
NetPal: A Dynamic Network

Administration Knowledge Base

Ashley George, Adetokunbo Makanju,

Evangelos Milios, Nur Zincir-Heywood

Faculty of Computer Science

Dalhousie University

Halifax, NS

{ageorge, makanju, eem, zincir}@cs.dal.ca

Markus Latzel, Sotirios Stergiopoulos

Palomino System Innovations Inc.

Toronto, ON

{markus, sotirios}@palominosys.com

Abstract

Netpal is a web-based dynamic knowledge base
system designed to assist network administra-
tors in their troubleshooting tasks, in recall-
ing and storing experience, and in identify-
ing new failure cases and their symptoms. In
the context of web hosting environments, Net-
pal summarises network data and and supports
retrieval of relevant organisational experience
for system administrators. The system design
draws on a variety of domains including knowl-
edge management, information retrieval, ma-
chine learning and network management. We
describe the system architecture, user interface
design, user software testing and future direc-
tions for development.

1 Introduction

In the course of their duties, system adminis-
trators acquire and retain extensive specialised
knowledge regarding the operation of complex
systems and networks. Experienced system ad-
ministrators can rapidly narrow the field of
candidate solutions when confronted with net-
work faults and associated evidence. Thus the
value of experience for a system administrator
is high; the administrator uses this knowledge

Copyright c© 2008 Dr. Evangelos Milios, Dr. Nur
Zincir-Heywood, Ashley George, Tokunbo Makanju,
Markus Latzel, Sotirios Stergiopoulos. Permission to
copy is hereby granted provided the original copyright
notice is reproduced in copies made.

to judge an appropriate initial avenue of in-
vestigation. This presents an opportunity to
optimise use of time and resources by creating
a system which supports experience manage-
ment [2, 8, 9] and recall in system administra-
tors through suggestion of relevant previously
recorded experience cases.

In addition to knowing how to solve a recog-
nised fault, an administrator needs to detect
the evidence which characterises a fault. The
collective data stream generated by hosts in a
large network grows to exceed that which can
be sorted by ad-hoc visual inspection. Numer-
ical and visual tools for filtering and reduc-
ing the data stream allow the administrator to
gain a high-level overview of their network’s be-
haviour.

In the NetPal project, a prototype experi-
ence retrieval system for system administrators
was produced in the context of the web host-
ing business. Our goal is to reduce the learn-
ing curve faced by junior system administrators
and to supplement recall in senior system ad-
ministrators through retrieval of previous expe-
rience cases, integrated with web-based report-
ing and analysis of network event data, particu-
larly host-based server log data. We approach
this problem through a combination of infor-
mation retrieval, knowledge management, host
and network analysis and user interface design.

The process of troubleshooting a network
fault is described in [10] as containing the fol-
lowing steps and roughly illustrated in Figure
1.

1

Figure 1: NetPal: network fault lifecycle diagram

1. alarm collection

2. customer satisfaction maintenance

3. alarm filtering and correlation

4. fault diagnosis

5. development and implementation of an ac-
tion plan

6. verification of fault elimination

7. statistical analysis of fault management
process

The fourth and fifth steps are considered to ac-
count for 80% of the troubleshooting efforts,
based on experience in Palomino; reductions in
the effort required from system administrators
both for identifying faults and planning resolu-
tions would result in significant savings for an
organisation. We aim to achieve these reduc-
tions by increasing the amount of relevant prior
information available to system administrators
as they tackle a particular fault scenario.

2 Motivation

The NetPal project is inspired by previous ef-
forts in constructing network knowledge man-
agement systems [4, 7, 10, 6]. Many of these

systems incorporate rule-based or case-based
reasoning. We also take note of a success-
ful experimental medical diagnosis support sys-
tem, based on similar principles of retrieving
literature relevant to a case using text mining
techniques [12]. Drawing on these sources, we
focus on constructing a system which acts to
ease the recall of experience and the interpre-
tation of system information by administrators.
Therefore we are less concerned with automat-
ically producing corrections for problems; we
are more interested in prompting both learn-
ing and recall in employees who are well-suited
for correcting emerging problems.

