the usefulness of landmarks as groups. Finally, in

Section 7 we describe an implementation of the k-landmark algorithms and an example of their

results on a typical two-dimensional problem involving polygonal obstacles.

3 Algorithms for the uniform version of the LSP

In this section, we discuss the uniform version of the landmark selection problem. This formulation

assumes that the cost of detecting a landmark is one and the cost of maintaining it is zero, and

therefore the problem reduces to minimizing the total number of landmarks that must be detected

during the navigation of the given path. The uniform version can be formulated as a shortest path

6

set problem in interval graphs [25] as follows:

* We construct a directed graph G. Its vertex (node) set V contains all the window intervals, also

the origin and the goal. Its edge set contains directed pairs (u; v) such that window intervals

u and v overlap on the route P . Edge (u; v) corresponds to a switch from landmark l(u) to

l(v). The weight of the edge (u; v) is the computational cost for establishing the landmark

v.

* If the robot needs to maintain k landmarks in its navigation, our problem is to �nd k vertex{

disjoint paths from the origin to the goal such that the total number of vertices is minimized.

This shortest k vertex{disjoint path problem in directed graphs can be solved in polynomial time

using a min{cost max{
ow problem formulation ([5, 8]). However, for the uniform version, we

have a much simpler solution to be introduced next. Since the corresponding graphs are interval

graphs, we have much simpler polynomial algorithms. We now present a greedy algorithm that

operates on a general interval graph, and in Appendix B a more e�cient algorithm for the case of

a polygonal world, in which polygon vertices serve as landmarks.

The idea of this algorithm is to replace the landmark that goes out of sight �rst with another

landmark that will be visible the longest.

Algorithm GREEDY

0. Construct the interval graph, and on each node ni, we call the right endpoint of the corre-

sponding window interval ni, right(ni), the value of the node and denote it by v(ni). Choose

k nodes adjacent to the origin which have the k{highest values, v(n1) � v(n2) � � � � � v(nk).

1. Suppose, the current landmark set is v(n1) � v(n2) � � � � � v(ni) with i � k. The last k

landmarks are the ones currently tracked by the robot, as they are the ones that will go out

of sight last. Landmark v(ni�k+1) is the one that will go out of sight �rst and will have to

be replaced.

2. If the value is v(ni�k+1) < v(goal), then the goal has not been reached yet. Among all the

nodes which are adjacent to ni�k+1, choose the one with the highest value, i.e. the landmark

that will go out of sight last. Insert it in the list and rename the nodes so that they are

ordered.

7

L2

L3

L4

L1

LANDMARKS

121110987654321

DISTANCE FROM THE ORIGIN MEASURED ALONG THE PATH

WINDOW INTERVALS

0

Figure 2: Window intervals due to four landmarks are shown as horizontal line segments. Distance
along the horizontal in this diagram corresponds to distance from the origin along the path in a
geometric representation. Window intervals at the same height are due to the same landmark.
The optimal solution computed by the GREEDY algorithm for the case k=1 is also shown: the
robot starts by tracking landmark L3, then switches to L2 at point x5, and �nally switches to L4
at point x9.

3. If v(nj) � v(goal) for all j : i + 1 � k < j � i + 1, then terminate and return with the node

set fn1; n2; � � � ; ni+1g.

4. i i+ 1. Go to Step 1.

For the example in Fig 2, we sort the endpoints as x0, x1, � � �, x12. We designate a window

inteval by (xi; xj). Notice that in this example, some endpoints of the intervals coincide. When

k = 1, applying GREEDY, we obtain the solution: [(x0; x5); (x3; x9); (x8; x12)]. This solution

implies that the robot will track landmark L3 from the origin of the path till point 5 on the path,

then it will switch to landmark L2 till point 9, and �nally to L4 till the goal (point 12) is reached.

In Appendix A we prove the following theorem:

Theorem 3.1 GREEDY gives the optimal solution for the uniform version of the LSP.

Thus, in general, we can �rst obtain all the window intervals of landmarks on the planned

route and then apply GREEDY to obtain an optimal solution. This algorithm covers very general

situations. It allows di�erent types of sensors, allows di�erent range of sensors and landmarks,

and di�erent locations of the landmarks. Thus, for this approach, the time complexity of LSP

8

will be the sum of the time to construct the window intervals along the planned route, the time

to sort the end points of the intervals, and the time for the GREEDY algorithm to be applied

to the interval graph. The total number of window intervals may not be linear in the input size

since a single landmark may project O(n) intervals in the planned route, where n is the number

of obstacles. However it is polynomial in the input size. Thus, this approach gives a polynomial

time algorithm for the LSP. In Appendix B, we simplify the solution for the case of 2-dimensional

polygon interior world.

