
Natural Search Pointers – a query formulation
method for structured information search

Marek Lipczak†, James Blustein† and Evangelos Milios†
†Faculty of Computer Science, Dalhousie University

Halifax, Canada, B3H 1W5
Email: lipczak,jamie,eem@cs.dal.ca

Abstract—Despite a wide variety of new solutions, structured
information search still has only one practical approach – form-
based interface. A key limitation of this interface is poor handling
of iterative search. While browsing the results users have to
memorize all new search constraints, go back to the form,
and enter them into the appropriate fields. To overcome this
obstacle we created Natural Search Pointers – a structured
information search interface, which formulates search queries
based on information highlighted by a user while browsing
the search results. NSP can be used as an extension of any
standard form-based interface for consumer-oriented database
search engines. Comparison of traditional form-based interface
and its NSP extension shows that in iterative search tasks NSP
makes finding information faster and more convenient.

I. INTRODUCTION

Search, specifically search for information having structure
and semantic meaning has been deeply studied for years. One
of the main areas of interest is query formulation. Despite a
variety of new approaches (e.g., Natural Language Interfaces
to Databases [1]) most commercial systems still use only
one query formulation technique – form-based interface. Such
traditional interfaces take the most important elements of the
structure of the database being searched, and present them
to users as an interactive search form. For example, search
interface of Yahoo! Travel (Fig. 1) allows users to search for
hotels using two text fields for home city and destination, two
date boxes defining arrival and departure date, and two pull-
down lists for number of guests. This one-size-fits-all approach
is used in most consumer-oriented search systems (e.g., on-line
travel agencies, e-libraries, web auctions, and e-shops). The
importance of this type of databases was recently noticed by
Google, which launched the Google Base1 project [2]. Google
Base is a tool for searching multiple databases through a
unified interface. It includes typical databases (e.g., Products,
Houses, Jobs), and users may incorporate new databases or
records for their searches.

Traditional search systems have many limitations. They are
space consuming and hard to access, as all search constraints
must be formulated in separate fields. Query formulation is
often cumbersome because users must move from one search
field to another, and switch between mouse and keyboard. Tab
key used by experienced users does not solve the problem

The research was funded by the Natural Sciences and Engineering Research
Council of Canada, the MITACS NCE, and Genieknows.com.

1http://base.google.com

either, as it only allows moving between fields in a predefined
order. Despite these problems, form-based interfaces are still
the most popular way of creating structured information search
queries. Used for years, this traditional solution is probably too
deeply rooted to be replaced.

The character of traditional search interfaces prompts us
to think about search as a simple task. A user formulates a
query, in which all search constraints are defined. The query
is compared to a dataset by the retrieval engine. Finally, the
search results are browsed by the user. Practically, in many
cases these actions are only the start of a complicated search
procedure. Users are often not satisfied with the initial search
results and decide to reformulate the query (i.e., add, remove,
or modify some search constraints). The reformulated query is
again processed by the retrieval engine. This loop is repeated
until the user is satisfied with the results.

The tool we developed is designed to suit the iterative
nature of search. The presented interface follows the idea of
Berrypicking search model presented by Bates [3]. He claims
that in real life users begin the search process only with a
broad idea of their aim. Information they receive gives them
a chance to specify their needs. Search process is divided into
stages. At each stage, browsing the results allows the users to
modify the query and better represent the information need.

To prevent possible ambiguities we present the definitions of
two terms used frequently in this paper. By query formulation
we understand the process of creating search constraints and
entering them into an information retrieval system in a form
defined by search interface. By browsing results we understand
the process of reading or skimming through the information
collection returned by a search query. This definition of brows-
ing does not imply navigation between documents connected
by hyperlinks.

A. Iterative search in traditional interfaces

To present how iterative search is supported by traditional
interfaces we use the examples of on-line travel agencies,
namely Expedia2 and Yahoo! Travel3. Both interfaces ask the
user to fill-in a search form with the most important infor-
mation (i.e., destination, travel dates, number of travelers).
Designers of both interfaces took into account the iterative

2http://expedia.com
3http://travel.yahoo.com



Fig. 1. Yahoo! Travel search interface. The basic search form available on the main page(left), and the advanced interface placed above the results list(right).