2.1 Rule- and Case-based
Reasoning

Rule-based reasoning (RBR) systems, in the
context of computer network management,
tend to take a control systems approach, as re-
viewed in [4]. In a network-oriented control
system, there is a database of rules which con-
sists of conditions and procedures. The con-
ditions represent knowledge about the normal
operating state of the network. When these
conditions are violated, the network enters an
irregular operating state. At this point, proce-
dures can be executed to ostensibly return the
state of the network to the normal operating

2

state. In [7], Lewis suggests that rule-based
reasoning systems tend to suffer from brittle-
ness and a “knowledge acquisition bottleneck”.
These faults are respectively characterised by
difficulty in adapting to novel problem situa-
tions and an unconditioned growth of the rule-
base as new conditions and procedures are in-
serted. In the latter case, the database becomes
unmanageable and may lead to unpredictable
behaviour.

Following this assessment, Lewis proposes
a case-based reasoning system to record and
adapt “episodes of problem solving” where the
adaptation of these episodes consists of ob-
serving interactions with the case database
(“abstraction/respecialization adaptation”) or
modifications directly to the cases themselves
(“critic-based adaptation”) [7]. The system,
’Critter’, enhances a typical trouble ticket
database system by introducing constraint-
based ticket filtering and user feedback-
capturing mechanisms for updating the case
database over time while minimising user in-
tervention where possible. Lewis’ augmenta-
tion of the trouble ticket system appears to
favour a predicate-oriented representation (as
with RBR) where we prefer an information re-
trieval strategy.

An alternate approach to case-based reason-
ing for system administration is to insert the
reasoning system at a different point in the
problem resolution process. In [10], the case-
based reasoning system is situated closer to
the alarm collection source, in the sense that
alarms are processed by the system before a
ticket is raised, in the hopes of reducing the
volume of raised tickets. This approach tar-
gets a coarse-grained control system - when
the collected alarms match the preconditions
for a case, that case and its attached proce-
dures are automatically applied to resolve the
problem. Contrast this coarse-grained activ-
ity with the application of a discrete series of
individual rules and procedures geared to in-
crementally restore operational state, as in a
rule-based system. For their experimental test-
ing, pre-defined cases were used. It was found
that procedures were automatically applied to
8% of faults over time, leaving 92% of faults for
“in-site maintenance”.

Each of the systems described in these works

focuses on applying fine-grained or coarse-
grained procedures in the context of telecom-
munications systems when predetermined con-
ditions are matched. In the fine-grained case,
the expert is required to craft a number of
condition-action statement pairs which incre-
mentally return the system to its ideal operat-
ing state. In the coarse-grained case, the do-
main expert crafts a complex condition and a
complex procedural response which returns the
system to its ideal operating state. In both
cases, the requirement of formal statements for
conditions and solutions suggests difficulty in
future adaptation of the rule or case base to
changing network conditions.

2.2 Information Retrieval and
Medical Diagnosis Support

Patients in a clinical setting may exhibit a
mixture of symptoms, giving rise to multiple
plausible explanations for their condition. The
caregiver for the patient is expected to infer
from the observed symptoms (and patient case
history) an accurate diagnosis which will pro-
vide a basis for corrective and preventative
medical action.

In the context of medical diagnosis, ISABEL
[12] is a diagnosis support system which, in
early trials, has reduced errors of “diagnosis
omission” [11, 16, 13]. ISABEL is reminiscent
of a search engine and is heavily tailored to-
ward searching medical literature. This con-
tent restriction allows for the implementation
of domain-specific features, including presenta-
tion of probabilistically ranked diagnoses, ex-
pert annotations of case material and more.
Unlike the rule-based and case-based systems
described in the previous section, the purpose
of ISABEL is not to automatically apply rules
or case-based scripts but to act as a reminder
aide for the expert.

Much as a doctor may benefit from prompt-
ing to consider alternative diagnoses, network
administrators may also benefit from a sys-
tem which prompts knowledge recall. Our
problem domain requires a different approach
from ISABEL given that there is no systemic,
widely applicable body of diagnostic litera-
ture which uniquely characterises root causes of
fault symptoms for web hosting environments.

