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ABSTRACT
Given a set of peers with overlapping interests where each
peer wishes to keep track of new documents that are rel-
evant to their interests, we propose a self-organizing peer-
to-peer document-tracking network based on common inter-
est profiles. The goal of a document-tracking network is to
disseminate new documents as they are published. Peers
collaboratively share new documents of interest with other
peers. There is no explicit profile exchange between peers
and no global information available. We describe a strat-
egy for peers to discover the existence of other peers and
learn about their interests locally, based on information car-
ried in the document metadata that propagates through the
network. Peers are connected based on their observed com-
mon interests. We compare our proposed common interest
strategy with a randomly connected network. The exper-
imental results, based on simulated environment using the
ACM digital library metadata, demonstrate that the pro-
posed strategy gives the best dissemination performance.
We also demonstrate that our self-organizing networks fol-
low the characteristics of social networks.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: On-line In-
formation Services—Data sharing ; H.3.7 [Information Stor-
age and Retrieval]: Digital Libraries—Dissemination

General Terms
Algorithm, Experimentation, Measurement

Keywords
Peer-to-peer, Social networks, Document tracking, Dissemi-
nation

1. INTRODUCTION
Many tools have been developed to help researchers find

documents of interest over the Internet. These tools include
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search engines, mailing lists, online archives, and online doc-
ument sharing services such as BibSonomy 1 and Citeulike 2.
However, existing tools pose a number of challenges for re-
searchers in getting informed about newly published docu-
ments, or new documents for short. For instance, to keep
track of new documents of interest, researchers need to re-
visit search engines or online archives multiple times and is-
sue the same query. Mailing lists can also be used for keep-
ing track of new documents; however, researchers need to
find where to post and subscribe for information. Moreover,
these tools usually lack autonomous mechanisms to select
documents based on individual interests. Even though Ci-
teulike provides a “watchlist” option for users to keep track
of new documents that are relevant to each page, the users
need to manage the watchlists manually. Researchers usu-
ally have long-term interests and researchers who work in the
same area are typically interested in the same type of docu-
ments. Their efforts in sharing and keeping track of new doc-
uments of interest can benefit from an autonomous collabo-
rative environment. Shrack is a P2P framework introduced
in 2007 to support such collaborative environment [13].

Although there are many proposed peer-to-peer networks
based on common interest such as in [8, 9] and [14], Shrack
is unique in that (1) its goal is to form a collaborative group
of peers to keep track of future documents, not to search for
a document on instant queries; and (2) pull communication
is the only communication that is used in Shrack. As a
result, (1) there is no explicit query in Shrack, hence each
peer needs to learn about interests of its associated user; and
(2) Shrack peers discover other peers and learn about their
interests locally using information available in dissemination
messages without explicitly exchanging their profiles.

In the previous work, Shrack architecture is presented
along with a dissemination protocol in which peers dissem-
inate every message they receive to other peers [13]. This
paper improves upon the previous work with the follow-
ing main contributions: (1) the improvement of the Shrack
dissemination protocol in which peers disseminate messages
based on their interests, section 4; (2) a peer profile learning
algorithm whereby a peer learns the interests of its users
and other peers in the network, section 5; (3) a method for
a peer to discover other peers in the network, section 5.2;
and (4) a neighbour selection algorithm based on common
interests between peers, section 6.

2. RELATED WORK
1http://www.bibsonomy.org
2http://www.citeulike.org

http://www.cs.dal.ca/~{hathai,eem,vlado}


Several P2P networks have been developed to improve
data and document sharing over the Internet. Data-sharing
networks based on small-world networks are proposed in [5]
and [10]. The networks are comprised of several clusters,
each is a community with overlapping interests. The sys-
tems support searching and locating documents within each
cluster. In the first approach [5], peers periodically up-
date global information of all peers and document locations
within a cluster through a push-based “gossip” protocol [7].
Hence, each peer can immediately locate documents within
its cluster. In the second approach [10], populated files are
replicated among peers in the same cluster. Peers use lim-
ited flooding of requests to search for files within their clus-
ters. Our system follows a similar concept as in [5]; whereby
the clusters are formed dynamically and adaptively. Peers
in Shrack form soft clusters as opposed to the well-defined
rigid clusters of [5].