4 A shortest-path algorithm for the single-landmark nonuni-

form version

In this section we consider the single-landmark nonuniform case: we want to �nd the least costly

landmark selection schedule, given that the necessary preprocessing is done and we have the list of

intervals along the designated path with their endpoints sorted along the path, and the associated

sensing cost for detecting and tracking each landmark. This case is practical for a robot equipped

with a compass and an orientable range-measuring device, such as a laser range �nder on a pan

unit. Once the robot has detected a known landmark, it can measure the bearing with respect to

north for a single landmark (i.e. the angle de�ned from the north direction to the direction from

the robot to the landmark), plus the distance to the landmark. This is su�cient information for

the robot to locate itself on a map containing the landmark.

The case k = 1 turns out to be a shortest path problem as follows. Consider the ordered list

of landmarks, and their associated intervals, that appear on the optimal schedule. As the robot

moves along the path, from time to time it will switch from the current landmark to the next one

on the schedule. There are two possible types of landmark switches as shown in Figure 3(a).

A type 1, or end-to-middle type switch is when the robot has reached the �nishing end-point

f(i) of the current landmark i, and switches to landmark j which is the next landmark on the

schedule. We associate a cost s1(i; j) to this type of switch. A type 2, or middle-to-end type switch

is when the robot has to deactivate the current landmark i and switch to the beginning s(j) of

the next landmark on the schedule. We associate a cost s2(i; j) with this type of switch. (It is

not hard to see that without loss of generality we can ignore any "middle-to-middle" switch, since

there always is an optimal schedule in which there is no occurrence of such a switch.) A third cost

9

i
f(i)

j

j

i

s(j)

Type 1 switch cost s (i,j) Type 2 switch cost s (i,j)21

i
f(j)

p=s(k)

"+"

"-"

j

k

i
v=f(i)

j f(j)

sweep position

j

v=s(i)

sweep position

f(i)

f(j)
+/-

i

Type 1 switch Backtrack and type 2 switch

 (a) Type 1 and 2 switches.

 (b) The backtracking trick.

 (c) Updating the costs during the sweep.

Figure 3: A shortest path algorithm for the single-landmark nonuniform version.

10

is the cost of maintaining the tracking of the current landmark i, and we assume this is a linear

cost, that is, it is d � c(i) where d is the distance traveled while tracking landmark i, and c(i) is

the unit distance cost.

Figure 3(b) shows that we can consider a middle-to-end switch from landmark j to landmark k

at position p = s(k) in a cost-equivalent form of �rst moving to f(j), then subtracting the cost

for returning back to position p, then making the switch to landmark k.

With this backtracking trick we need to consider only the minimal cost schedules from the starting

point s to only end-points of the intervals.

This brings us to the following algorithm.

Let cost(v) denote the minimum cost of a schedule from the start s to the interval �nishing

end-point v. Our algorithm will make one sweep over the path from s to t and maintain tentative

values for cost(v) for each interval �nishing end-point v with the following invariant: for each

interval �nishing end-point v, cost(v) is the minimum cost schedule for going from s to v without

passing through end-points not yet swept. Initially cost(s) 0, and cost(v) 1 for all (other)

endpoints v.

Let us call an interval active if it includes the current sweep position. Suppose the next endpoint

to be swept is v. There are two cases to consider depending on whether v is a starting or a �nishing

end-point of an interval. Figure 3(c) shows what needs to be done in these cases.

First consider a sweep event of type v = f(i). Consider all the active intervals other than i. For

each such interval j set:

cost(f(j))

min(cost(f(j));

cost(f(i)) + s1(i; j) + c(j) � d(f(i); f(j))):

where d(p; q) is the distance along the path from p to q. The above cost update corresponds to

making a type 1 switch from i to j and then moving all the way to the �nishing end-point of

interval j. The total time required for this event is proportional to the number of active intervals,

i.e., intervals that include v. This is clearly O(m) time in the worst-case, where m is the number

of landmark window intervals over the path.

Now consider a sweep of type v = s(i). For each active interval j (other than i) consider the

11

backtracking trick for making a type 2 switch from i to j. That is, set:

cost(f(i))

min(cost(f(i));

cost(f(j))� d(s(i); f(j)) � c(j)+

s2(j; i) + d(s(i); f(i)) � c(i)):

The total time for processing such an event is again at most O(m).

Finally, when the sweep terminates, the minimum cost of a schedule to go from s to t would be

the minimum of cost(f(j))� d(t; f(j)) � c(j), where the minimum is taken over all intervals j that

include position t.

>From the above discussion we conclude the following theorem:

Theorem 4.1 There is an algorithm that computes the optimum weighted landmark scheduling

problem for the case k = 1 and takes a total of O(m2) time and O(m) space, where m is the

number of landmark intervals on the path.

5 A shortest-path algorithm for the weighted version

In practice, it is desirable to address the general case of k landmarks being required for position

estimation at all times. This is necessary if the robot has no compass, therefore requiring more

landmarks for self-location (e.g. three, if only relative bearings can be measured). More landmarks

than the minimum required give rise to an overdetermined self-location problem, which can be

solved with least-squares techniques. Furthermore, some sets of landmarks may not be very useful

for the position estimation problem. For example, if the number of landmarks required k = 3, and

only bearing to landmarks is measured, it is not very useful if the three landmarks are cocircular

with the robot, since the two circles intersecting at the robot position now collapse into a single

circle, making the robot position indeterminate. In general, whether a set of k landmarks is useful

for self-location depends on the position of the landmarks relative to the current position of the

robot. As the robot moves along its path, their usefulness may also change.