3

Thus we provide the administrator with search
and visualisation tools to help them interac-
tively narrow their hypotheses.

We aim to enhance the abilities of admin-
istrators to filter generated system events and
to recover previous work experience. Where
rule-based and case-based systems attempted
to automatically detect conditions and apply
scripted solutions, we rely on arming adminis-
trators with increased prior information so they
may better assess conditions and produce solu-
tions. Where ISABEL links medical literature
to symptom descriptions, we index and present
previous experience and domain-specific docu-
ments to aid the administrator in gaining un-
derstanding of the current case. We aim not to
automate all problem-solving but to improve
knowledge transmission and recall for junior
and senior network administrators.

3 The Web Hosting

Environment

In our work, NetPal is developed and tested in
the context of the small to medium web host-
ing environment. Servers deployed in a web
hosting environment handle hosting responsi-
bilities in a distributed manner. In addition
to web content, there are many services offered
by the web hosting provider to support their
customers, including email, domain name ser-
vices and custom application support. The web
hosting environment therefore produces multi-
ple kinds of faults, emanating from different
hardware, software, customer and consumer
sources.

The hardware and software configuration se-
lected by a web hosting provider will depend
on customer needs. Cardellini et al [3] de-
scribe several configuration scenarios for han-
dling high-load web applications. While small
customers with relatively static website content
consume a fraction of a server’s capacity, cus-
tomers with high traffic and application pro-
cessing costs require concurrent solutions con-
suming multiple physical servers, both for pro-
cessing and for redundancy.

Allocation of resources in a web hosting envi-
ronment is therefore multiplied over reliability
and responsibilities. To handle these respon-

sibilities, there are typically groups of servers
dedicated to

• handling web requests

• application layer processing

• database and object retrieval

NetPal targets this kind of heterogeneous op-
erating environment which contains off-the-
shelf components, custom components and per-
customer hardware and software configura-
tions. By taking an information retrieval ap-
proach, we hope to mitigate some of this het-
erogeneity when searching through collected
data. For our testbed environments, we chose
to simulate a complex hosting environment by
replaying log data and case history collected at
Palomino Inc. into databases on the NetPal
test servers. In Section 5, we further describe
how our software testers interacted with this
system and summarise their feedback.

4 System Architecture

The NetPal system is composed of a set of core
components which are intended to integrate
with external fault detection systems. The core
components include the following.

• case knowledge base

• problem/solution matching engine

• presentation, feedback and editor modules

Their component interactions are summarised
in Figure 2.

4.1 Case and Problem/Solution
Matching

Underlying the case knowledge and prob-
lem/solution matching engine is an information
retrieval (IR) subsystem. In an information re-
trieval system, the prevailing metaphor is that
of query-answering, normally by returning a
ranked set of documents for the user’s query
under a measure of relevancy [1, 5].

In our system, queries can be generated man-
ually or automatically as the system adminis-
trator interacts with NetPal and builds a case.

4

Figure 2: NetPal core system components diagram

We then make recommendations for related ar-
ticles, cases and events (logfile entries, at this
time). The administrator can also query the
relevant components individually. We would
typically generate a list of keywords from case
components but an example of a manual sam-
ple query might be a series of keywords gar-
nered from observing log entries or a best initial
hypothesis, such as

• “php open_basedir”

• “domain conf problem”

These kind of queries can be extended through
query expansion: using a thesaurus with do-
main knowledge to automatically produce a list
of synonyms. We use query expansion to op-
tionally broaden the scope of queries generated
in NetPal.

4.1.1 Information Retrieval

We adopt the vector space model to char-
acterise our cases for retrieval purposes and
to capture the similarity between vectors us-
ing the cosine angle distance. This model,
originally described in [14] and summarised
in [5], represents documents as vectors in
a term frequency-inverse document frequency
(TF-IDF) space. We describe this model here
as a basis for our system.