The filtering and dissemination system pFilter [12] uses a
publish/subscribe model where peers register their profiles
for persistent queries and documents to filter and dissemi-
nate new documents on a semantic overlay of a structured
P2P network. A drawback of this system is that users need
to explicitly submit the persistent queries.

PlanetP [3], improves distributed search in P2P communi-
ties by maintaining global addresses of peers in the commu-
nities and global inverted term-to-peer index. To search for
documents, a peer forwards a request to peers containing
documents with the requested term based on the inverted
index and a ranking algorithm.

To improve search in P2P document-sharing networks, se-
lective forwarding of requests to peers based on their se-
mantic topology is proposed in [4]. Peers advertise their
expertise to the network. Peers forward a request based on
matching the subject of a query and the expertise according
to their semantic similarity. Simulation experiments show
that this approach outperforms random peer selection.

While there are many initiatives to build P2P systems for
research collaborations, the existing systems focus on docu-
ment searching such as [2, 4] and [16]. We focus on document
tracking based on the common interest of the users.

3. OVERVIEW OF THE SHRACK FRAME-
WORK

Shrack is an unstructured P2P network, in which peers
who have common interests and who are willing to collab-
oratively establish pull connections to one another to share
and keep track of new documents. To join the Shrack net-
work, the associated user first configures the peer (the soft-
ware) with an initial set of neighbours, with whom the user
has real world collaboration or connections. After joining
Shrack, peers learn about new neighbours from the Shrack
messages. Each Shrack message contains document meta-
data for receiver peers to learn about the document such
as the location (e.g. URI), the title, the keywords, and the
abstract. Shrack messages are disseminated among peers
through pull connections. Each Shrack message contains a
message propagation history consisting of a list of peers that
the message has travelled through from the publisher peer to
the local peer (visited peers), and TTL (Time-To-Live indi-
cating the number of hops after which the message will be
discarded). We call the other peers of which the local peer
is aware of as known peers. For any given peer pi, its known

peers include its neighbourhood peers as well as other peers
that pi has observed in the received message history. The
neighbourhood peers are peers to which pi get connected,
i.e., pi establishes connections to pull Shrack messages.

To publish a document, the publisher peer creates a Shrack
message containing the document metadata, adds itself in to
the list of visited peers of the message, and places the mes-
sage into its shared directory. Periodically, each peer pulls
new Shrack messages from its neighbours to keep track of
new documents that become available in the network. Upon
receiving Shrack messages, a peer makes Shrack messages
containing metadata of documents that are relevant to its
interests available in its shared directory for other peers to
pull. With successive pulls, information about the new doc-
ument is disseminated to all connected peers with common
interest within the message’s predefined TTL. After a peer
learns about new relevant documents, the peer can automat-
ically download the documents for the user, or the user can
later retrieve the documents using information about their
locations embedded in the Shrack messages. Further details
of the Shrack framework can be found in [13].

4. PULL-ONLY INFORMATION DISSEMI-
NATION PROTOCOL

Shrack peers use the pull-only information dissemination
protocol to distribute information about new documents and
learn about other peers in the network. The new Shrack dis-
semination protocol is described in Algorithm 1. We redefine
the dissemination protocol, i.e., peers only share messages
that are of interests in their shared directories for other peers
to pull. As a result, each peer will filter out irrelevant mes-
sages for other peers that have common interest, creating
a community filtering system. We also present how peer
profile learning and peer neighbour selection processes are
incorporated in the dissemination protocol.

We define a pull interval as a predefined interval, speci-
fying how frequently a peer wishes to pull its neighbours to
learn about new documents. In this work, we assume that
peers pull Shrack messages from all of their neighbours using
the same pull interval. In practice, pull intervals might be
different. When a peer requests to pull document metadata
from each neighbour, the peer will attach an update time in-
dicating the oldest messages the peer wants to pull from the
neighbour’s shared directory. In general, the update time is
the latest time the peer visits the neighbour. To control the
oldest messages the peer wants to update, each peer has a
predefined maximum update time. If the update time ex-
ceeds the maximum update time, the peer will set its update
time to the maximum update time.

