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Abstract

A great challenge of text mining arises from the increasingly
large text datasets and the high dimensionality associated
with natural language. In this research, a systematic
study is conducted of six Dimension Reduction Techniques
(DRT) in the context of the text clustering problem
using three standard benchmark datasets. The methods
considered include three feature transformation techiques,
Independent Component Analysis (ICA), Latent Semantic
Indexing (LSI), Random Projection (RP), and three feature
selection techniques based on Document Frequency (DF),
mean TfIdf (TI) and Term Frequency Variance (TfV).
Experiments with the k-means clustering algorithm show
that ICA and LSI are clearly superior to RP on all three
datasets.  Furthermore,it is shown that 71 and TfV
outperform DF for text clustering. Finally, experiments
where a selection technique is followed by a transformation
technique show that this combination can help substantially
reduce the computational cost associated with the best
transformation methods (ICA and LSI) while preserving
clustering performance.
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1 Introduction

Document clustering is the fundamental enabling tool
for efficient document organization, summarization,
navigation and retrieval for very large datasets. The
most critical problem for text clustering is the high di-
mensionality of the natural language text. The focus
of this research is to investigate the relative effective-
ness of various dimension reduction techniques for text
clustering.

There are two major types of DRTs, feature trans-
formation and feature selection [17]. In feature trans-
formation, the original high dimensional space is pro-
jected onto a lower dimensional space, in which each
dimension in the lower dimensional space is some linear
or non-linear combination of the original high dimen-
sional space. Widely used examples include, Principal
Components Analysis (PCA), Factor Analysis, Projec-
tion Pursuit, Latent Semantic Indexing (LSI), Indepen-
dent Component Analysis (ICA), and Random Projec-
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tion (RP) [8] . Feature selection methods only select a
subset of ”meaningful or useful” dimensions (specific for
the application) from the original set of dimensions. For
text applications, some feature selection methods for
text applications include, Document Frequency (DF),
mean TFIDF (T1), Term Frequency Variance (T fV).

Although many research projects are actively en-
gaged in furthering DRTs as a whole, so far, there is
a lack of experimental work comparing them in a sys-
tematic manner especially for text clustering task. In
our previous work [18] , we compared four of the above-
mentioned methods (including ICA, LSI, RP, DF) on
five benchmark datasets. Considering both the effec-
tiveness and robustness of all the methods, in general,
we can rank the four DRT's in the order of ICA > LSI >
DF > RP. ICA demonstrates good performance and su-
perior stability compared to LSI. Both ICA and LSI can
effectively reduce the dimensionality from a few thou-
sands to the range of 100 to 200 or even less. Though
providing superior performance, the computation cost
of ICA is much higher compared to DF. In [18] , we
pointed out the need to find proper feature selection
methods to pre-screen dimensions before the ICA com-
putation to reduce the computational cost of ICA with-
out sacrificing performance.

In this work, we investigate the relative effective-
ness and robustness of six dimension reduction tech-
niques when used for text clustering using three bench-
mark datasets. The used DRTs are Document Fre-
quency (DF), mean TFIDF (TT), Term Frequency Vari-
ance (T fV), Latent Semantic Indexing (LSI), Random
Projection (RP) and Independent Component Analysis
(ICA). We also demonstrate the effectiveness of combin-
ing T or TfV with ICA as a computationally cheaper
alternative to the default ICA with full dimensions.

This paper is organized as follows. Section 2 pro-
vides more details for the DRTs used in this research.
Section 3 describes our experimental procedure, evalua-
tion methods and dataset issues. Section 4 presents our
experimental results and appropriate discussion notes.
Finally, conclusions are drawn and future research di-



rections identified in Section 5.

2 Dimension Reduction Techniques for Text
Clustering

In the rest of the discussion, we will use the following
notations. A document collection is represented by its
term-document matrix Xof m by n, with m terms and
n documents.

2.1 Feature Selection Methods Feature Selection
methods sort terms on the basis of a numerical mea-
sure computed from the document collection to be clus-
tered, and select a subset of the terms by threshold-
ing that measure. In this section, we will describe the
mathematic details of three feature selection methods,
including Document Frequency (DF') in Section 2.1.1,
Mean TFIDF (T'I) in Section 2.1.2 and Term Frequency
Variance (T'fV) in Section 2.1.3.