Let T name the vocabulary of unique terms
extracted from the document corpus and ti be
the i’th term in T . Let D be the set of all docu-
ments and dj be a particular document. Then,
the normalised term frequency tfij is given by

tfij =
nij

|dj |
(1)

where the frequency of occurrence of term ti
in document dj is denoted by nij . This measure
captures the relative importance of a term in a
particular document while accounting for the
effect of varying document length.

The in-document term frequency (TF) is one
component of the representation. The other is
the inverse document frequency (IDF). Given
a term ti, the inverse document frequency is
calculated as

idfi = log

(

|D|

|{dj : ti ∈ dj}|

)

(2)

This quantity characterises the support of
the term ti in the document corpus; terms
which appear in few documents obtain a high
IDF score while terms which occur widely
throughout the document set will score closer
to zero.

For document dj and term ti, tfidfij is the
product of these quantities. The term fre-
quency captures the in-document importance

5

for ti and the inverse document frequency
captures the whole-corpus importance for ti.
These values, multiplied, reward most those
terms which are highly characteristic of a par-
ticular document, yet not widely occurring
with respect to the entire document set. Fi-
nally, a particular document dj is represented
as a vector of such TF-IDF scores, with one
entry for each term in the vocabulary T , as in
Equation 4.

tfidfij = tfij · idfi (3)

dj =
{

tfidf(1,j), tf idf(2,j), · · · , tf idf(|T |,j)

}

(4)
We facilitate retrieval of document vectors

by constructing an inverted index [1, 5] relat-
ing terms to the documents in which they ap-
pear. This enables a query document to be
matched against terms in the database which
in turn generates a set of candidate matching
documents. That is, for each term in the query
document, the corresponding set of documents
in which that term appears is fetched from the
database. However, these document sets may
overlap and they are unordered. Therefore, we
order them based on the cosine angle similarity
between the query vector, q, and the vector for
each document in the result set.

cossim(q, dj) =

∑

i tfidfiq · tfidfij
√

∑

i tfidf2
iq ·

√

∑

i tfidf2
ij

(5)
The query vector can be generated manu-

ally or automatically from different sources; we
adapt the information retrieval system to dif-
ferent tasks through modifying the indexing
and either requesting query input or generat-
ing queries automatically.

4.1.2 Documents and Queries in NetPal

We described the vector space model for infor-
mation retrieval. In NetPal, we use this model
for retrieving indexed articles, cases and events.
Each of these type of documents is represented
as a vector of tfidf weight values in a corre-
sponding index. We reduce the index size by
filtering unrepresentative terms, as is common

in information retrieval applications [1, 5]; in
particular, we filter terms by their inverse doc-
ument frequency, reducing the term dimension-
ality of our indices by an order of magnitude.
(e.g., from tens of thousands of terms to a thou-
sand terms.)

We produced a system taxonomy through a
combination of automatic generation and ex-
pert refinement of the vocabulary, and with
manual organisation of the taxonomy’s hierar-
chical structure. We use the taxonomy to ex-
pand queries by introducing related terms. For
problem/solution case matching, we generate
queries automatically from terms in the case it-
self and any attachments it may hold (including
text fields, log events and attached articles or
cases). When directly searching through cases,
we expressly allow the user to input queries and
optionally expand these using the taxonomy.

4.1.3 Log Data Acquisition Engine

We developed a system for aggregating logged
data, dubbed the ’Log Data Acquisition En-
gine’ (or LDAE). The LDAE is a background
process which serves to collect system log data
from multiple hosts, process the entries to allow
basic grouping of like events, and feed the data
into an SQL database for manual or automatic
correlation with cases in NetPal.

Feeding log entries through an aggregator en-
ables the collection of global log data statis-
tics. We initially attempted using an as-
sociation rule mining algorithm for identify-
ing strong subpatterns in log entries, as in
Vaarandi [17, 15]. This would allow us to per-
form grouping of log entries in the user inter-
face by frequent shared tokens. However, the
offline cost of this algorithm was prohibitive for
our system.

Therefore, we selected a static set of regular
expressions for matching common logfile pat-
terns. This included dates, times, IP addresses,
common services, local hostnames and more.
By replacing highly-variant substrings in con-
secutive entries with common tokens, we could
enable a limited version of the grouping effect
we aimed to achieve. We employ this in the
user interface for ’collapsing’ like entries into
clusters and reducing the number of log entries
on display.