character of search, the search results list is accompanied by a
new, more advanced search form. Users are often not able to
come up with and formulate all important search constraints
at the time that they start the search process – some specific
constraints (i.e., hotel features or price range) can be defined
after the users browse the list of results, and see some of
the possible choices (Fig. 1). The same pattern is found in
eBay4, Amazon5, Dell6, and many other websites, in some
cases the additional search-form is replaced by a predefined
list of filters. This approach has two main disadvantages. First,
the search process is divided into two separated phases – query
formulation, and result browsing. Each time users want to
modify search constraints the browsing phase must be stopped
to move to the top of the page and reformulate the query.
Second, it is the designer’s decision which attributes should be
available by a search interface. For example Yahoo! interface
allows setting the price and hotel quality range, while Expedia
interface lists hotel features that users can choose to filter
the results. Lack of uniform design requires users to spend
time learning each interface they use. This second problem
is eased by Google Base. Its interface has a uniform layout
for all included databases. In addition, most of database fields
presented in the result snippets are searchable via the form.
The drawback of this approach is a complex interface with a
large number of search fields.

B. Motivation

The main objective of the Natural Search Pointers project is
to create a simple search interface that overcomes problems of
traditional solution in supporting iterative search. Considering
the dominance of the traditional approach, proposing another
solution that replaces form-based query formulation seems
futile. We instead chose to extend the traditional interface. In
fact, Natural Search Pointers interface is even more general,
and can be used on top of any keyword-based search interface,
as it involves only the list of results.

The main disadvantage of the traditional interface it that
it separates query formulation and results browsing. While
browsing the results, users often specify their needs based on
the presented information. To reformulate the query, they need

4http://www.ebay.com
5http://amazon.com
6http://dell.com

to memorize all important facts, go back to the page top where
the search interface is placed and enter constraints into the
form. It would be much easier to highlight these important
facts instead. Numerous studies confirmed that highlighting
is a well developed and frequently used technique both in
paper and electronic environment [4]–[6]. Natural Search
Pointers interface utilizes this technique to reformulate queries,
during the results browsing phase. Users can simply point out
information they want to use as a search constraint. There is no
need to memorize any information, since a highlighted element
is instantly included in the query. Pointing by highlighting
is simple and does not require the user to alternate between
mouse and keyboard – users can stay focused on the task.

II. RELATED WORK

There is a wide variety of research projects on advanced
search interfaces. Among them, the most interesting area of
research, from the perspective of our work, is combining query
formulation and results browsing. Synergy between these tasks
is the way to create a valuable information retrieval system [7].

ScentTrails [8] allows users to smoothly alternate between
searching and browsing the Web. This interface tries to connect
complementary advantages of both tasks: Users formulate
keyword queries that modify the collection of websites pre-
sented; and links to possibly relevant entries are highlighted.
Another interesting approach is presented in WebGlimpse [9].
While browsing a repository, users are given a possibility to
formulate search queries that address only documents similar
to the one currently read. The system automatically includes
browsed context into query constraints. Integrating search
and browsing is even more important for databases storing
graphics, as search constraints addressing pictures are harder
to formulate. Flamenco [10] extracts information by simple
keyword queries or meta information filters. These filters (e.g.,
location, date, objects) are presented as hyperlinks. It helps
users to browse through the repository by adding and removing
filters. Although presented approaches try to connect the two
search phases, complete synergy is questionable because they
still are not performed simultaneously.

The problem addressed in this paper is similar to one
of PHLAT system features [11]. This personal information
manager gives users a possibility to replace or modify a query
by retrieved document’s attributes (e.g., title). This attribute



(a) User highlights important information and adds it to the query while browsing the results.

(b) Any information presented in the results list can be included to the query, triggered using pop-up menu.

Fig. 2. Natural Search Pointers interface.

may be used as a new query or a filter that narrows previous
results. Since PHLAT operates on text keyword queries, it is
not clear how such a query may address a specific database
structure part. An additional problem is the possibility to
choose smaller chunks of information (e.g., single keywords)
instead of using the complete attribute. Selecting search terms
using a highlighting tool has been shown by Jordan [12]. The
system creates definitions of highlighted keywords or phrases
based on Wikipedia. The method for formulating queries is
very similar to our NSP approach; however, that interface is
simpler, it works on unstructured text, and its emphasis is
solving ambiguity problems while retrieving the definitions.
The advantage of our approach is constructing complex queries
for structured information search.

The growing popularity of XML induces researchers to look
for new solutions for structured information search. Sengupta
and Dillon [13] proposed novel query language (Query By
Templates) which gives users a possibility to spatially arrange
the query to address appropriate database attributes. Although
this approach does not support iterative search, it allows to
represent user uncertainty in the queries.