2.1.1 Document Frequency (DF) Document Fre-
quency (DF') may itself be used as the basis for feature
selection. That is, only those dimensions with high DF'
values appear in the feature vector. DF can be formally
defined as follows. For a document collection X of m
terms by n documents, the DF value of term ¢, DF}, is
defined as the number of documents in which ¢ occurs
at least once among the n documents. To reduce the
dimensionality of X from m to k (k < m), we choose to
use the k& dimensions (terms) with the top k DF values.
It is obvious that the DF takes O(mn) to evaluate. In
spite of its simplicity, it has been demonstrated to be
as effective as more advanced techniques in text catego-
rization [19].

2.1.2 Mean TFIDF (7T]) In information retrieval
(IR), we value a term with high term frequency but low
document frequency as a good indexing term. In IR, we
generate a vector representation for each document d;,
where the weight for each term ¢ in document d; is its

tfidf value, defined as:

, ||
tfidf; = tf;log DF,
where
o, = [ 1Hlogty ift; >0
7 0 otherwise

and T, is the total number of documents in collection
X, DF; is the document frequency of term ¢, t; is the
frequency of term ¢ in document d;. In this work, we
propose to use the mean value of tfidf over all the
documents (hereafter referred to as T'I) for each term
as a measure of the quality of the term. The higher the
T value, the better the term to be ranked.

2.1.3 Term Frequency Variance (T fV) The T fV
method for ranking term quality was demonstrated to
successfully reduce the dimension to only 15% of the
original dimension [6, 13]. The basic idea is to rank
the quality of a term based on the variance of its term
frequency. This is similar in spirit to the intuition of T'T
method. The term frequency of term ¢ in document d;,
tfj, is defined the same way as in Section 2.1.2. The
quality of term ¢ is calculated by

M- | Xt
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where n is the total number of documents.

2.2 Feature Transformation Methods Feature
transformation methods perform a transformation of
the vector space representation of the document collec-
tion into a lower dimensional subspace, where the new
dimensions can be viewed as linear combinations of the
original dimensions. In this section, we will introduce
some mathematic details of the three feature transfor-
mation methods, i.e., Latent Semantic Indexing (LST)
in Section 2.2.1, Random Projection (RP) in Section
2.2.2 and Independent Component Analysis (IC'A) in
Section 2.2.3.

2.2.1 Latent Semantic Indexing (LSI) LSI, as
one of the standard dimension reduction techniques in
information retrieval, has enjoyed long-lasting attention
[2,5, 7,10, 15, 16]. By detecting the high-order semantic
structure (term-document relationship), it aims to ad-
dress the ambiguity problem of natural language, i.e.,
the use of synonymous, and polysemous words, there-
fore, a potentially excellent tool for automatic indexing
and retrieval.

LST uses Singular Value Decomposition (SVD) to
embed the original high dimensional space into a lower
dimensional space with minimal distance distortion, in
which the dimensions in this space are orthogonal (sta-
tistically uncorrelated). During the SVD process, the
newly generated dimensions are orderd by their ”impor-
tance”. Using the full rank SVD, the term-document
matrix X is decomposed as X = USV”, where S is
the diagonal matrix containing singular values of X.
U and V are orthogonal matrices containing left and
right singular values of X, often referred to as term pro-
jection matrix and document projection matrix respec-
tively. Using truncated SVD, the best rank-k approxi-
mation (in least-squares sense) of X is X = UkSkaT,
in which X is projected from m dimensional space to
k dimensional space (m > k). In the new k-dimension,
each original document d can be re-represented as d =



UrSipd”. The truncated SVD not only captures the
most important associations between terms and doc-
uments, but also effectively removes noise and redun-
dancy and word ambiguity within the dataset [5]. One
major drawback of LSI is its high computational cost.
For a data matrix, X, of dimension m X n, the time
complexity to compute LSI using the most commonly
used svd packages is in the order of O(m?n) [15]. For a
sparse matrix, the computation can be reduced to the
order of O(cmn), where c is the average number of terms
in each document [16].

2.2.2 Random Projection (RP) As a computa-
tionally cheaper alternative to LSI for dimension reduc-
tion with bounded distance distortion error, the method
of Random Projection (RP) has recently received atten-
tion from the machine learning and information retrieval
communities [1, 4, 9, 12, 15]. Unlike LSI, the new di-
mensions in RP are generated randomly (random linear
combinations of original terms) with no ordering of ”im-
portance”. The new dimensions are only approximately
orthogonal. However, researchers don’t seem to agree on
the effectiveness and computational efficiency of RP as
a good alternative for LSI-like techniques [4, 9, 12, 15].
So far, the effectiveness of RP is still not clear, especially
in the context of text clustering.