6

In sum, the role of the LDAE is to collect and
preprocess log data, from multiple services dis-
tributed across hosting servers, and to aggre-
gate this data in a central database. Once these
log entries are collected in the central database,
they can be indexed for subsequent retrieval in
NetPal.

4.2 User and Web
Interface Design

The main NetPal interface consists of a web-
based module which can be integrated in pop-
ular web hosting control panel software as a
plugin or can be run separately as a standalone
web application. Figure 3 displays an overview
of the NetPal user interface. A number of com-
ponents are visible and we address these here.

The main page is divided into two panes. We
focus on the left pane which contains the event
browser and event graph. The event browser is
pictured in greater detail in Figure 4 (a). The
browser includes several features to aid in sift-
ing through logged data. Like cases, events are
searchable and the list of relevant events can
be narrowed by entering search terms in the
search field at the top of the event browser.
Each event is initially depicted using a one-line
summary, here containing the date/time of oc-
currence, the service responsible for generating
the event and the message associated with this
event. Notice here that the raw event can be
recalled by selecting the desired event in the
browsing list; the event then is displayed in its
entirety below the list.

Underneath the events browser is the events
graph, depicted in Figure 4 (b). The events
graph is meant to impart the level of event ac-
tivity over time. The height of the peaks on
the chart corresponds to the number of events
occurring during that time interval. The time
interval of the graph can be modified for greater
detail. The graph is color coded, as in the leg-
end, to indicate which services generate which
peaks. Note that clicking anywhere within the
graph repositions the event browser’s listing to
show events surrounding the chosen time.

The left-hand pane also has multiple tabs at
the top. The default pane contains the event
browser and event graph. Alternate panes in-
clude search interfaces for cases and articles,

a visual representation of the domain taxon-
omy (a text-based tree component) and the “vi-
tal signs” component. The vitals component
indicates the proportion of errors recorded in
each logfile on the main host and commonly
requested system statistics. The vitals compo-
nent is depicted in Figure 5.

When a new case is opened or a case is
retrieved from the case base, the case edi-
tor/viewer, as in Figure 6, is populated with
data in each relevant field either by the
database or by the user. The user can populate
a case by interacting with the event search in
the left-hand pane, including dragging relevant
events from the left pane to the right or adding
them at the click of a button. As fields are
filled, events added and cases linked to the cur-
rent case, a heterogeneous data structure repre-
senting the case is constructed internally. This
structure is stored as the user modifies it and
is indexed for matching and retrieval.

5 Software Testing

As our prototype neared completion, we sought
software testing feedback from candidate users
about the usability and suitability of the soft-
ware for two real-world system administration
tasks reconstructed from experience by staff at
Palomino Inc. At Dalhousie University, we ob-
tained feedback on these scenarios from five
testers, of which three were permanent IT staff
members and two were co-operative education
students working as IT helpdesk assistants. At
Palomino Inc., feedback was obtained from two
professional system administrators outside the
company who volunteered their time to test the
system.

5.1 Testing Configuration

At each site (Dalhousie University and
Palomino Inc.), we set up a server running
the NetPal system. We populated the NetPal
database with sample cases, knowledge base
articles and log data, previously recorded by
Palomino Inc. during instances of problem-
solving. We provided each tester with a soft-
ware manual explaining the components of the
NetPal system. The testers received scenario
outlines describing observed faults which the

7

Figure 3: NetPal prototype user interface

testers would attempt to ’diagnose’, given the
hypothetical circumstances.

Testers were required to consider the fault
symptoms, sift the log data using the web in-
terface, build a case using NetPal, accurately
identify the root cause of the observed fault and
propose a reasonable solution based on experi-
ence (articles and cases) where possible. They
were not required to fully implement the pro-
posed solution. We asked the testers to de-
scribe their experiences with each scenario on
a per-component basis and to provide ratings
for the usefulness of each component for each
scenario.