To address this problem, we propose the following formulation. Assume that window intervals

have been de�ned along the path, as before. We sort the endpoints of these intervals in increasing

order:

12

x0 < x1 < x2 < ::: < xm (1)

It does not matter if accidental alignment occurs and two endpoints coincide: for de�ning the

window intervals, we consider only one of the coincident endpoints. We now focus on a primitive

interval [xr; xr+1], de�ned by two successive endpoints. Assume that the robot can sense Mr

landmarks flr1 ; lr2 ; :::; lrMr
g while within that interval. There are:

0
@ Mr

k

1
A possible selections of

k landmarks out of Mr. For each such selection fls1 ; ls2 ; :::lskg, we de�ne a single undesirability

value U(Vs), which is inversely proportional to the usefulness of the selection for navigation over

the interval [xr; xr+1]. In [23] a measure for the usefulness of 3 landmarks is developed. We note

that switching between landmarks is a discrete process, whereas the undesirability measure varies

continuously as the robot moves. This can be addressed as follows:

1. For each selection of k landmarks, compute the continuous undesirability value as a function

of the distance of the robot from the origin along its path.

2. Insert the points, where the undesirability value is equal to the threshold, into the window

interval endpoint sequence x1; x2; :::; xm de�ned previously.

3. Landmark selections with undesirability value below the threshold are excluded from further

consideration, unless no other selections exist with undesirability value above the threshold

over the same window interval.

The result of the above preprocessing is a sequence of window intervals, whose endpoints are

de�ned either by landmark visibility discontinuities or by points where the undesirability value

of visible landmark selections exceeds a given threshold. A set of landmark selections that are

acceptable for locating the robot is associated with each window interval. Which ones will be

chosen is found by the following algorithm.

1. Sort all endpoints of the window intervals in increasing order: x0; x1 < x2 < ::: < xm.

2. For each primitive interval [xi; xi+1] of the endpoint sequence, do the following:

(a) Determine all possible selections of k landmarks that are visible from within that in-

terval. De�ne a graph vertex Vs for each one of them.

13

(b) For the interval [xi�1; xi], determine all landmark selections that di�er by at most one

landmark from vertex Vs. Connect each such landmark selection Vs�1 with vertex Vs

via a directed edge. Assign a length to that edge equal to the sum of the cost of tracking

the landmarks of Vs�1 over the interval [xi�1; xi], the average undesirability U(Vs) over

the same interval, and the cost of detection of the landmark that is new in Vs.

3. De�ne an initial vertex V0 connected to all landmark selections over interval [x0; x1]. The

length of an edge emanating from V0 and ending at a vertex Vs de�ned over the interval

[x0; x1] is the sum of the cost of detection of all landmarks in Vs and the undesirability

U(Vs).

4. De�ne a goal vertex Vg to which all landmark selections over interval [xm�1; xm] are con-

nected. The length of an edge emanating from a vertex Vs de�ned over the interval [xm�1; xm]

and ending at Vg is the sum of the cost of tracking the landmarks in Vs over interval

[xm�1; xm].

5. The problem of landmark selection is then reduced to the problem of �nding the shortest

path from V0 to Vg .

The number of nodes of the graph due to a single primitive interval depends both on the number

of landmarks k required for self-location and the total number of landmarks Mr visible from a

given location.

Figure 4 shows part of the graph for this formulation.

6 A min{cost max{
ow algorithm for the weighted version

In this section, we present a min{cost max{
ow problem formulation for the weighted version of

the LSP. Since we know that the min{cost max{
ow problem can be solved in polynomial time

([5, 8]), it follows that LSP can be solved within time polynomial both in the number of window

intervals for the LSP and in the number of landmarks k required for robot self-location.

Theorem 6.1 Suppose the number of window intervals along the planned route is polynomial in

the input size of the LSP. The weighted version of the LSP can then be solved in polynomial time.

14

Path

1 2 3 4 5 6 7 8 9 10 11

Window intervals (i l luminated by landmarks on the path)

Figure 4: The �gure shows part of the graph for the shortest-path formulation of the landmark
selection problem. All the nodes corresponding to a primitive interval are vertically aligned with
it. The edges are directed from left to right.

15

In this formulation, �rst we sort all the endpoints of the intervals in increasing order: x1 < x2 <

� � � < xm, where x1 is the origin and xm is the goal. For a window interval e = [xi; xj] with i < j,

we construct j � i + 1 nodes ve;i; ve;i+1; � � � ; ve;j and an edge of capacity one from ve;k to ve;k+1

for all k : i � k < j. The cost of the edge [ve;k; ve;k+1] is the same as the computational cost of

visually tracking the landmark l(e) from xk to xk+1 (Figure 5).