Similar to LSI, RP projects the columns of term-
document matrix X from the original high dimensional
space (with m dimensions) onto a lower k-dimensional
space using a randomly generated projection matrix Ry,
of shape k x m, where the columns of R are unit length
vectors following a Gaussian distribution. Under the
new k dimension space, X is approximated as X =
R X.

2.2.3 Independent component analysis (ICA)
A recent method of feature transformation called Inde-
pendent Component Analysis (IC A) has gained wide-
spread attention in signal processing [11]. It is a general-
purpose statistical technique, which tries to linearly
transform the original data into components that are
maximally independent from each other in a statisti-
cal sense. Unlike LSI, the independent components are
not necessarily orthogonal to each other, but are statis-
tically independent. This is a stronger condition than
statistical uncorrelateness, as used in PCA or LSI [11].
In most of applications of ICA, PCA is used as a pre-
processing step, in which the newly generated dimen-
sions are ordered by their importance. Based on the
PCA transformed data matrix, ICA further transform
the data into independent components. Therefore, us-
ing PCA as a preprocessing step, ICA can be used as
a dimension reduction technique. Until very recently,

there were only a few experimental works in which ICA
is applied to text data [3, 14].

ICA assumes each observed data item (a document)
z to have been generated by a mixing process of
statistically independent components (latent variables
8;). Formally, for the term-document matrix X, xn,
the noise-free mixing model can be written as X,,xn =
Ak Skxn, where A is referred to as the mixing matrix
and Sgxp, is the matrix of independent components. The
inverse of A, A™!, is referred as the unmixing matrix,
W. The independent components can be expressed as
Skxn = WixmXmxn. Here, W is functionally similar to
the projection matrix R in RP that project X from the
m dimensional space to a lower k dimensional space.

In this research, we used the most commonly used
FastICA implementation [11]. FastICA is known to
be robust and efficient in detecting the underlying
independent components in the data for a wide range of
underlying distributions [8]. The mathematical details
of FastICA can be found in [11].

In practical applications of FastICA, there are two
pre-processing steps. The first is centering, i.e., making
x into zero-mean variables. The second is whitening,
which means that we linearly transform the observed
vector x into x™°", such that its components are un-
correlated and their variance equals unity. Whitening
is done through PCA. In practice, the most time con-
suming part of FastICA is the whitening, which can be
computed by the svds MATLABT™ function.

3 Evaluation

In this section, we present the evaluation methods
and experimental setups in Section 3.1, followed by
the description of the datasets used in Section 3.2,
and ended with the description of the preprocessing
procedure in Section 3.3.

3.1 Evaluation Methods and Experimental
Setup The judgment of the relative effectiveness of the
DRTs for text clustering is based on the final cluster-
ing results after different DRTs are applied. The final
ranking of DRTs depends on both the absolute cluster-
ing results and the robustness of the DRT. Here, good
robustness implies that when using a certain DRT, rea-
sonably good clustering results remain relatively stable
across a relatively wide range of reduced dimensions.
The quality of text clustering is measured by micro-
average of classification accuracy (hereafter referred to
as C'A) over all the clusters, a similar measure to Purity
as introduced in [20]. To avoid the bias from the training
set, C'A is only computed based on the test data in
the following fashion. The clustering process is only
based on the training set. After clustering, each cluster



¢ is assigned a class label T; based on the majority
vote from its members’ classes using only training data.
Then, assign each point in test set to its closest cluster.
The CA; for cluster ¢ is defined as the proportion of
points assigned as members of cluster ¢ in the test set
whose class labels agree with T;. The total C'A is micro-
averaged over all the clusters. The comparison between
two methods is usually based on student t-test.

Since k-means or its variants are the most com-
monly used clustering algorithms used in text cluster-
ing, we choose to use k-means with our modification to
do text clustering. A well-known problem for k-means
is that poor choices of initialization often lead to poor
convergence to sub optimal solutions. To ameliorate the
negative impact of poor initialization, we devised a sim-
ple procedure, Init K Means, to pre-select ”good” seeds
for k-means clustering. It has been proved very effec-
tive in our previous work [18]. Our experiments for all
the DRTs follow the same general procedure. A sketch
of our procedure is as follows, details of our experimen-
tal procedure including Init K Means can be found else-
where [18].