III. NATURAL SEARCH POINTERS IMPLEMENTATION

A. Interface
Natural Search Pointers interface can be an extension of any

keyword based search system, including form-based interfaces.
It has no influence on the base interface, which remains fully
functional.The only difference between the basic and extended
interface is that the latter makes results list sensitive to users
interaction. The Natural Search Pointers interface is embedded
in the results list presented to users. Interaction with the
interface starts in the first browsing phase. The main limitation
of NSP interface is supporting query formulation based only
on the the information presented in a result list. However, the

aim of this interface is not to replace, but to overcome the
limitations of form-based approach.

Users are allowed to highlight important information pre-
sented in the results snippets that should be included in the
query. Highlighted text is added to a query by a pop-up menu,
as shown in Fig. 2(a). The system automatically recognizes
the database attribute associated with the chosen term (e.g.,
the system knows that highlighted “5” is the number of beds
in an apartment). Information about the affiliation of terms is
stored by XML tags embedded in the website. After entering
the constraints, the search process can be triggered from any
place on the website, as illustrated in Fig. 2(b). Users smoothly
move from one results list to another. All search pointers
are automatically added to the search form. Users can use
them in the next search or exclude them from the query. At
any moment additional search constraints can be added using
the traditional interface. NSP approach reveals the potential
of iterative search. There is no distinction between browsing
and query formulation phase. Query reformulation is almost
effortless, The query can be modified and processed more
frequently than in the traditional solution.

To implement the Natural Search Pointers interface we cre-
ated a fully functional traditional search system, to which the
NSP extension was added. The choice of the interface layout is
an important issue, as it may influence the way users perceive
the complete system. We adopted the style and character
of Google Base interface. This is the only standard layout
for structured information search, as there is no consensus
in commercial systems design. We wrote our own version
of the interface because the search engine gets information
about structure part association from XML tags. This is an
important disadvantage of the current prototype; however,
modifying any search website to be NSP compatible can be



done by wrapping all elements in XML tags. Such extension
is straightforward, and observing the growing popularity of
XML, we may assume that independently websites presenting
search results are likely to be NSP compatible.

B. Query processing

The core part of the Natural Search Pointers processing
system is a Firefox plug-in that retrieves information about
highlighted terms and the XML tags that surround them. The
tags convey information about database part association, which
defines terms’ meaning. Search pointer is a combination of
highlighted term (e.g., a group of keywords, or a number) and
the database structure part (attribute) it belongs to (e.g., hotel
features or price). When a search pointer is highlighted and
entered by the pop-up menu, it is transmitted by the Firefox
plug-in to the retrieval engine. Pop-up menu is also used to
trigger the search process. This approach makes the interaction
with the system simple, because users only use the mouse for
highlighting terms.

We used Google Base as a source of information. Its
API allows the system to formulate queries that address any
attributes of Google Base database. It simplified the NSP
retrieval engine. Its only tasks are to use search pointers to
formulate a query that matches Google Base schema, and later
send the list of results to the interface.

IV. EVALUATION – USER STUDY DESIGN

Extending the traditional interface introduces some impor-
tant factors, and complicates the comparison process. Users
know the traditional interface, and may refuse to use the
features of Natural Search Pointers interface, because they
are aware about a way for completing the task only by the
traditional solution means. On the other hand, forcing users to
work with the NSP interface would bias the results about the
practical usability of the extended system. The most important
problem in the presented user study was to define tasks that do
not promote any of the interfaces. Two questions we wanted
to answer through the study were:

• Do users recognize and utilize new interface features?
• Does the NSP interface makes search faster and easier?
The evaluation was processed on an adaptation of Google

Base interface for vacation rental search. This topic was
expected to be equally interesting for all participants. We
could also expect that all participants have similar level of
general knowledge about the topic. The examples of Yahoo!
Travel and Expedia show that interface design can have big
impact on evaluation results. To mitigate this effect we used a
generic Google Base model. The user study was divided into
two phases. Users performed two tasks that examine different
aspects of evaluated search interfaces. Before the recorded
session, participants completed a practice session.

A. Tasks

Simulation of real search interaction is hard, because in real
life search needs are highly dependent on user preferences,
background information, and context. We evaluated the system

on two tasks with different ways of information need formula-
tion. In the first task, the complete information needed to find
a specific offer was presented before the test. In the second
task the information was given to a participant gradually.