When receiving a Shrack message, the receiver peer checks
if the message contains new document metadata by com-
paring the document metadata’s identifier with the peer’s
history list. If the identifier of the document metadata is
not in the history list, it will be detected as a new document
metadata. If the new document metadata d is relevant to
the receiver peer, d will be added to the peer’s local archive
and the peer will update its local peer profile according to d.
Then, the receiver peer decreases the TTL of the message
containing d by one. If the TTL of the message is greater
than zero, the receiver peer will append its peer contact ID
to the message and place the message in its shared direc-
tory for further dissemination. After that, the receiver peer
updates known peer profiles of peers in the visited list (in



Algorithm 1 pi.pull()

1: for each neighbour pj of peer pi do
2: peer pi pulls a set of Shrack messages, m, from pj ’s

shared directory that arrived at pj after the update
time.

3: for each Shrack message m do
4: d is a document metadata embedded in m
5: if d is new to pi then
6: if d is relevant to the peer’s interest then
7: keep d in the local archive
8: update local profile of pi according to d
9: decrease the m.ttl by one

10: if m.ttl is greater than 0 then
11: append its identifier to m
12: add m to the share directory of pi.
13: pi.updateKnownPeerProfile(m)
14: pi.updateNeighbours()

every messages). At the end of each pull cycle, the receiver
peer evaluates its known peers and updates its neighbour-
hood. We describe how a peer updates its local profile and
known peer profiles in section 5, and how a peer updates
its neighbourhood in section 6. Note that for simplicity of
our simulation, we assume that a peer gets an immediate
feedback from its user to identify relevant documents based
on their metadata. In practise, the peer waits for a feedback
from the user.

5. PEER PROFILES
To enable a self-organizing P2P network, each peer learns

about the interests of its associated user and also interests of
other peers in the network. We call the interest of the peer’s
associated user a local peer profile, and the interest of other
peers in the network as a known peer profile. The local peer
profile contains a set of relevant document metadata that a
peer receives and a set of document metadata that the peer
publishes. The known peer profile contains a set of relevant
document metadata that are relevant to each known peer
according to the information that the peer receives.

Since the set of document metadata that are available in
the network changes with time according to which docu-
ments are published at which time, we define sets of docu-
ment metadata with time as follows.

Definition 1. St(pi) is the set of document metadata
that peer pi publishes up to time t.

Definition 2. P t is the set of document metadata that
are published up to time t; that is, P t = ∪z

i=1S
t(pi), where

z is the number of peers
Definition 3. Rt(pi) is the set of document metadata

that are published up to time t and are relevant to peer pi;
that is,

Rt(pi) = {d | d ∈ P t and d is relevant to pi} (1)

Definition 4. Dt(pi) is the set of document metadata
that peer pi receives up to time t, excluding the self-published
documents St(pi).

Dt(pi) includes all document metadata that pi receives up
to time t, regardless whether the documents are relevant to
pi. Note that Rt(pi) 6⊂ Dt(pi) due to propagation delay
or network connections. We assume that peers are always
interested in the documents that they publish.

5.1 Local Peer Profile
A local peer profile of peer pi is a set of document meta-

data that are relevant to pi as identified by the user feed-
back. However, since each peer is only aware of document
metadata that they publish or receive up to a given time,
we define the local peer profile Lt(pi) of peer pi at time t as

Lt(pi) = St(pi) ∪ (Rt(pi) ∩Dt(pi)) (2)

When a peer publishes or receives a new document meta-
data, d, that is relevant to its interest, it updates the local
peer profile with the new document metadata, line 8 in Al-
gorithm 1, as following.

Lt+1(pi) = Lt(pi) ∪ {d} (3)

5.2 Known Peer Profile
To discover the existence of other peers and learn about

their interests, when a local peer receives a Shrack message,
the local peer will obtain information about the visited peers
to update its known peer profile. Since peers only share doc-
ument metadata that is relevant to their interests, the list
of visited peers represents a list of peers that are interested
in the associated document metadata. A peer can receive
Shrack messages that contain the metadata of a given docu-
ment from different paths, which will be used to update the
known peer profile.