We call this subgraph corresponding to a window interval the interval subpath. To build the

network, we �rst build interval subpaths for all the window intervals. Then, we need to add more

edges between interval subpaths corresponding to intersecting window intervals. These edges

represent the case when the robot switches from a landmark it has been tracking so far to a new

landmark. Therefore, the cost of these edges is equal to the cost of visually detecting or acquiring

the new landmark.

Let e = [xi; xj] and f = [xk ; xl] be two intersecting window intervals with i � k � j � l (the

case when one interval is contained in another is treated similarly). We establish a directed edge

from ve;t to vf;t with capacity one for all t : k � t � j. Its cost will be the computational cost to

detect or acquire the landmark l(f). This edge corresponds to the robot switching from landmark

l(e) to landmark l(f) at time t. In the most general case, we also establish a directed edge from

vf;t to ve;t with capacity one for all t : k < t < j and the cost being the computational cost to

establish the landmark l(e). This edge corresponds to the robot switching from landmark l(f) to

landmark l(e) at time t (note that with these edges the graph ceases being acyclic).

In practice, the robot will rarely decide to switch from landmark l(e) to landmark l(f) at a time

t 6= j. It will also rarely decide to switch from a later landmark l(f) back to an earlier one l(e),

unless the costs of tracking and detecting landmarks vary with the relative position of the robot

with respect to the landmark. In Figure 5 we show part of the
ow graph in the simplest case of

not allowing switches either to earlier landmarks or halfway through an interval.

The above directed graph can now form the basis for a min-cost max-
ow formulation of the

landmark selection problem. Suppose we need d landmarks at all times along the path. We

visualize the d landmarks at each primitive window interval as determined by a \
ow" of value

d from a source node to a sink node through the above graph. If a horizontal graph edge has

non-zero
ow, i.e.
ow equal to 1, since the capacity of the edges is equal to 1, this implies that

the associated landmark is being retained and tracked over that primitive interval. If a vertical

graph edge has non-zero
ow, i.e.
ow equal to 1, this implies that a landmark switch is taking

place. \Pushing" these
ows through these edges incurs a cost equal to the tracking or detection

16

cost respectively. To complete the construction of the graph, on which the min-cost max-
ow

computation is de�ned, we must add four more nodes to the graph (Figure 5).

A single node x0 connected with a directed edge of capacity 1 to each node x1r corresponding

to an interval of the form [x1; xr]. The cost of that edge is equal to the cost of acquiring the

landmark corresponding to the node x1r.

A source node S connected with a single directed edge of capacity d and cost 0 to node x0.

The
ow of size d originates at this node, and then it propagates through the network. No

cost is incurred by this
ow, as it does not correspond to an acquisition or tracking of a

landmark, but merely to initialize the problem.

A node xm+1 connected with a directed edge of capacity 1 from each node corresponding to

an interval of the form [xr; xm]. The cost of that edge is zero (this asymmetry with x1 is

a result of the fact that we choose to incorporate the cost of landmark acquisition into an

edge that is directed towards the node associated with such acquisition).

A sink node T connected with a single directed edge of capacity d and cost 0 from node

xm+1. The sink node serves to collect all the
ow that originated at the source node.

We have now completed the construction of a network. It is straightforward to show that by

de�nition the min{cost max{
ow solution of this network corresponds to an optimal solution to

the Landmark Selection Problem.

7 Implementation

The shortest path algorithm and the min-cost
ow algorithm for the nonuniform case have been

implemented, together with a program that generates intervals given a path, a list of polygonal

objects and a list of landmarks. The shortest path computation uses the Moore-Bellman-d'Esopo

algorithm as described in [24]. The min-cost
ow algorithm used is the Busacker-Gowen algorithm

[24]. In the formulation of the min-cost
ow problem we omitted the detection edges that are

directed upward in �gure 5, or, more precisely, the edges that involve a switch to a landmark that

was observable earlier than the landmark being abandoned. These edges will rarely be traversed

in practice, since typically the cost of tracking is much smaller than the cost of detection.

17

Path

1 2 3 4 5 6 7 8 9 10 11

Path

1

2

3

4

5

6

7

Graph for k=2
 m=11

Sink
node

Source
node

Costs:

tracking cost:

detection cost:

zero cost
(source/sink) :

Window intervals (i l luminated by landmarks on the path)

1

0 12

Capacit ies

1

1

k

Edge Type

Figure 5: The directed graph that reduces the weighted landmark selection problem to a min{
cost{max{
ow problem. The path has been stretched to a horizontal straight line. We show all
the nodes of the graph. To avoid cluttering the display, we only show the edges associated with the
source and the sink node and with the window intervals starting at positions 2 and 4 of the path.
Many more horizontal and vertical edges are present in the complete network. Each horizontal
sequence of nodes is connected by horizontal edges, and is aligned with the window interval it
corresponds to. Flow of size 1 passing through that sequence corresponds to continued tracking
of the associated landmark. A vertical edge corresponds to a switch between two landmarks, and
its cost is the acquisition cost of the new landmark.

