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Abstract

The class imbalance problem causes a classi-
�er to over-�t the data belonging to the class
with the greatest number of training exam-
ples. The purpose of this paper is to argue
that methods that equalize class membership
are not as e�ective as possible when applied
blindly and that improvements can be ob-
tained by adjusting for the within-class im-
balance. A guided resampling technique is
proposed and tested within a simpler letter
recognition domain and a more diÆcult text
classi�cation domain. A fast unsupervised
clustering technique, Principal Direction Di-
visive Partitioning (PDDP), is used to deter-
mine the internal characteristics of each class.
The performance improvement in categories
that su�er from a large between-class imbal-
ance (few positive examples) are shown to be
improved when using the guided resampling
method.

1 INTRODUCTION

The class imbalance problem occurs when there is a
large discrepancy between the prior probabilities of the
individual classes. That is, one class is represented by
a greater number of training examples than the other.
1 If this problem exists within the training data, it
can be diÆcult for a classi�er to learn the concept for
which there were few examples.

Several methods have previously been proposed to deal
with this problem including prior scaling, probabilistic
sampling, post scaling [6, Lawrence et al., 1998] and

1Throughout this paper, we focus on concept-learning
problems in which one class represents the concept at hand
(positive class) while the other represents counter-examples
of the concept (negative class).

equalizing class membership [5, Kubat and Matwin,
1997]. One shortcoming of these approaches, however,
is that they avoid considering the case where, within a
single class, the data is distributed according to a mix-
ture density whose components have relative densities
that may vary greatly. When faced with such a situa-
tion the existing methods that address the class imbal-
ance problem may be counterproductive. While they
decrease the di�erence between the prior probabilities
of the classes (the between-class imbalance), there is
a chance they will increase the di�erence between the
relative densities of the subcomponents within each
class (the within-class imbalance). Solving one prob-
lem by creating another is obviously undesirable.

2 THE PROBLEM

As previously observed [8, Mitchell, 1997], the class
imbalance problem causes a classi�er to over-�t the
data belonging to the class with the greatest number
of training examples. A simple and e�ective method
for dealing with this problem consists of equalizing
class membership by randomly selecting and dupli-
cating examples from the underrepresented class until
the two classes are balanced. Although this approach
has been shown to increase classi�cation accuracy over
that of non-resampling methods [3, Estabrooks, 2000],
none of these studies took into consideration the fact
that within-class imbalances may occur in addition to
between-class imbalances.

The purpose of this paper is to argue that methods
that equalize class membership are not as e�ective as
possible when applied blindly and that improvements
can be obtained by adjusting for the within-class im-
balance.

If we can determine the nature of the subcomponents
within each class, we could use that knowledge to guide
the resampling. The elements in each subcomponent
within each class can then be resampled until each
subcomponent has the same number of examples as



the largest subcomponent. Then the between-class
imbalance can be eliminated by randomly selecting
and duplicating members of the underrepresented class
(equalizing class membership). This method is here-
inafter referred to as guided resampling.

We attempt to establish an upper bound of the perfor-
mance for the guided resampling method by using our
prior knowledge of the nature of the subcomponents
to guide the resampling as described previously.

In a typical classi�cation problem, we generally would
not know the exact partitioning of the subcomponents
in advance. In order to guide the resampling, an unsu-
pervised clustering algorithm can be run on each class
of the training data in an attempt to �nd any within-
class imbalances. The clusters found are used to guide
the resampling as previously described.

3 METHOD

We �rst employ a method of unsupervised clustering to
detect any within-class imbalances in both the positive
and negative classes. Using this information, we can
avoid increasing the di�erences in the relative densities
of the subcomponents of each class by equalizing the
number of members in each subcomponent.

The unsupervised clustering technique, Principal Di-
rection Divisive Partitioning (PDDP), was used to de-
termine the internal characteristics of each class. In
our experiments, we used our knowledge of the sub-
components in each class to force PDDP to �nd that
number of clusters within the each class. The clusters
were then resampled so that the discovered clusters
across both classes each had the same number of ex-
amples.

A decision-tree based classi�er, C5.0[9, Quinlan, 1998],
was trained and used to classify new examples. The re-
sults of the guided resampling technique are compared
to the results obtained in the absence of a resampling
strategy and in the presence of a blind resampling
strategy, which resamples at random without taking
within-class imbalances into consideration.

3.1 PDDP

The Principal Direction Divisive Partitioning (PDDP)
[2, Boley, 1997] algorithm operates on a set of m sam-
ples where each sample is a vector of n-dimensions
containing the attributes of that an example from the
training set.

The algorithm determines the internal structure of a
class by dividing the set of documents into two clusters
by using the principal direction of an n � m matrix
whose i-th column is the vector representing the i-th

example. This process is recursively applied to each of
the clusters created. The result is a binary tree where
the leaf nodes represent the clusters.