Definition 5. Kt(pi, pj) is a set of document metadata
that a local peer pi receives via peer pj up to time t; that is,
for each document metadata d ∈ Kt(pi, pj), the peer pj is in
the list of visited peers associated with d.

We use Kt(pi, pj) as the profile of pj in the known peer
profile of pi at time t. The known peer profile of pi consists
of a set of Kt(pi, pj), where pj ∈ Kt and Kt is the set of all
peers known to pi at time t.

When a local peer pulls Shrack messages from its neigh-
bour, all the messages that the local peer receives will be
used to update its known peer profile. For each message,
the local peer will use the embedded document metadata to
update the known peer profile of peers in the visited list as
shown in Algorithm 2. In addition to peers in the visited list

Algorithm 2 pi.updateKnownPeerProfile(m)

1: d is a document metadata embedded in m
2: for each visited peer pj in m do
3: Kt+1(pi, pj) = Kt(pi, pj) ∪ {d}

of dissemination messages, each peer also learns about the
existence of other peers when they request to pull from its
shared directory. Each peer keeps a contact of a new peer
who pulls messages from its shared directory as its known
peer with an empty profile; because the peer does not yet
have knowledge of relevant documents that are of the inter-
est to the new peer, until it pulls from the shared directory
of the new peer.

6. PEER NEIGHBOURHOOD SELECTION
With the assumption that peers usually have overlap of

interests and each peer would like to keep track of new doc-
uments that are relevant to their interests, we hypothesize
that a self-organizing P2P collaborative network in which



peers get connected, pull shared information, based on com-
mon interests will improve quality of the document metadata
received by each peer over the randomly connected network.
This section describes how peers get connected based on dif-
ferent neighbourhood selection strategies.

6.1 Common Interest Strategy
In the common interest strategy, a peer gets connected

based on common interest with its known peers. We de-
fine a common interest score between a local peer pi and
a known peer pj at time t, denoted Ct(pi, pj). We quan-
tify the common-interest score based on the modification of
a Jaccard index3 by measuring the similarity of a local peer
profile, Lt(pi), and each known peer profile, Kt(pi, pj).

Furthermore, we assume that a new peer pj who requests
to pull shared messages from a local peer pi would tenta-
tively have a common interest with the local peer, hence we
set its common-interest score to 1, the maximum value. As
a result, the local peer will select the new peer pj as one of
its neighbours the next time the local peer updates its neigh-
bourhood to learn about the interests of pj . After the local
peer pulls information from pj , the common-interest score
between the local peer and the peer pj will be computed
regularly. In other word, this is how a peer pj introduces
itself to pi, by initiating a pull request to pi.

Ct(pi, pj) =

8<:
1 if pj is new to pi

|Lt(pi) ∩Kt(pi, pj)|
|Lt(pi) ∪Kt(pi, pj)|

otherwise
(4)

Ct(pi, pj) does not satisfy the commutative property. Since
each peer creates its known peer profile using information
that it receives locally, for a given document metadata d that
is relevant to both pi and pj , there may exist a dissemination
path of d from pj to pi but not from pi to pj .

At each time t, when a peer wants to update its neigh-
bours, the peer will compute common-interest scores of its
known peers. The top-N ranked known peers according to
their common interest scores will be selected as a new set of
the peer’s neighbours. Ties in the scores are resolved by a
random selection.

6.2 Random Strategy
Since the gossip protocol [7], a well-known scalable and

reliable dissemination protocol for a large-scale network, dis-
seminates information among peers based on random con-
nections, a random strategy is selected as a baseline. In this
strategy, a peer simply updates its neighbours by randomly
selecting N known peers as its new neighbours without con-
sidering the common-interest score between the local peer
and each known peer.

6.3 Hybrid Strategy
The hybrid strategy is chosen to reduce the effect of the

greedy behaviour of the common interest strategy by allow-
ing peers to randomly explore peers in the network. In this
strategy, each peer selects its neighbours from its top-ranked
known peers with probability 1 − β, or randomly from its
known peers with probability β, where β is an exploration
parameter and 0 ≤ β ≤ 1. The β parameter indicates how
much peers want to explore the network.