18

Landmark x y detection-cost tracking cost

L1 166 188 10.0 1.0

L2 210 230 8.0 0.8

L3 208 120 12.0 1.2

L4 256 179 14.0 1.4

L5 323 115 9.0 0.9

L6 321 63 7.0 0.7

L7 387 180 6.0 0.6

L8 410 160 15.0 1.5

L9 454 74 5.0 0.5

Figure 6: A list of landmarks with their location and properties

Figure 1 shows a typical geometry including several landmarks, polygonal obstacles and a given

robot path. Interval endpoints correspond to occlusions. If we view landmarks as light sources

and assume that obstacles are opaque, interval endpoints are the boundaries of the shadows cast

on the path by the objects, if illuminated by one light source at a time. It should be pointed out

that, although the example shown in �gure 1 is two-dimensional, the algorithms we presented are

applicable to the general three-dimensional case of a point robot moving along a 3D curve among

3D obstacles observing point landmarks.

Figure 6 shows the list of landmarks, together with their (x,y) coordinates and their detection

and tracking costs. Figure 7 shows the landmark detection and tracking schedule, as computed by

both the shortest path and the min-cost
ow algorithms on the landmarks of the previous �gure

and with k = 2. In both cases we assume that the tracking cost is constant, independent of the

distance over which the landmark must be tracked, and it is incurred every time an endpoint is

passed by the robot. Since the two algorithms solve the same optimization problem, they come

up with identical results.

The program was implemented in Allegro Common LISP and the Common LISP Object Stan-

dard (CLOS).

8 Discussion

This paper describes a class of algorithms for establishing an execution plan for a given path in

a known environment. The execution plan consists of sets of landmarks that are visible from

19

Figure 7: The landmark detection and tracking schedule. The endpoints are indexed sequentially in
order of their distance from the start of the path. The �gure shows the result graphically according
to the following convention. Each endpoint is connected by dotted lines to the landmarks that
must be tracked over the primitive interval starting at the endpoint. Primitive intervals are de�ned
by consecutive endpoints. The following �gure shows the same result in text form. One notes
that both algorithms avoid the "costly" landmarks, and try to minimize the number of landmark
switches.

20

From To Track

endpoint endpoint Landmarks

0 1 (L1 L2)

1 2 (L1 L2)

2 3 (L1 L7)

3 4 (L1 L7)

4 5 (L1 L7)

5 6 (L1 L7)

6 7 (L1 L7)

7 8 (L4 L7)

8 9 (L4 L7)

9 10 (L4 L7)

10 11 (L6 L7)

11 12 (L6 L7)

12 13 (L6 L9)

13 14 (L6 L9)

14 15 (L9 L6)

Figure 8: The result of the previous �gure in text form.

and must be detected and tracked at di�erent segments of the given path. Not all landmarks

visible from a given segment of the path are included in the landmark set associated with that

segment. Landmark sets and segments are de�ned so as to minimize the e�ort of detecting and

tracking landmarks. The question of how to estimate the costs of detection and tracking of a given

landmark is not addressed in this paper. We propose determining these costs experimentally for

speci�c landmarks, and image processing hardware and software. The long-term objective is to use

these algorithms on the mobile robot ARK ([21]). The mobile platform is a Cybermotion model,

equipped with a novel video/laser sensor on a pan-tilt unit, capable of computing distances to

visually detected landmarks to a maximum distance of about 100m with a maximum distance

error of 5cm and a laser beam width of 5mrad.

Acknowledgements. The research described in this paper is funded by research grants from

the Natural Sciences and Engineering Research Council of Canada. The ARK Project receives its

funding from PRECARN Associates Inc., the Department of Industry, Science and Technology, the

National Research Council of Canada, the Ontario Technology Fund. Ontario Hydro, and Atomic

Energy of Canada Limited. An earlier version of this paper was presented at the 1993 IEEE/RSJ

International Conference on Intelligent Robots and Systems, (IROS), Yokohama, Japan.

21

References

[1] R.A. Brooks. Visual Map Making for a Mobile Robot, volume 13. Readings in Computer

Vision, edited by M. A. Fischler and O. Firschein, Morgan Kaufmann Pub., Inc., Los Altos,

California, 1987.

[2] B. Chazelle. Triangulating a simple polygon in linear time. Discrete and Computational

Geometry, 6:485{524, 1991.

[3] I. Cox and G. Wilfong (eds.). Autonomous Robot Vehicles. Springer Verlag, New York, 1990.

[4] I. Masaki (ed.). Vision-based Vehicle Guidance. Springer-Verlag, New York, 1992.

[5] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic e�ciency for network

ow problems. J.ACM, 19:248{264, 1972.

[6] A. Elfes. Sonar-based real-world mapping and navigation. In I. Cox and G. Wilfong, editors,

Autonomous Robot Vehicles, pages 233{249. Springer Verlag, 1990.