1) “Find exact offer” task: The participant was given a
paragraph describing vacation rental offer. The description
contained factual information about the offer (e.g., city name)
and four additional constraints which allowed the participant
to focus the query and reduce the list of results to one page.
The latter was the objective of the test, as one page of results
can be easily browsed manually.

This task allowed the participant to freely use any of
the presented information. The participant made all decisions
about query formulation. Such a setting objectively examined
all participant’s actions; however, it was not a good simulation
of real life search. It is very uncommon to search for explicitly
presented information. In addition, this task was likely to
promote the traditional interface. Ideally, all information could
simply be entered into the appropriate form fields, and search
could be processed in one iteration. The main aim for this task
was to check the lower bound of the extended system.

2) “Interaction based search” task: In this task, the inter-
viewer’s aim was to give the participant information about
search objectives gradually. To make the situation realistic
the interviewer proposed a problem, which should have been
solved together with the participant. During the search process
the participant was guided step-by-step by the interviewer.

The participant was limited by the proposed search con-
straints. To keep the test similar for all users all tasks consisted
of three iterations; during the iteration additional information
was presented roughly after a certain number of browsed of-
fers. The objectivity of this approach is questionable, because
in dialog the participant could ask additional questions and
take the responsibility for the task by proposing additional
search constraints. However, this task was the only possibility
to simulate real search situation that follows the Berrypicking
idea discussed in Section I. This task was supposed to point
out any advantages of Natural Search Pointers interface, as it
emulated the iterative approach to search.

B. Study settings

“Find exact offer” and “Interaction based search” tasks were
meant to examine the system from different perspectives. The
tasks could be performed within the same session in predefined
order. We could neglect the experience factor because partic-
ipants were allowed to learn the system features beforehand.

There were two unrelated factors that must have been
controlled: interface learning and search query difficulty. When
a user performs tasks on two interfaces, which are somehow
similar, the results for the second one are biased because the
user has acquired experience on the previous version of the
interface. A participant remembers actions and outcomes of
the performed search task. We could expect that finding the
same information the second time would take much less time.
To avoid it, a participant was given different set of search
queries for two interfaces. Furthermore, the difficulty of search



tasks must have been equalized. A randomization method [14]
was used to remove the impact of irrelevant factors on the
results. We used a “within subject” (repeated measures) design
using Latin square [15] to control for personal variation while
testing the interface version factor. Sixteen participants were
randomly assigned to four groups. The groups were diversified
based on the order of interface versions and sets of queries.
Each participant performed three search queries for each
combination of task and interface.

C. Indicators

The most objective and explicit indicator of system usability
is the time a user takes to perform the task using the interface.
We compared the average amount of time spent on each
task using both interfaces.Another useful indicator of system
usability are users’ opinions. Each participant was asked to fill
out a self-report after completing the study. The self-report was
adapted from questions presented by Douglas et al. [16], and
Hornbæk and Hertzum [17].

V. EVALUATION – RESULTS

Simplicity of tasks and general familiarity with search topic
relaxed the requirement of participants computer experience.
In fact, we were more interested in users with no extensive
computer science knowledge. All participants were students (7
computer science students, and 9 students of other disciplines,
of which 7 were women and 9 men.

The average time participants spent on browsing and query
formulation phases is shown in Fig. 3(a). The length of the first
iteration is presented separately as in all cases it was a general
keyword-based query (e.g., city name) which was used to
focus the search area. The search length results for the first task
– “Find exact offer” show a large advantage of the traditional
interface. The search length for the interface with Natural
Search Pointers was mainly extended by the browsing phase.
Although the participants were informed that they should
perform search in the most convenient way, and the usage
of Natural Search Pointers in not obligatory, 11 participants
used NSP to enter the queries. They were browsing the list of
offers looking for relevant information that could be used as a
search pointer, where in this task, the simplest approach was
to copy the given information into the search form. Five users
noticed this fact and stopped to use NSP during the first task.
The potential of Natural Search Pointers was revealed in the
second task – “Interaction based search”, where new search
constraints were formulated during the search phase. Although
some users with no computer science background found using
the pop-up menu hard, all participants who used Natural
Search Pointers spent less time on query formulation phase.
The average accumulated duration of query formulation phase
was 14.1 seconds compared to 21.9 seconds for the form-
based interface, which is a statistically significant difference
according to dependent t-test (p < 0.05). Only one user
decided not to use NSP in this task.