3The Jaccard index can be expressed as an extension of the
cosine similarity measure to binary attributes.

7. EXPERIMENTS

7.1 Authorship User Interest Model
To evaluate performance of the peer neighbourhood selec-

tion strategies, we create an artificial user associated with
each peer in the simulated environment. The interests of
peers are defined by the interests of the associated user.
Each artificial user defines a set of documents that the as-
sociated peer publishes and a set of relevant documents of
which the associated peer should keep track during the sim-
ulation. Users may have overlap of interests. We introduce
an artificial user model called an authorship user interest
model, whereby the users’ interests are defined by the topics
of their published documents.

We create the authorship user interest model from a col-
lection of documents containing information of their authors.
In our experiments, we use the ACM metadata collection.
Each author in the collection is viewed as an artificial user
associated with a peer in the simulation. The list of docu-
ments that each user has published is the set of documents
that the associated peer publishes. The interest of each user
is modelled based on the ACM Computing Classification
System (CCS)4 according to the real ACM metadata collec-
tion. Each document in the ACM collection has been as-
signed to CCS classes by the document authors. We assume
that the interest of each user is identified by the work that
he/she publishes. In our case, the interest of each user is
described by the CCS classes of the documents that he/she
has published. Subsequently, the set of documents of which
each peer should keep track during the simulation is the set
of documents that is relevant to the interest of the peer’s as-
sociated user. For example, the peer whose associated user
has published documents in class H.3.3 and H.2.1 would be
interested in keeping track of all documents in class H.3.3
and H.2.1 that are available in the system. As a result, we
create the overlap of interests of the users naturally based
on the classes of documents they published.

7.2 Dataset Preparation
We create our artificial users from authors who published

documents in class H.3.3, information search and retrieval,
in the year 2008, in the ACM metadata collection. We use a
set of documents in class H.3.3 that these authors published
since the year 2000 as our document dataset. There are 7
subclasses in class H.3.3. These subclasses are used to define
interests of the artificial users and document classes in our
simulation. Each document can be labelled by multiple sub-
classes, which define the interests of the document’s authors.
We select the top 1,000 authors according to the number of
documents they published as the set of the artificial users.
From these authors, we have 1,639 documents in our simu-
lation. Table 1 shows the number of users and documents
in each subclass. Out of 1,000 users, 38% are interested in
one subclass, 31% are interested in two subclasses, the rest
are interested in three or more subclasses. The majority of
documents, 72%, are labelled with one subclass.

7.3 Performance Evaluation Metrics
We compare the performance of the peer neighbourhood

selection strategies based on the quality of received document
metadata and dissemination speed/distance of relevant docu-

4http://www.acm.org/about/class/1998



Table 1: The number of users and documents in each
subclass

Subclass Name #Users #Docs

Clustering 235 222
Information filtering 268 238
Query formulation 327 354
Relevance feedback 148 151
Retrieval models 579 629
Search process 437 493

Selection process 144 110

ment metadata to the local peer. Moreover, we analyze the
properties of the result networks to observe whether they
form a self-organizing social network.

In definition 1 to 3, we define sets of document metadata
published from the start of the simulation until time t. We
extend these definitions below to define sets of document
metadata published during an arbitrary time slot τk = tkr −
tks , where tks and tkr are the start and the end of the time
slot.

Definition 6. Sτk (pi) is the set of document metadata
published by pi during time slot τk; i.e., Sτk (pi) = Stkr (pi)\
Stks (pi)..

Definition 7. P τk is the set of document metadata pub-
lished during time slot τk; i.e., P τk = P tkr \ P tks ..

Definition 8. Rτk (pi) is the set of document metadata
relevant to peer pi that are published during time slot τk;
i.e., Rτk (pi) = Rtkr (pi) \Rtks (pi)..

Each document metadata takes time to be disseminated. We
divide the simulation times into time slots and observe the
dissemination of documents that are published in each time
slot. The dissemination performance of a set of document
metadata P τk published during time slot τk is measured
when the dissemination of documents in P τk ends, denoted
tkend . We use a heuristic criterion to determine tkend , which
is “a time when no more document metadata received that
were published in P τk for a sufficiently long time tp”.