[7] C. Fennema, A. Hanson, E. Riseman, J.R. Beveridge, and R. Kumar. Model-directed mobile

robot navigation. IEEE Transactions on Systems, Man and Cybernetics, 20(6), Nov.-Dec.

1990.

[8] L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press, Princeton,

NJ, 1962.

[9] M.R. Garey, D.S. Johnson, F.D. Preparata, and R.E. Tarjan. Triangulation of a simple

polygon. Inform. Process. Lett., pages 175{180, 1978.

[10] L.J. Guibas, J. Hershberger, D. Leven, M.Sharir, and R.E. Tarjan. Linear time algorithms

for visibility and shortest path problems inside triangulated simple polygons. Algorithmica,

2:209{234, 1987.

[11] John Hershberger and Jack Snoeyink. Computing minimum length paths of a given homotopy

class. In Proc. 2nd WADS Springer-Verlag LNCS 519, volume 2, pages 331{342, 1991.

[12] S. Iyengar and A. Elfes. Autonomous Mobile Robots, Vols. 1 and 2. IEEE Computer Society

Press, Los Alamitos, CA, 1991.

22

[13] T. Kanbara, J. Miura, and Y. Shirai. Selection of e�cient landmarks for an autonomous

vehicle. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

1332{1338, 1993.

[14] E. Krotkov. Mobile robot localization using a single image. In IEEE Int. Conf. on Robotics

and Automation, Scottsdale, AZ, pages 978{983, May 1989.

[15] B. Kuipers and Y. Byun. A robot exploration and mapping strategy based on a semantic

hierarchy of spatial representations. Robotics and Autonomous Systems, 8:47{63, 1991.

[16] B. Kuipers and Y-T. Byun. A robot exploration and mapping strategy based on a semantic

hierarchy of spatial representations. In W. Van de Welde, editor, Toward Learning Robots,

pages 47{64. MIT Press, 1993.

[17] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, 1991.

[18] A. Lazanas and J-C. Latombe. Landmark-based robot navigation. Technical Report STAN-

CS-92-1428, Dept. of Computer Science, Stanford University, May 1992.

[19] T.S. Levitt and D. T. Lawton. Qualitative navigation for mobile robots. Arti�cial Intelligence,

44:305{360, 1990.

[20] V. Lumelsky. A comparative study of the path length performance of maze-searching and

robot motion algorithms. IEEE Transactions on Robotics and Automation, 7(1), February

1991.

[21] S. Nickerson, D. Long, M. Jenkin, E. Milios, B. Down, P. Jasiobedzki, A. Jepson, D. Ter-

zopoulos, J. Tsotsos, D. Wilkes, N. Bains, and K. Tran. ARK: Autonomous navigation of a

mobile robot in a known environment. In International conference on Intelligent Autonomous

Systems, IAS-3, Feb. 15-19, Carnegie-Mellon University, Pittsburgh, PA, 1993.

[22] K. Sutherland and W. Thompson. Inexact navigation. In IEEE Int. Conference on Robotics

and Automation, Atlanta, GA, pages 1{7, 1993.

[23] K. Sutherland and W. Thompson. Localizing in unstructured environments: Dealing with

the errors. IEEE Transactions on Robotics and Aytomation, 10(6):740{754, December 1994.

[24] M. Syslo, N. Deo, and J. Kowalik. Discrete Optimization Algorithms. Prentice{Hall, Inc.,

New Jersey, 1983.

23

[25] R. Wilson and J. Watkins. Graphs: An Introductory Approach. John Wiley and Sons, Inc.,

New York, 1990.

24

A Proof of the optimality of the GREEDY algorithm

Consider k disjoint paths as k intervals [0; L], that must be covered using window intervals repre-

senting visible portions of landmarks.

The main idea of the greedy algorithm is to cover the intervals [0; L] from left to right and, with

a �xed number of window intervals, cover [0; t], t � L, k times for t as large as possible, and then

cover [t; s], k � 1 times for s (t � s � L) as large as possible, and so on.

More formally, let f[0; pi] : 1 � i � kg a set of k disjoint paths with m nodes (m corresponds to

the total number of landmarks to be accessed). Without loss of generality, let p1 � p2 � � � � � pk

(rename them if necessary.)

The GREEDY algorithm maximizes the vector < p1; p2; � � � ; pk > in a lexicographically maxi-

mum sense among all such collections of paths with m nodes. That is, with cost m, we want to

maximize the distance the robot can move while accessing at least k landmarks.

Consider a partially constructed S, it does not have k internally disjoint path from start point

to the goal yet. De�ne range(S) to mean the maximum value such that there are k paths cover

the interval [0; range(S)]. Under this condition, after range(S), we want to maximize the distance

the robot can move while accessing k � 1 landmarks, and so on.

When the robot has to move further than p1, we pick a node corresponding to an interval starting

before the end of p1 (to replace the interval ending at p1 as the new landmark from p1 on) and

extending as far as possible. Because of the choice for p2, this new added landmark allows us to

move the farthest with cost m+ 1 while accessing to k landmarks all the way.