5.2 Tester Feedback

The components which we asked our testers to
rate and on which we asked them to comment
included the event list and graph (Figure 4, (a)
and (b), respectively), the vital signs compo-
nent (Figure 5), the case viewer/editor (Figure
6), the taxonomy tree and the knowledge base
search.

The event list component (for searching and
browsing of aggregated log data) was most

highly rated by the administrators and IT staff.
The two help desk assistants gave the event
listing the lowest rating. The most requested
feature for the event listing was that NetPal
should expose additional filtering and search
features, particularly filtering on severity. The
most common complaints were that there was
display lag when scrolling or paging in the log
event listing window and that for usability the
event list should be more easily resized.

The event graph received mixed ratings. Al-
though the majority of our testers agreed that
the graph helped to situate the event listing in
time and to give a sense of the period of the
log data, very few indicated that they used the
zooming or panning feature to support their
problem solving. The reasons offered for this
included the lack of resolution in the graph dis-
play and the latency of the graph refresh rate.

The vital signs component was highly rated
by all testers. From the perspective of
the administrative group, collecting frequently
queried system data into a common display
was compelling. From the perspective of the
helpdesk assistants, the at-a-glance sorted list
of error rate per log file was appealing. One

8

(a)

(b)

Figure 4: (a) The NetPal events browser and (b) the events graph

9

Figure 5: NetPal ’vital signs’ component.

10

Figure 6: NetPal case viewer component.

11

administrator requested that this component
provide an expanded summary of local and net-
work features.

Most testers suggested a middling rating for
the case viewer/editor. An experienced admin-
istrator requested further automation at this
point, suggesting that there be some method to
jumpstart the population of a new case’s fields.
Another administrator requested minor inter-
face enhancements (e.g. larger font, resizing).
The rest of the testers found the viewer/editor
serviceable but that the testing scenarios pro-
vided little opportunity to exercise this feature
to the fullest.

We provided a display of the system tax-
onomy on a separate tab. This was imple-
mented using a simple tree widget displaying
the terms in the taxonomy along with their
hierarchical relationships. Most of our testers
couldn’t relate the taxonomy to their problem-
solving task. Two testers said that the taxon-
omy helped them to find topical synonyms in
their search of the knowledge base.

Finally, we provided an interface for query-
ing our database of collected knowledge articles
and cases. Here the testers gave mixed ratings;
some were able to locate relevant articles and
cases and some were not. The direct search in-
terfaces appealed to some users for the power to
refine one’s query directly and manually. Most
requested that the search results should more
strongly resemble popular search engines.

5.3 Discussion

The events list component and the vital signs
component resonated with the administrators
and IT staff. These components capture com-
monly made system queries. Encoding queries
directly in the interface succeeds where these
capture frequently used previous working expe-
rience and make it immediately accessible and
replicable. So we can think of one kind of ex-
perience as accumulated patterns of system in-
teraction which emanate from the administra-
tor. If we can strongly capture these in the
interface, we should enable the administrator
to dispense with rote behaviours in their daily
work. Several administrators asked for addi-
tional filtering criteria (e.g. by severity); this
suggests either careful statistics or standard-

ised semantics for log files would be valuable.
One tester suggested including an embedded
terminal, opening an opportunity for automat-
ically capturing command sequences for future
reference.

Although the event list appealed most to
senior staff, it held little interest for junior
testers. It’s unclear exactly how much the stu-
dents were put off by network latency in the
updating of the list of events. Eliminating net-
work delays from the prototype would allow us
to answer this question. It may be that a com-
bination of inexperience and frustration pre-
vented them from fully accessing the implicit
experience represented by the events list com-
ponent.

All our testers expressed some approval of
the temporal and visual summary communi-
cated by the events graph; yet, none of them
found navigation via the graph to be useful in
their testing scenarios. One way to improve
the navigation might be to use a visualisation
which directly expresses a discrete metric of the
log data. The graph, as it stands in Figure 4
(b), uses a continuous function to represent fre-
quency over time. On the other hand, events in
a log file are discrete occurrences. Our testers
might be better served with a discrete visuali-
sation which can be drilled down, rather than
a continuous one. (This might permit, in the
extreme, the events list and the graph to be
merged for additional screen real estate.)