Two search tasks showed the users the limitations and
potential of NSP interface. We believe that experience of these

tasks allowed the participants to fairly evaluate two versions
of the interface in a self-report. The search questions were
divided into two groups. The first group addressed specific
issues of the search interface use. The second group gave the
participants the opportunity to express their feelings about
the interface. All responses were collected using a 5-point
scale. For the first group of questions the largest difference
is noticeable in the mental effort needed to use the interface.
Possibly, the users found the need of looking for an appro-
priate search field and manually entering of search constraints
discouraging. Even considering the inconveniences in the first
task, the interface with NSP extension was rated higher from
the perspective of search speed. The responses for the second
group of questions show that the participants appreciated the
flexibility of the interface with Natural Search Pointers. They
also found working on it more satisfying. Surprisingly, both
interfaces were judged as very easy to use. It is likely that the
participants judged the interfaces from the perspective of the
given tasks, which were easy to perform.

Generally, the user study gave satisfactory answers to the
two main research questions. A diversified group of users
allows us to assume good generality of the results. The users
easily recognized the functionality of NSP extension and used
it frequently. The NSP interface allowed users to perform
iterative search tasks faster and easier. The results of the first
task show that NSP is not a good solution for search of specific
and well-defined information. This conclusion does not reduce
the usability of the NSP interface, as it is meant to extend,
not replace the traditional approach. In practice, we expect the
users to quickly find appropriate contexts of the NSP interface.
We could observe the example of such behavior in the study,
where 5 participants stopped to use NSP interface in the first
task. They all used it again in the second task.

VI. CONCLUSIONS AND FUTURE WORK

Search as an iterative process is not supported well by the
traditional form-based interface. Users are not able to switch
smoothly between the two phases of the search process: query
formulation and results browsing. We designed an extension of
the form-based approach, which allows reformulating search
queries during the results browsing phase. At the same time,
the extension preserves the full usability of the traditional
solution. Natural Search Pointers interface allows users to
highlight interesting information they found in the results list
and use them as search constraints. This feature was imple-
mented as a Firefox plug-in. We created a fully functional
search interface for search in structured information based on
Google Base API. The evaluation suggests that NSP should
not be used as a stand-alone interface, because searching for
specific information can be completed faster using form-based
interfaces. NSP potential can be utilized in iterative search.
Such tasks can be performed faster, with higher comfort and
satisfaction than the usual methods.

The participants of the user study suggested that the list
of results can be even more interactive. The next version of
the interface will indicate the element that can be used as a



 0

 10

 20

 30

 40

 50

 60

 70

Traditional - Task 1

Extended - Task 1

Traditional - Task 2

Extended - Task 2

ti
m

e 
(s

)

Average search duration

first
query
formulation

browsing

query
reformulation

(a) The search duration for “Find exact offer” (task 1),
“Interaction based search” (task 2). Both tasks were
performed on two versions of the interface: form-based
and form-based extended by NSP. Time needed to
perform search is presented as a sum of the first iteration
duration, and accumulated duration of browsing and
query formulation phases in next iterations.

 0

 2

 4

 6

 8

 10

 12

 14

 16

Self report responses - search interface factors

com
plication

m
ental effort

phisical effort

search speed

too low 1

2

optimal 3

4

too high 5

(b) Each vertical line represents one search
interface factor. The participants indicated the
distance from a “perfect” interface. The re-
sponses for the form-based interface are shown
on the left side of the line, the right side is
for the interface extended by NSP. The size and
intensity of point reflect the number of answers.

 0

 2

 4

 6

 8

 10

 12

 14

 16

Self report - users’ opinions

com
fort

flexibility

satisfaction

ease of use

very low 1

2

neutral 3

4

very high 5

(c) Each vertical line represents a general opin-
ion about an interface. The participants were
asked to indicate their feeling about a given
factor from very low to very high. The layout
is identical to the one described for Fig. 3(b).

Fig. 3. Two types of evaluation results. The average duration of search process calculated from logged time stamps, and users’ opinion expressed in self-report.

pointer by a small icon appearing while a mouse cursor is
over it. The icon can be used to enter the pointer to a query.
AJAX techniques will be used to refine the list of search results
without the need of refreshing the page, keeping the current
offer in the same position. It will make the switch between
browsing and query formulation phase completely seamless.