7.3.1 Quality of received document metadata
The quality of document metadata published during time

slot τk that peer pi receives, P τk ∩ Dtkend (pi), is measured
in terms of precision, recall and F-score, defined as follows.

Definition 9. Precisionτk (pi) is the fraction of docu-
ments published during time slot τk, excluding self-published
documents, received by peer pi that are relevant to pi.

Precisionτk (pi) =
|Rτk (pi) ∩Dtkend (pi)|
|P τk ∩Dtkend (pi)|

(5)

Definition 10. Recallτk (pi) is the fraction of documents
published during time slot τk relevant to peer pi, excluding
self-published documents, that are received by pi.

Recallτk (pi) =
|Rτk (pi) ∩Dtkend (pi)|
|Rτk (pi) \ Sτk (pi)|

(6)

Definition 11. Fscoreτk (pi) is the harmonic means of
Precisionτk (pi) and Recallτk (pi). That is,

Fscoreτk (pi) =
2 · Precisionτk (pi) ·Recallτk (pi)

Precisionτk (pi) + Recallτk (pi)
(7)

We use terms precision, recall and F-score to refer to an aver-
age Precisionτk (pi), an average Recallτk (pi) and an average
Fscoreτk (pi) over all peers in the network in each time slot,
respectively.

7.3.2 Dissemination speed/distance of relevant doc-
ument metadata

The dissemination speed/distance of relevant document
metadata are measured in terms of pull delay and path
length of relevant document metadata that a peer receives,
which are defined as follows:

Definition 12. Given a peer pi and a time slot τk, the
relevant pull delay, RelPullDelayτk (pi), of documents that
pi receives, which are relevant to pi and published during
time slot τk, is defined as the average, over all such docu-
ment metadata d ∈ Rτk (pi) ∩ Dtkend (pi), of the time delay
from when d is published until pi first observes d.

Definition 13. Given a peer pi and a time slot τk, the
relevant path length, RelPathLengthτk (pi), of documents
that pi receives, which are relevant to pi and published during
time slot τk, is defined as the average hop count over all such
document metadata d ∈ Rτk (pi) ∩ Dtkend (pi), when pi first
observes d.

We use the terms RelPullDelay and RelPathLength to
refer to the average RelPullDelayτk (pi) and the average
RelPathLengthτk (pi) over all peers in each time slot, re-
spectively. A peer is considered to experience better perfor-
mance if it has lower relevant pull delay and lower relevant
path length.

7.3.3 Self-organizing network property
We analyze the resulting network topologies to determine

whether they form a social network by examining their clus-
tering coefficients, characteristic path lengths, and degree
distributions, which are defined as follow.

Definition 14. Clustering Coefficient (CCO) is the av-
erage of the clustering coefficient of pi over all pi. We use
the clustering coefficient formula for directed graph,

CCO(pi) =
|E(pi)|

|N(pi)|(|N(pi)| − 1)
(8)

where E(pi) is the set of connections between neighbours of
pi, and N(pi) is the set of neighbours of pi.

Definition 15. Characteristic path length (CPL) is the
average shortest path between any two peers in the network.
In the case of a disconnected network, CPL is the average
shortest path between any two peers in the largest strongly
connected component.

Definition 16. Degree distribution is defined in terms
of the in-degree distribution, where the in-degree of a peer
pi is a number of incoming pull connections that pi receives.
Since every peer has the same fixed number of neighbours,
the out-degree distribution is not considered.

Many studies [1, 11, 15] report that social networks usu-
ally have small world properties such as large CCO, small
CPL, and power-law scaling in degree distributions. Watts
and Strogatz [15] shows that small-world networks are highly
clustered like regular lattices with a much higher CCO than
random graphs of the same parameter, but have small CPL
similar to random graphs.