For our test scenarios, in addition to the set
of cases we crafted manually, we treated our ar-
ticle database as equivalent to cases for testing
purposes. But, while the articles with which
we bootstrapped the database are in the same
problem domain (that is, web hosting), they
are only an approximation of experience cases.
One administrator commented that many of
the articles in the knowledge base were re-
lated to initialisation or permanent configura-
tion problems whereas the testing scenarios re-
lated more to transient problems. Additionally,
the number of articles we used to bootstrap the
initial database was small, on the order of a few
thousand; this may have limited the applicabil-
ity of the case base for our test scenarios.

12

6 Conclusion

We have described the components, devel-
opment and testing of a prototype network
administration information system, NetPal,
which is a synthesis of information retrieval,
human-computer interaction, event analysis
and experience retrieval. We outlined the sig-
nificant user interface components, described
the inner workings of the retrieval system and
our model for acquiring and processing log data
for consumption in the main system. We ob-
tained feedback from testers which will aid us
in selecting future directions for the project.

Our prototype faces hurdles yet we have es-
tablished a footing on which to base future de-
velopment and research. Future development
on NetPal will focus on automatic experience
collection for the case database, improving the
human factors associated with a dynamic web
application, applying more sophisticated data
mining techniques to our acquired event data,
particularly to examine the apriori-like algo-
rithm of Vaarandi as a clustering model and to
enable enhanced visualisations, and fine-tuning
our search engine for optimum retrieval.

Acknowledgements

We acknowledge the financial support of
Precarn Inc. and the Natural Sciences and
Engineering Research Council of Canada.

Ashley George received his BCS and MCS in 2003
and 2006 respectively from Dalhousie University and
is now pursuing his Ph.D. His research interests focus
on machine learning, document mining, network and
system security and philosophy of science.

Adetokunbo Makanju obtained his B.Sc. from
the Department of Computer Science at University of
Lagos, Nigeria and his M.CS. in 2008 from Dalhousie
University. He is presently studying for his Ph.D.
with the Faculty of Computer Science at Dalhousie
University. His research interests are in the areas
of wireless networks, intrusion detection, genetic
programming and case-based reasoning.

Evangelos Milios is Professor and Killam Chair
of Computer Science with the Faculty of Computer
Science at Dalhousie University. He received a diploma
in Electrical Engineering from the National Technical
University of Athens, Greece, in 1980 and M.Sc.
and Ph.D. degrees in Electrical Engineering and
Computer Science from the Massachusetts Institute

of Technology, Cambridge, Massachusetts in 1986.
At Dalhousie, he served as Director of the Graduate
Program (1999-2002) and he is currently Associate
Dean, Research. His current research activity is
centered on modelling and mining of content and link
structure of Networked Information Spaces.

Nur Zincir-Heywood is Associate Professor
in the Faculty of Computer Science at Dalhousie
University, NS, Canada. She obtained her B.Sc.,
M.Sc. and Ph.D. in Computer Engineering from Ege
University, Turkey in 1991, 1993 and 1998 respectively.
Her research interests include network services and
management, network information retrieval, and the
effects of the Internet and information technologies on
socio -economic development.

Markus Latzel is President & CEO of Palomino
System Innovations Inc, a successful university spin-off
in its seventh successful year. He received his M.Eng.
in Computer Science and Electrical Engineering from
University of Paderborn, Germany in 1999. His
research and publications are in areas of intelligent
systems, robotic systems, knowledge management,
hierarchical databases, HCI and computer vision.

Sotirios Stergiopoulos recieved his B.Sc. in Com-
puter Science from York University, Toronto, ON,
Canada. He was previously with MacDonald Dettwiler
and Array Systems Computing. He is currently Lead
Application Developer for Palomino System Innova-
tions, Inc., Toronto.

References

[1] Ricardo A. Baeza-Yates and Berthier
Ribeiro-Neto. Modern Information Re-
trieval. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1999.

[2] Ralph Bergmann. Experience Manage-
ment: Foundations, Development Method-
ology, and Internet-Based Applications.
Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2002.