PDDP was chosen as the method to determine the in-
ternal structure of a class because of it's eÆciency. It's
expected running time is linear in the number of doc-
uments m, modulo the number of iterations with the
SVD computation, whereas most clustering algorithms
typically have O(m2) running time.

3.2 Performance Measures

Classi�cation error is not a good performance metric
to use when the prior probabilities of the classes di�er
signi�cantly. [6, Lawrence et al., 1998] When there is a
large between-class imbalance, it is trivial to obtain a
low error rate simply by classifying all the documents
as members of the larger class. Statistics such as Pre-
cision and Recall, two well-known performance metrics
within the Information Retrieval community, are not
sensitive to this problem.

The Precision of a class is the proportion of events la-
beled as that class which were predicted to be in the
class. The Recall of a class is the proportion of cor-
rectly detected events which are labeled as that class.

For the purposes of comparison, it is convenient to
combine Precision (P ) and Recall (R) into a single
measure of performance: the F-measure. [10, van Ru-
jsbergen, 1979] When Precision and Recall are consid-
ered equally important, the F-measure (F ) reduces to
Figure 1.

F =
2PR

(R+ P )

Figure 1: F-Measure

The F-measure lies between zero and one, with val-
ues close to one indicating better performance. It is a
useful performance metric because it gives low scores
to methods that obtain high precision by sacri�cing
recall or vice versa.

4 EXPERIMENTS

4.1 Letter Classi�cation

To test the practicality of this strategy, we �rst tested
our approach on a simple real-world domain. Using
the letter recognition data set available from the UC
Irvine Repository, we de�ned a subtask in which the
positive class contained the vowels a and u and the
negative class contained the consonants m, s, t and
w. Rather than assuming the same number of exam-



ples per letter in the training set, we took a subset of
the examples for each letter in a way that reects the
letter frequency in English text.2 While introducing
within-class imbalances, this sampling has the advan-
tage of creating a more realistic training set than the
one available from the UCI Repository.

In the negative class, the consonants, w is severely
underrepresented. If a blind resampling technique is
used, there is a good chance that examples of w will
not get duplicated often in the resampling process. If
we use knowledge of the subcomponent of the nega-
tive class, we can ensure that the examples of w get
appropriately resampled.

Four experiments were performed on this domain: one
with no resampling; one where the between-class im-
balance is blindly eliminated; one where PDDP was
forced to choose four clusters for the negative class
and two clusters for the positive class for the guided
resampling process; and one where we use our prior
knowledge of the subcomponents of each class of the
training set to guide the resampling.

4.1.1 Results

The results from this experiment are reported in Ta-
ble 1. They indicate that there was no di�erence in
Precision or Recall (and hence no di�erence in the
F-Measure) between the methods of no resampling
and blind resampling. When PDDP was used to �nd
the sub-components within each class using the prior
knowledge of the actual number of sub-components,
slight improvements in Precision and signi�cant im-
provements in Recall are seen. When we used the prior
knowledge of the subcomponents in each class to guide
the resampling, it outperforms methods of blind or no
resampling but does not perform as well as when the
clusters were chosen by PDDP.

Table 1: Results of Letter Classi�cation Experiment

METHOD P R F

No Resampling 0.905 0.818 0.859
Blind Resampling 0.905 0.818 0.859
Guided Resampling
(# Clusters Known) 0.923 0.914 0.919
Guided Resampling
(Using Known Clusters) 0.935 0.877 0.905

Notice that using either method of guided resampling
leads to an improvement in both Precision and Recall.

2The following frequencies were used: a: .0856, u:
.0249, m: .0249, s .0607, t: .1045, w: .0017. [4, Konheim,
1981] These letters were chosen because their frequencies
lead to both between-class and within-class imbalances.

These results served as motivation for trying the
guided resampling technique on the more diÆcult
problem of Text Classi�cation.

4.2 Text Classi�cation

The guided resampling technique proposed in the pre-
vious section is tested within a text classi�cation do-
main. More speci�cally, the problem of classifying an
article according to its topic.

The same four experiments were performed on this
domain as on the letter classi�cation domain.

4.2.1 Reuters-21578

The Reuters-21578 collection[7, Lewis, 1999] is a col-
lection of 21578 documents originally assembled by
Reuters Ltd. in 1987 and later formatted in SGML
by David D. Lewis and Stephen Harding. A subset of
the Reuters-21578 collection was used to test the afore-
mentioned techniques within the real world domain of
text classi�cation.

Speci�cally, we considered documents that were as-
signed topics under the categories earn, acq, money-
fx, grain, crude, trade,interest, ship, wheat and corn
each of which are represented by a di�erent number of
examples as seen in Figure 2.

Table 2: Number of articles for each topic

CATEGORY NUMBER OF ARTICLES

earn 2709
acq 1488
money-fx 460
grain 394
crude 349
trade 337
interest 289
wheat 198
ship 191
corn 160

The experiment is repeated with each category taking
a turn as the positive class. The negative class in each
case consists of all the other articles that are not in
the positive class.