This heuristic turns out to be optimal because of the special type of interval graph we deal with.

The formal proof is as follows.

Let S be the solution obtained by Algorithm GREEDY discussion in Section 3. Thus S consists

of k internally disjoint paths Si, where:

Si = [origin = s(i;0); s(i;1); � � � ; s(i;pi) = goal]; i = 1; 2; � � � ; k:

We prove that, for any set of k internally disjoint paths from the origin to the goal, S has the

minimum size. Suppose this is not true. We choose the set T

Ti = [origin = t(i;0); t(i;1); � � � ; t(i;qi) = goal]; i = 1; 2; � � � ; k;

of k internally disjoint paths from the origin to the goal that has the following properties:

25

T has the minimum size.

T has the maximum h, where h be the �rst time, according to the order nodes in S are

chosen, that a node s(i;j) is selected to add to S with s(i;j) 6= t(i;j). For example, suppose

s(1;1) is the longest interval intersecting the starting point 0 but t(1;1) is not the same as

s(1;1). Then h=1. The GREEDY algorithm will choose intervals to put into S in a certain

order. Following that order, consider the �rst chosen, the second chosen, and ..., i � th

chosen interval. If the i � th chosen interval s(x;y) is not the same as t(x;y) but all those

chosen before match, we let h = i.

The following lemma is useful.

Lemma A.1 For j � 1, t(i;j) is adjacent to t(i;j�1) but t(i;j) is not adjacent to t(i;l) for l < j� 1,

(we use the convention that t(i;�1) = 0.)

Proof of Lemma. If t(i;j) is adjacent to t(i;l) for some l < j� 1, then we can remove t(i;j�1) and

Ti is still a path from the origin to the goal by the interval graph properties.

With this lemma, we are ready to complete our proof by induction.

Base Case h = 1. We can permute Ti, 1 � i � k, such that t(1;0) > t(2;0) > � � � > t(k;0).

If s(1;0) is still not the same as t(1;0), then s(1;0) > t(1;0) by GREEDY algorithm. We can

simply replace t(1;0) by s(1;0). To do this, we need to make sure that s(1;0) is not in [
k
i=1Ti,

which is guaranteed by Lemma A.1.

Recursive case. Let

S0

l = [origin = t(l;0); t(l;1); � � � ; t(l;p0

l
)]; l = 1; 2; � � � ; k;

be the partial path already constructed before s(i;j) is chosen. By the greedy algorithm the

value of t(i;p0

i
) is the minimum among ft(l;p0

l
) : 1 � l � kg. Let

T 0

l = [t(l;p0

l+1
); t(l;p0

l+1
); � � � ; t(l;ql)]; l = 1; 2; � � � ; k:

Therefore, Tl = S0

l [T
0

l , 1 � l � k. If s(i;j) is not any of t(l;p0

l+1
), we can simply replace

t(i;j) by s(i;j) in Ti. Ti will still be a path since the interval for s(i;j) extends to the right

more than t(i;j) does by the greedy algorithm. If s(i;j) is one of t(l;p0

l+1
), say, t(i0;p0

i0+1
) = si;j ,

then we can set Ti = S0

i [T
0

i0 and Ti0 = S0

i0 [T
0

i and keep Tl the same for l 6= i, l 6= i0, and

1 � l � k. After this transformation, Ti and Ti0 are still paths since the rightmost point of

S0

i is no bigger than the rightmost point of S0

i0 .

26

B A Fast Algorithm for the case of a 2D Polygon Interior

World

We now restrict the robot's world to be the interior of a two-dimensional polygon of size n. We

assume that vertices are the possible landmarks. In a real-world scenario, the vertices could corre-

spond to vertical edges, detected by a vision or a range sensor. As we noted above, the minimum

number of landmarks needed to guide robot navigation is di�erent for di�erent technologies used.

First we show that our discussion can be restricted to the case k � 3, where k is the number of

landmarks visible from any path location.

Lemma B.1 At any point we can see at least three vertices and there are polygons with positions

from which we cannot see more than three vertices.

Proof: Consider a triangulation of the polygon world. Each point is in one of the triangles. The

three vertices of the triangle are visible from that point. 2

Suppose that the planned route R is polygonal and consists of m segments. We should show

later that the restriction of the line being polygonal can be removed. One di�culty in obtaining

an e�cient algorithm is that one vertex may cast many (up to O(m)) window intervals in the

planned route R. This would lead to an interval graph of nm nodes and (nm)2 edges, which

would lead to an algorithm of time complexity at least (nm)2. We improve over this coarse result

by applying GREEDY at the same time that we construct the interval graph. First, we construct

the visibility graph of the polygon. From the origin, �nd all the visible vertices. By GREEDY, we

want to �nd the vertex which covers the longest window interval along the route from the origin.

In general, at each point we need to replace an old landmark, we �nd all the vertices visible from

this point. Then, we choose the vertex which covers the longest window interval along the route

from this point on. Each such operation takes time mn. Therefore, we have an algorithm of

time mnjSj, where S is the solution and jSj =
Pk

i=1(1 + pi) using the notation of Appendix A.