An advantage of Natural Search Pointers interface, not
discussed in this paper, is high quality and complexity of user
feedback information. The interface may be helpful for users
with unspecified, general needs (e.g., users that look around for
offers to see what are the possible choices). Asking the users
to point out any interesting information may be used to create
a rich user profile. The system is able to gather information
about pointed terms and the information context in which they
were entered (e.g., browsing a list of vacation rental offers,
a user highlights information related to specific offers). Data
mining techniques, namely classification and association rule
mining, can be used to propose offers that suit users’ needs
best. Adding this recommendation feature to the NSP interface
is the topic of our future work on the project.

ACKNOWLEDGMENT

We would like to thank Chris Jordan from Dalhousie
University for his help with Firefox plug-in implementation
and insightful comments on the NSP interface.

REFERENCES

[1] I. Androutsopoulos, G. Ritchie, and P. Thanisch, “Natural Language
Interfaces to Databases–an introduction,” Journal of Language Engi-
neering, vol. 1, no. 1, pp. 29–81, 1995.

[2] J. Madhavan, A. Halevy, S. Cohen, X. L. Dong, S. R. Jeffery, D. Ko, and
C. Yu, “Structured Data Meets the Web: A Few Observations,” IEEE
’06: Bulletin of the Technical Committee on Data Engineering, vol. 31,
no. 4, pp. 19–26, December 2006.

[3] M. J. Bates, “The design of browsing and berrypicking techniques for
the online search interface,” Online Review, vol. 13, no. 5, pp. 407–424,
1989.

[4] C. C. Marshall, “Annotation: from paper books to the digital library,”
in DL ’97: Proc. the second ACM international conference on Digital
libraries. New York, NY, USA: ACM, 1997, pp. 131–140.

[5] H. Obendorf, “Simplifying annotation support for real-world-settings: A
comparative study of active reading,” in HYPERTEXT ’03: Proceedings
of the fourteenth ACM conference on Hypertext and hypermedia. New
York, NY, USA: ACM, 2003, pp. 120–121.

[6] B. N. Schilit, G. Golovchinsky, and M. N. Price, “Beyond paper:
supporting active reading with free form digital ink annotations,” in
CHI ’98: Proc. the SIGCHI conference on Human factors in computing
systems, New York, NY, 1998, pp. 249–256.

[7] J. D. Mackinlay and P. T. Zellweger, “Browsing vs. search: Can we find
a synergy?” in CHI ’95: Conference companion on Human factors in
computing systems. New York, NY: ACM, 1995, pp. 179–180.

[8] C. Olston and E. H. Chi, “ScentTrails: Integrating browsing and search-
ing on the web,” ACM Transactions on Computer-Human Interaction,
vol. 10, no. 3, pp. 177–197, 2003.

[9] U. Manber, M. Smith, and B. Gopal, “WebGlimpse: Combining brows-
ing and searching,” in Proceedings. 1997 Usenix Technical Conference,
1997.

[10] K.-P. Yee, K. Swearingen, K. Li, and M. Hearst, “Faceted metadata for
image search and browsing,” in CHI ’03: Proceedings of the SIGCHI
conference on Human factors in computing systems. New York, NY,
USA: ACM, 2003, pp. 401–408.

[11] E. Cutrell, D. Robbins, S. Dumais, and R. Sarin, “Fast, flexible filtering
with PHLAT,” in CHI ’06: Proc. SIGCHI on Human Factors in
computing systems. New York, NY: ACM, 2006, pp. 261–270.

[12] C. Jordan, “Using Wikipedia as a knowledge base for electronic docu-
ments,” in Proceedings of the JCDL07 Doctoral Consortium, 2007.

[13] A. Sengupta and A. Dillon, “Query by templates : Using the shape of
information to search next-generation databases,” IEEE transactions on
professional communication, vol. 49, no. 2, pp. 128–144, 2006.

[14] J. E. McGrath, Methodology matters: doing research in the behavioral
and social sciences. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1995, pp. 152–169.

[15] J. Schinka and W. F. Velicer, Handbook of Psychology, Volume 2,
Research Methods in Psychology. John Wiley & sons, 2002.

[16] S. A. Douglas, A. E. Kirkpatrick, and I. S. MacKenzie, “Testing pointing
device performance and user assessment with the iso 9241, part 9
standard,” in CHI ’99: Proc. SIGCHI conference on Human factors in
computing systems. New York, NY: ACM, 1999, pp. 215–222.

[17] K. Hornbæk and M. Hertzum, “Untangling the usability of fisheye
menus,” ACM Trans. Comput.-Hum. Interact., vol. 14, no. 2, p. 6, 2007.