[3] Valeria Cardellini, Emiliano Casalicchio,
Michele Colajanni, and Philip S. Yu. The
state of the art in locally distributed web-
server systems. ACM Comput. Surv.,
34(2):263–311, 2002.

[4] R.N. Cronk, P.H. Callahan, and L. Bern-
stein. Rule-based expert systems for net-
work management and operations: an in-
troduction. Network, IEEE, 2(5):7–21,
Sep 1988.

13

[5] David A. Grossman and Ophir Frieder.
Information Retrieval: Algorithms and
Heuristics, Second Edition. Springer, Dor-
drecht, The Netherlands, 2004.

[6] H. Inamura, O. Takahashi, T. Ishikawa,
H. Shigeno, and K. Okada. Automat-
ing detection of faults in tcp implemen-
tations. Advanced Information Network-
ing and Applications, 2004. AINA 2004.
18th International Conference on, 1:315–
320 Vol.1, 2004.

[7] L. Lewis. A case-based reasoning approach
to the management of faults in commu-
nication networks. INFOCOM ’93. Pro-
ceedings.Twelfth Annual Joint Conference
of the IEEE Computer and Communica-
tions Societies. Networking: Foundation
for the Future. IEEE, pages 1422–1429
vol.3, 1993.

[8] Mirjam Minor. Erfahrungsmanagement
mit fallbasierten Assistenzsystemen (Ex-
perience Management with Case-based as-
sistant systems). PhD thesis, 2006.

[9] Mirjam Minor and Christina Biermann.
Case acquisition and semantic cross-
linking for case-based experience manage-
ment systems. In Du Zhang, Taghi M.
Khoshgoftaar, and Mei-Ling Shyu, edi-
tors, IRI, pages 433–438. IEEE Systems,
Man, and Cybernetics Society, 2005.

[10] G. Penido, J.M. Nogueira, and
C. Machado. An automatic fault diagnosis
and correction system for telecommuni-
cations management. Integrated Network
Management, 1999. Distributed Man-
agement for the Networked Millennium.
Proceedings of the Sixth IFIP/IEEE Inter-
national Symposium on, pages 777–791,
1999.

[11] P. Ramnarayan, N. Cronje, R. Brown,
R. Negus, B. Coode, P. Moss, T. Hassan,
W. Hamer, and J. Britto. Validation of a
diagnostic reminder system in emergency
medicine: a multi-centre study. Emer-
gency Medicine Journal, pages 619–624,
2007.

[12] P. Ramnarayan, G. Kulkarni, A. Tomlin-
son, and J. Britto. Isabel: a novel internet-
delivered clinical decision support system.
Current Perspectives in Healthcare Com-
puting, pages 245–246, 2004.

[13] P. Ramnarayan, A. Winrow, M. Coren,
V. Nanduri, R. Buchdahl, B. Jacobs,
H. Fisher, P.M. Taylor, J.C. Wyatt, and
J. Britto. Diagnostic omission errors
in acute paediatric practice: impact of
a reminder system on decision-making.
Medical Informatics and Decision Making,
2006.

[14] G. Salton, A. Wong, and C. S. Yang.
A vector space model for automatic in-
dexing. Commun. ACM, 18(11):613–620,
1975.

[15] J. Stearley. Towards informatic analysis of
syslogs. Cluster Computing, 2004 IEEE
International Conference on, pages 309–
318, 20-23 Sept. 2004.

[16] Neal J. Thomas, Padmanabhan Ram-
narayan, Michael J. Bell, Prabhat Ma-
heshwari, Shaun Wilson, Emily B. Nazar-
ian, Lorri M. Phipps, David C. Stockwell,
Michael Engel, Frank A. Maffei, Harish G.
Vyas, and Joseph Britto. An international
assessment of a web-based diagnostic tool
in critically ill children. Technology and
Health Care, pages 103–110, 2008.

[17] R. Vaarandi. A data clustering algo-
rithm for mining patterns from event logs.
IP Operations and Management, 2003.
(IPOM 2003). 3rd IEEE Workshop on,
pages 119–126, 1-3 Oct. 2003.

14