Consider a triangulation of the polygon �. Within a triangle, there are three vertices which cover

all the parts of the planned route inside the triangle. Let's cut the planned route R into pieces

at intersection points with edges in the triangulation �. Let p�(R) denote the total number of

pieces of R. Let p(R) = maxall� p�(R). Thus, we have jSj � kp(R), for k � 3. Therefore, the

time complexity of the algorithm is O(mnjp(R)j). For shortest paths between two points, it is not

di�cult to see that p(R) = O(n). Hence we conclude:

27

s
t

v

w

= apex(v)

apex(w)

e (v)1

e (v)2

r(v)l(v)

vs vt
ws

w
t

Figure 9: The window interval due to a landmark.

Lemma B.2 There is an algorithm of time complexity O(mn2) for the uniform cost version of

the landmark selection problem in two dimensions.

However, for shortest paths between two points in a simple polygon, we can improve the result

even further. An important observation is the following:

Lemma B.3 Let a = x0x1 � � �xm = b be a shortest path between a and b inside a simple polygon.

A point x visible from both a and b is visible from all the intermediate point xi, 0 < i < m.

Let two vertices s and t be designated as the starting point and the target point of our robot,

respectively. The robot will move from s to t along a designated path inside P . We assume the

vertices of P are the landmarks, and a landmark v is visible from the current position p of the

robot, if the line segment vp does not intersect the exterior of P . Let L(p) denote the set of

landmarks scheduled for point p on the designated path. The greedy strategy mentioned earlier,

suggests that the new visible landmark must be chosen from the landmarks not in L but visible

from point p, so that it remains visible the longest along the designated path.

For each pair u; v of vertices of P , let SP (u; v) denote the shortest path inside P from u to v.

Here we assume the designated st�path is SP (s; t). By Lemma B.3, any landmark can see only a

connected subpath of SP (s; t). Figure 9 characterizes this situation. Consider an arbitrary vertex

28

v of P . Let vs be the vertex on the intersection of SP (s; t) and SP (s; v) closest to v. Similarly, let

vt denote the vertex on the intersection of SP (t; s) = SP (s; t) and SP (t; v) closes to v. The path

SP (vs; vt) is a subpath of SP (s; t) from vs to vt and is convex towards v. Let apex(v) denote the

vertex common to both SP (v; vs) and SP (v; vt) farthest from v. Then, the paths SP (apex(v); vs)

and SP (apex(v); vt) are also convex inward as suggested by Figure 9. We say a vertex v is a useful

landmark if v can see a non-empty open interval of SP (s; t). Otherwise, v is useless. A vertex v

is useful if and only if apex(v) = v. In Figure 9 vertex v is useful, but vertex w is not. All vertices

on SP (s; t) are useful.

Let l(v) and r(v) denote the points (not necessarily vertices of P) of SP (s; t) visible from v that

are, respectively, closest and farthest from s. Then, SP (l(v); r(v)) is entirely visible from v and is

a subpath of SP (vs; vt), unless v is on SP (s; t). Suppose v is a useful landmark not on SP (s; t).

Let e1(v) be the edge of SP (v; vs) incident to v and e2(v) be the edge of SP (v; vt) incident to v.

Then, l(v) is the intersection of SP (s; t) with the extension of e1(v), and r(v) is the intersection

of SP (s; t) with the extension of e2(v). (See Figure 9.) If v is on SP (s; t), then l(v) and r(v) are

the two vertices adjacent to v along SP (s; t).

Let T (x) denote the single source shortest path tree inside polygon P from the source x to each

vertex of P . For any given vertex x of P , T (x) can be computed in O(n) time [10, 2, 11]. (For

a much simpler, but O(n logn) time polygon triangulation algorithm, see [9].) Our algorithm to

compute the intervals (l(v); r(v)) for each vertex v is as follows. We �rst compute the two single

source shortest path trees T (s) and T (t). The shortest path SP (s; t) is a path in both T (s) and

T (t). By traversing these two trees, we can determine the set of useful vertices, and for each such

vertex v, we can determine (vs; vt), and (e1(v); e2(v)). These can be done in a total of O(n) time.

We also store the vertices of SP (s; t) in sorted order from s to t in an array so that we can perform

binary search on some of its convex subchains. Now, for each useful vertex v, we perform a binary

search on the convex subchain (vs; vt) of SP (s; t) to determine the unique intersection points of

the chain with the extensions of e1(v) and e2(v). These intersection points are l(v) and r(v) as

desired, and can be computed in O(log n) time for each vertex v. We conclude:

Lemma B.4 The endpoints of window intervals (l(v); r(v)), for all useful vertices v of P , in

sorted order along SP (s; t) can be computed in O(n log n) time and O(n) space.

Theorem B.5 There is an algorithm of time complexity O(n logn) for the uniform case of the

landmark selection problem for executing a shortest path in a simple polygon.

29