1.  Each dataset is split randomly into training and
testing set of ratio 3:1 proportionally to their
category distribution.
2. For each DRT, run a series of reduced dimensions
For each desired dimension k,
Apply DRT only to the training data,
producing proper projection matrix PR
(in feature transformation), or, subset of
selected dimensions SD (feature selection);
Apply PR/SD to both training and test set;
Clustering on the reduced training set;
Assign T; to each cluster in reduced
training set;
Compute C'A using reduced test set;

End For

3.2 Dataset Characteristics In our experiments,
we used a variety of datasets from different genres,
which include WWW-pages (WebKB!), newswire sto-
ries (Reuters-215782), and technical reports (CSTR?).
These datasets are widely used in the research of infor-
mation retrieval and text mining. The number of classes
ranges from 4 to 50 and the number of documents ranges
between 4 and 3807 per class. Table 1 summarizes the
characteristics of the datasets.

Thttp://www2.cs.cum.edu/afs/cs/project/theo-
11/www/wwkb

2http://www.cs.cmu.edu/TextLearning/datasets.html

Shttp://www.cs.rochester.edu/trs

Reuters-2, a subset of Reuters-21578 dataset, is a
collection of documents each document with a single
topic label. The version of Reuters2 that we used elim-
inates categories with less than 4 documents, leaving
only 50 categories. WebKB4 is a subset of WebKB
dataset, which is limited to the four most common cate-
gories: student, faculty, course, and project. The CSTR
dataset contains 505 abstracts of technical reports, di-
vided into four research areas: AI, Robotics and Vision,
Systems, and Theory.

3.3 Preprocessing The pre-processing of the
datasets follows the standard procedures, including
removal of the tags and non-textual data, stop word
removal?, and stemming®. Then we further remove
the words with low document frequency. For example,
for the Reuter2 dataset we only selected words that
occurred in at least 4 documents. The word-weighting
scheme we used is the ltc variant of the tfidf function,
defined in Section 2.1.2.

4 Experimental Results

For each given dataset, we applied six DRTs for a
complete comparative study. First, we concentrate on
comparing the feature selection methods. The results
are described in detail in Section 4.1. The comparison
results of feature transformation methods are mainly
extracted from our previous work [18], which will be
summarized in Section 4.2. Based on the results from
both DRT method groups, we choose to use TI and
TfV as thresholding methods to pre-select subset of
dimensions to be further processed by ICA. We focus on
comparing the results of ICA with TI/TfV thresholding
at different threshold levels against the default version of
ICA without TI/TfV thresholding. Here, the threshold
levels are defined as the top 2% of selected dimensions
using TI or TfV. In this set of experiments, we use
TI (or TfV) to pre-select the top 2% of dimensions
and pass on the dataset with reduced dimensions to the
ICA computation. The results are described in detail
in Section 4.2. For completeness, we compile all the
comparison results in one figure 1-3 for each dataset.
In each figure, there are four sub-figures, describing
the results of feature transformation methods, results
of feature selection methods, results of ICA with TI
thresholds, and results of ICA with TfV thresholds
respectively.

The comparison of any two methods is based on
Student paired t-test comparing the performance of the

Thttp://www.dcs.gla.ac.uk/idom/ir_resources/
linguistic_utils/stop_words

Shttp://www.tartarus.org/~martin/PorterStemmer/



Datasets Dataset size #classes | Class Size Type
[terms| x |docs]| range
Reuters 2 7315 x 8771 50 [4, 3807] News
WebKB4 9870 x 4199 4 [504, 1641] | University Web pages
CSTR 2335 x 505 4 [76, 191] Technical Reports

Table 1: Summary of the datasets

two methods over a dimension range. The dimension
range, denoted as [k1, k2], is usually hand-picked, such
that, within such a range, the two methods cannot be
clearly differentiated visually, and beyond this range,
the performance of the two comparing methods are too
poor to be of interest.

4.1 Comparing Feature Selection Methods We
performed mutual comparison among DF, TI and TfV
for all the three datasets using paired Student ¢-test.
The p values are reported in In Table 2. For the
paired Student t-test, the null hypothesis, Hy, assumes
ux—y = 0. Here X represents the methods listed
in rows in Table 2, while Y represent methods listed
in columns in Table 2. The alternative hypothesis,
H,, assumes pux_y > 0. For Reuters2, the compar-
isons are performed over the the dimension range of
[70,1095]. Based on the p values of the paired ¢-test,
the null hypothesis, upr_7;r = 0 is weakly rejected, and
upr—rfv = 0 is strongly rejected and prr_rpy = 0
holds. Therefore, for Reuters2, we can say that DF
systematically performs worse than 7' and T fV, and
there is no statistical difference between T'1 and T fV.
For WebKB4, the comparisons are performed over the
dimension range of [80,1980]. The resulting p values in-
dicate that there is no significant different among DF’,
T1 and TV, even though T and T fV provide better
C A results than DF. For CSTR, the comparisons are
performed over the range of dimensions [115,989]. The
resulting p values indicate that there is no significant
difference between DF and T fV and between T'I and
TfV, while DF is worse than TI with slight signifi-
cance.