This text classi�cation domain was initially chosen for
our experiments because it was easy to establish an
upper bound performance since the sub-components
of the negative class are perfectly known. To establish
an upper bound on performance for this technique, the
prior knowledge of the sub-components of each class is
again used to guide the resampling. In an ideal situa-



Figure 2: Comparison of F-measure for all categories

tion, the unsupervised clustering algorithm could per-
fectly detect these sub-components and that informa-
tion could be used to guide the resampling accordingly.

Training and testing sets were derived according to the
mod-apte split [1][Apte, 1994] for the Reuters-21578
collection.

4.2.2 Data Representation

As is standard in text classi�cation experiments, stop
words were removed from all documents and the re-
maining words were stemmed using a Porter stemmer
in order to reduce the number of unique words. A fea-
ture vector was formed for each document consisting of
the counts of the 500 most frequently occurring words
(not including the stop words) over the entire docu-
ment set. This is often referred to as the bag-of-words
model.

4.2.3 Results

Overall, the results of our method on this domain are
not particularly promising. Many of the categories
show decreased performance when using guided re-
sampling over blind resampling even when the prior
knowledge of the clusters is used. See Figure 2.

Table 3: Average Precision, Recall and F-Measure over
all categories

METHOD P R F

No Resampling 0.617 0.394 0.455
Blind Resampling 0.580 0.545 0.560
Guided Resampling
(# Clusters Known) 0.650 0.51 0.544
Guided Resampling
(# Upper Bound) 0.601 0.751 0.665

Figure 3: Comparison of F-measures for categories
where guided resampling shows improvement

Three categories (corn, wheat and Interest), however,
do show improvements in Precision and Recall when
using guided resampling (with knowledge of the num-
ber of sub-clusters) over blind resampling and this is
reected in their respective F-Measures. See Figure 3.

When using no resampling or blind resampling, no
documents were correctly classi�ed for corn or wheat
when those categories were acting as the positive class.
Using PDDP to �nd the clusters for guided resam-
pling, C5.0 was able to correctly classify 1 and 2 doc-
uments for corn and wheat respectively. When knowl-
edge of the subcomponents is used to guide resampling
in these categories, 31 documents are correctly classi-
�ed as corn and 60 are correctly classi�ed as wheat.
When the interest category is considered to be the
positive class, guided resampling using PDDP showed
improvement over the method of blind resampling.

While using PDDP to guide the resampling does
not, in general, achieve results approaching the upper
bound, it does achieve better results than when using
a blind resampling strategy on these three categories.
It is worth noting that these categories su�ered some
of the greatest between-class imbalances of the entire
data set.

5 DISCUSSION

It is likely that the poor results on the Text Classi�ca-
tion domain are the result of the representation that
we used for the documents. Limiting the feature vec-
tors to the top 500 most frequently occurring words
can exclude a lot of relevant information for each doc-
ument. In that case, documents that share like terms
may not be clustered together if those terms are not
within the set of words considered for the feature vec-
tor.



The improvements seen by using guided resampling
on very imbalanced data sets could be applied when
methods of blind resampling fail in allowing a classi�er
to be trained to recognize members of the underrepre-
sented class.

6 FUTURE WORK

Our experiments showed that guided resampling can
be useful in the case of severe imbalances. However,
to this point, we have assumed that either full knowl-
edge about the subcomponents constituting each class
is available or the number of subcomponents in each
class is known. The �rst assumption is very unlikely
while the second one is only true in some cases. 3

An important goal for the future is thus to derive ways
to estimate the correct number of subcomponents per
class as well as their nature.

It would also be worthwhile to study more rigorously
the e�ects of guided resampling on data where there is
very little imbalance. If guided resampling were to be
employed when analyzing a new data set whose char-
acteristics are unknown, the random selection of ex-
amples from discovered clusters may negatively a�ect
performance.

Once the practicality of our approach is fully estab-
lished, we would also like to test its generality by ap-
plying it with other classi�cation and clustering sys-
tems and on other domains where the imbalanced data
set problem exists. It would be interesting to deter-
mine the e�ectiveness of this method when using clas-
si�ers other than C5.0 such as Multi-Layer Perceptrons
based classi�ers and when using methods of unsuper-
vised clustering other than PDDP such as k-means
clustering or self-organizing maps.

7 CONCLUSION

We have proposed a method for improving methods
that deal with the between-class imbalance problem by
taking any within-class imbalances into consideration.
These within-class imbalances are detected using Prin-
cipal Direction Divisive Partitioning, an unsupervised
clustering algorithm.

The proposed method has shown improvement over
existing methods of equalizing class imbalances, espe-
cially when there is a large between-class imbalance
together with severe imbalance in the relative densi-
ties of the subcomponents of each class.

3For example, a hospital may know the number of dif-
ferent strains of a bacteria without knowing which patient
is a�ect by which strain.
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