7.4 Experimental Setup
We built a simulation of Shrack on PeerSim [6]. Each

cycle has 1,000 simulation clock units. We assume that
point-to-point network communication delay is negligible.
Thus, the pull delay depends only on the pull intervals.
We run the simulation on a network with 1,000 peers with
the initial connections are formed randomly. We compare
three peer neighbourhood selection strategies; (1) the com-
mon interest strategy, denoted Jac, (2) the random strat-
egy, denoted Ran, and (3) the hybrid strategy with vary-
ing β values between 10−7 and 10−1. For clarity of pre-
sentation, we report results for the hybrid strategy with
β ∈ {10−1, 10−2, 10−3}, denoted Hybrid1, Hybrid2, Hybrid3,
respectively. Collectively, the hybrid strategies are denoted
Hybrid. For β < 10−3, the hybrid strategy behaves silimarly
to Jac on all metrics. Each performance metric, except for
the degree distribution, is averaged over 10 simulations with
different random seeds. Documents are published in the sys-
tem by the peer associated with the first author. The pub-
lishing time follows a Poisson distribution with an average
publishing rate of 1 document per 4 cycles 5. The pull inter-
val is fixed at 20 cycles with a different (random) starting
time for each peer. The experiments are conducted with a
TTL value of 8 (selected experimentally) and different sizes
of peer neighbourhood varying from 3 to 15. Each peer sets
the maximum update time to 160 cycles—the product of the
TTL (8) and the pull interval (20 cycles)

We evaluate the performance of the selection strategies as
a function of time using a sliding window. The parameter
tp of the criterion determining dissemination end is set at
200 cycles. We use a window size of 400 cycles in dura-
tion, with 200 cycles overlap between successive windows,
i.e., tks = {0, 200, 400, ..., 5400}, where k = {1, 2, 3, ..., 29}6.
The network property is measured every 200 cycles.

7.5 Experimental Results
We average each evaluation metric, except the degree dis-

tribution, over the last 10 time slots, τ20 through τ29, to
measure the performance and network property of each peer
neighbourhood selection strategy in each configuration.

7.5.1 Quality of received document metadata
Figures 1, 2, and 3 show the performance in terms of preci-

sion, recall, and F-score. As the size of peer neighbourhood
increases, the recall increases but the precision decreases,
except for RAN where they remain unchanged. In all con-
figurations, Jac gives higher precision and lower recall than
Ran. As the size of peer neighbourhood increases, initially,
Jac and Hybrid gain more recall than the loss of precision,
as a result, their F-score increase. When their recall ap-
proaches 1, the increase in Recall is not sufficiently larger
than the loss of precision, resulting in the decline of F-score.
Hybrid shows the mixture effects of Jac and Ran; as β in-
creases, the precision decrease and the recall increase. Jac
and Hybrid with β ≤ 10−2 show significant improvement
over Ran in terms of F-score. Hybrid outperforms Jac in
terms of F-score, when the size of peer neighbourhood is less
than or equal to five. When the size of peer neighbourhood

5the document publication time in the simulation is inde-
pendent of the time of the actual ACM publication.
6We ignore the last 4 time slots, τ30 through τ33, because
when the simulation ends, the dissemination of documents
published in these time slots are not end.

is greater than five, Hybrid does not provide significantly
improvement over Jac. At their best, when the size of peer
neighbourhood equals eight, Hybrid3 and Jac give a 27%
improvement in F-score over Ran.
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Figure 1: Precision vs. the size of peer neighbour-
hood

7.5.2 Dissemination speed/distance of relevant doc-
ument metadata

Figures 4 and 5 show that Ran has the highest RelPullDe-
lay and the lowest RelPathLength. In all strategies, RelPullDe-
lay exhibit a negative correlation with the size of peer neigh-
bourhood and Jac always gives the lowest RelPullDelay.
Similarly, RelPathLength negatively correlates with the size
of peer neighbourhood, except for Ran where it has no ef-
fect.

7.5.3 Self-organizing network property
Figure 6 shows the clustering coefficient CCO of the net-

works in each selection strategy. Overall, Jac and Hybrid3
give the best CCO. The CCO of Hybrid decreases as β in-
creases. Ran has the lowest CCO. The Characteristic Path
Length CPL of the networks in each selection strategy are
shown in Figure 7. Jac and Hybrid3 have the highest CPL
followed by Hybrid2, Hybrid1, and Ran. The CPL of all
the networks decrease as the size of peer neighbourhood in-
creases.