Considering all the comparison results, 71 and T fV
are better feature selection methods than DF for text
applications.  Therefore, we choose to use 71 and
T fV as pre-screening methods for ICA in subsequent
experiments.

4.2 Results of Feature Transformation Meth-
ods and Thresholded ICA In the following, we will
describe the results by the order of dataset. For each
dataset, we will remark on the comparison results for
feature transformation methods based on our previous
work [18] for completeness. We will focus on the com-

parisons between the performance of default ICA and
ICA preceded by TT/TfV thresholding. The comparison
results are reported based on the p values in separate
Tables 3,4,5.

Reuters2 Results Based on the results of our
previous work [18], comparing ICA, LSI and RP, we
observed that both ICA and LSI achieve superior results
with low dimensionalities ([30,93]) comparing to RP.
Within the dimension range of [30,93], ICA not only
shows a superior performance over LSI in terms of
classification accuracy but also demonstrates better
stability than LSI.

The results of comparing the plain ICA (with no
pre-selection of dimensions) with that of ICA with pre-
selection of dimensions by TI/TfV are reported in Ta-
ble 3. The null hypothesis, Hy, assumes px_y = O.
Here, X refers to plain ICA, while Y represents ICA
with different TI/TfV thresholding levels. The alter-
native hypothesis, H,, assumes pux_y > 0. Another
alternative hypothesis, H;, assumes px_y < 0. 6 The
comparisons are performed over that dimension range of
[10,153]. In Table 3, the p values clearly indicate that
the plain ICA performs significantly better than ICA
with T'I-thresholding levels of 5-15%. But there are no
significant differences between the plain ICA and ICA
with T'I-thresholding levels of 20-25% . Similarly, the
plain ICA performs significantly better than ICA with
T fV-thresholding levels of 5-20%. Interestingly, p value
indicates that the ICA with T fV-thresholding level of
25% performs significantly better than the basic ICA.

WebKB4 Results Based on our previous work,
we observe that the best performance of ICA is slightly
worse than that of LSI [18]. But ICA shows much stable
performance over longer range of dimensions than LSI.
Both LSI and ICA are better than RP.

In Table 4, we reported the results of combining
ICA with TI/TfV thresholding. The comparisons
between the plain ICA and those ICAs with TI/T fV
thresholding are performed over the range of [7,90].
The p values indicate clearly that the plain ICA is
significantly better than ICAs with TI-thresholding
levels of 5% and 20%. But there is no significant

8We used the same hypothesis tests for Table 4, 5,therefore,
not stated explicitly later.



Reuters2 WebKB4 CSTR
DF TI TV DF TI TV DF TI TV
DF NJ/A 007 00l | DF NJ/A 016 016 | DF NJ/A 004 013
TI 093 N/A 032 | TI 084 N/A N/A| TI 096 N/A 031
TfV 099 068 N/A|TfV 08 N/A N/A|TfV 087 069 N/A

Table 2: P Values of Student Paired t-test for Comparing Feature Selection Methods

Figure 1: Comparison results of Reuters2. In all the sub-figures, the x-axis denotes the dimensionality, and the
y-axis represents CA. (a) results of feature transformation method. '+’ denotes ICA, ’.” denotes LSI, -’ denotes
RP. (b) results of feature selection methods. '+’ denotes DF, ’.> denotes TI, -’ denotes TfV. (c) results of
ICA with different level of T'I thresholding. ’o’ denote thresholding level 5%, x’ 10%, - 15%, '* 20%,’c’ 25%,
and with ’.” for plain ICA with full dimensions. (d) results of ICA with different levels of T'fV thresholding, 'o’

a. Feature Transformation Methods

b. Feature Selection Methods
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denotes thresholding level 5%, 'x’ 10%, -’ 15%, "*’ 20%, 'o’ 25%, and with ’.” for basic ICA

ICA with T'I thresholding ICA with T'fV thresholding
5% 10% 15% 20% 25% | 5% 10% 15% 20% 25%
H, | p-value | 0.00 0.00 0.00 0.44 0.63 | 0.00 0.00 0.00 0.01 0.96
Hy | p-value | 1.00 1.00 1.00 0.56 0.37 | 1.00 1.00 1.00 0.99 0.04

Table 3: P-values of the results of ICA combined with TT/TfV thresholding (Reuters2)




difference between the plain ICA and ICAs with T'I-
thresholding level of 10%, 15% and 25%. For TfV
thresholding, the plain ICA is better than ICA with
TfV thresholding level of 5 % with significance and
better than 10% with slight significance. But there is no
significant difference between the plain ICA and ICAs
with T fV-thresholding level of 15-25%.

CSTR Results From our previous work, we ob-
served no significant difference between ICA and LSI
for the dimension range of [5,33]. ICA and LSI are bet-
ter than RP [18].

The results of combining ICA with TI/T fV thresh-
olding are reported in Table 5. We compared the per-
formance of the plain ICA with those of ICAs with
TI/TfV thresholdings over the dimension range of
[5,43]. Based on the p values, we conclude that the plain
ICA is significantly better than ICAs with T'I threshold-
ing levels of 5-15% , and there is no significant difference
between the plain ICA and ICAs with T'7 thresholding
levels of 20-25%. For T'fV thresholding, the plain ICA
is better than ICAs with T fV thresholding levels of 5-
15%, and there is no significant difference between the
plain ICA and ICAs with T fV thresholding levels of
20-25% .

5 Conclusion and Future Work

In this research, we compared the performance of six
DRT methods when applied to text clustering prob-
lem using three benchmark datasets of distinct genres.
Based on all the results, we have observed the follow-
ing. For feature transformation methods, we can rank
ICA > LSI > RP considering classification accuracy and
stability. Both ICA and LSI reach their best perfor-
mance with very low dimensionality, often less than 100
and occasionally lower than 10. ICA and LSI main-
tain their best performances over a wide range dimen-
sions. ICA appears more stable than LSI. For feature
selection methods, DF is inferior comparing to 11 and
T fV. The best results of TI and T fV can match those
of ICA and LSI but at much higher dimensions. The
results of combining ICA with T'I or T'fV thresholding
are most interesting. For most of the cases, it is safe to
say that ICA with TT or TfV thresholding level 25%
performs at least the same as the basic ICA if not bet-
ter occasionally. This is interesting, since the bottleneck
of computing ICA is its preprocessing PCA step (takes
O(m?n) to compute, where m is the dimensionality, and
n is the number of points). With our datasets, m and
n are of the same magnitude, then the PCA step can
be estimated as O(m?). With pre-screening the dimen-
sions by T'I or T fV methods, theoretically, we reduce
the computational cost of PCA to 1/64 of the original
cost without sacrificing performance.

From our previous and current research, we iden-
tify the ”ideal” dimension reduction technique for text
clustering to be ICA. Though we have achieved moder-
ate success in reducing the computational cost of ICA,
we believe that further research should be focused on
this issue. Different sampling techniques should be able
to provide even more fruitful success in reducing the
computational cost of ICA without sacrificing its per-
formance.
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Figure 2: Comparison results of WebKB4. (a) results of feature transformation method. (b) results of feature
selection methods. (c) results of ICA with different level of TT thresholding. (d) results of ICA with different
levels of T'fV thresholding.(The full legends are the same as in Figure 1, omitted here).

ICA with T'I thresholding ICA with T fV thresholding
5% 10% 15% 20% 25% | 5% 10% 15% 20% 25%
H, | p-value | 0.00 0.10 0.24 0.00 0.56 | 0.00 0.06 0.22 0.47 0.80
Hy | p-value | 0.99 0.90 076 1.00 044 | 100 094 0.78 053 0.2

Table 4: P-values of the results of ICA combined with TI/TfV thresholding (WebKB4)

ICA with T'T thresholding ICA with T fV thresholding
5% 10% 15% 20% 25% | 5% 10% 15% 20% 25%
H, | p-value | 0.00 0.03 0.00 0.08 0.80 | 0.00 0.01 0.05 0.06 0.93
Hy, | p-value | 1.00 097 1.00 0.92 0.20 | 1.00 1.00 0.95 0.94 0.07

Table 5: P-values of the results of ICA combined with TI/TfV thresholding (CSTR)
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Figure 3: Comparison results of CSTR. a) results of feature transformation method. (b) results of feature selection
methods. (c) results of ICA with different level of T'T thresholding. (d) results of ICA with different levels of
TfV thresholding.(The full legends are the same as in Figure 1, omitted here).
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