Figure 8 shows the in-degree complementary cumulative
distribution function (CCDF) of the networks under differ-
ent selection strategies on a log-log scale. We observe that
the in-degree distribution of the Jac and Hybrid3 networks
follows the power law distribution fairly closely for in-degree
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Figure 2: Recall vs. the size of peer neighbourhood
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Figure 4: RelPullDelay vs. the size of peer neigh-
bourhood

greater than 3, with α = 2.1. Conversely, the Ran network
does not follow the power law distribution as closely; even
for in-degree values greater than 9, its in-degree distribution
fits a power law function with α = 9.6 which is outside the
typical range of 2 > α > 3 for social networks.

8. DISCUSSION
The results show that peers in Jac and Hybrid can auto-

matically form a self-organizing network of peers with com-
mon interest. By sharing and disseminating only messages
that are of interest, peers automatically filter out messages
that are not relevant to their group, creating a community
filtering system.

The relatively low recall of Jac can be attributed to peers
not receiving relevant messages from some peers that have
low common interests. Another possible reason is the group
of peers having common interests becoming disconnected
from the network, either by a small number of TTL or the
size of peer neighbourhood.

Jac peers with multiple interests may have difficulty in
keeping track of documents in an interest group with fewer
documents (imbalanced document sets), because the com-
mon interest score favours peers with more documents. A
possible solution is for the user to use multiple peers, one
for each interest. Thus, peers responsible for sparse interests
will perform a random walk until they find a relevant peer.

Ran guarantees that peers receive all documents published
(recall of 1.0), similar to the gossip protocol. However, since
not all the documents are relevant to all peers, the average
precision of Ran is low.

The speed/distance performance shows that Jac dissemi-
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Figure 5: RelPathLength vs. the size of peer neigh-
bourhood

 0

 0.05

 0.1

 0.15

 0.2

 4  6  8  10  12  14
C

C
O

Size of Neighbourhood

Jac
Hybrid3
Hybrid2
Hybrid1

Ran

Figure 6: CCO of the network vs. the size of peer
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nates relevant messages faster than Ran, because Jac peers
usually pull messages from peers in the same group. Hy-
brid show the mixture effects between Jac and Ran with less
sensitivity to β than the quality performance metrics.

The analysis the network properties gives evidence that
the Jac and Hybrid3 networks have different characteristics
than the Ran network. Jac and Hybrid3 networks are self-
organizing into a topology that follows the characteristics
of social networks, namely the small-world property [1, 11,
15]. Particularly, the Jac and Hybrid3 networks have sig-
nificantly larger CCO than Ran, small CPL similar to Ran,
and power-law scaling in degree distribution.

We anticipated the hybrid strategy would reduce the ef-
fect of the greedy behaviour in Jac, increasing the recall
and F-score. Experimental results show, however, that for
size of peer neighbourhood greater than 5, Hybrid does not
provide a significant improvement in the F-score over Jac.
This shows that increasing the neighbourhood diversity by
increasing the size of peer neighbourhood results in better
overall performance than by creating some random connec-
tions.

9. CONCLUSION
We propose a new pull-based dissemination strategy and

protocol for the Shrack document sharing and tracking sys-
tem modelled after social networks. Through simulated ex-
periments using real world document metadata form the
ACM digital library, we explore the information dissemina-
tion performance of our proposed peer neighbourhood selec-
tion strategies and compare them to random networks. We
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show that our network self-organizes into a small-world net-
work, giving noticeable improvement in the dissemination
performance in terms of F-score up to 27% over a random
network. Our main contributions are (1) a pull-based infor-
mation dissemination strategy in which peers disseminate
messages based on their interests; (2) a method for a peer
to discover other peers in the network; (3) a peer profile
learning algorithm whereby a peer learns the interests of
other peers in the network; and (4) an autonomous neigh-
bour selection algorithm based on common interests between
peers. The experimental results show that the best F-score is
achieved with Jac by increaseing the size of peer neighbour-
hood. In future work, we plan to analyze the system with
unlimited TTL, evaluate the performance of the network in
the presence of sparse interest groups, devise an algorithm
for adaptively determining the optimal neighbourhood size
for each peer, and incorporate term-based similarity.
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