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Abstract – We describe recent results obtained with AQUA, a
mobile robot capable of swimming, walking and amphibious
operation.  Designed to rely primarily on visual sensors, the
AQUA robot uses vision to navigate underwater using servo-
based guidance, and also to obtain high-resolution range scans of
its local environment.  This paper describes some of the
pragmatic and logistic obstacles encountered, and provides an
overview of some of the basic capabilities of the vehicle and its
associated sensors. Moreover, this paper presents the first ever
amphibious transition from walking to swimming.
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 I.  INTRODUCTION

The aquatic environment presents an almost ideal test-bed
for the evaluation and development of robotic technologies.
The environment is highly dynamic and three dimensional.
Vehicles operating in this realm must cope with unpredictable
3D motion of the vehicle itself complicating any task to be
performed. Extremely limited off-board communication
underwater requires that robots must operate fully
autonomously or under operator control through a tether.
Many surveillance and data collection tasks require that a
vehicle be positioned in the same location for a period of time.
Surge and underwater currents prevent this from happening,
thus robust and accurate pose maintenance is a requirement for
aquatic vehicles.  Also, standard mapping techniques
originally developed for indoor robot navigation are not
general enough to describe the inherently six degree of
freedom aquatic environment.  A natural choice for sensing is
to use cameras and computer vision techniques to aid in
navigation and trajectory reconstruction.  However, a host of
other problems plague underwater computer vision techniques.
For example, the turbidity of the water caused by floating
sedimentation (‘aquatic snow’) and other floating debris
wreaks havoc on standard techniques for visual understanding
of the world.  The environment itself provides unique
challenges for the mechanical design of vehicles – keeping the
water away from electrical equipment is essential and rarely
required for navigating university laboratory hallways.

Given the complexity of the aquatic domain, and the
desirability of autonomous and semi-autonomous systems to
aid in its exploration, there has been a long history of

development of aquatic robots (cf. [2]) and their sensors (cf.
[15]). The vast majority of aquatic vehicles are controlled by
thrusters and control surfaces. Many are designed to be
supported by a sizeable shore- or ship-mounted infrastructure
to provide external power, communication and tether due to
their large size.

In contrast to many of these earlier aquatic vehicles, within
the AQUA project we are developing a small-scale legged
swimming robot whose core sensing modality is image-based;
such a robot is small, portable and maneuverable.  The specific
target application we are working towards is the
environmental assessment and longitudinal analysis of coral
reef environments. These environments are difficult to
navigate with traditional autonomous underwater vehicles or
ROVs (remotely operated vehicles) due to the shallow depths
and the significant presence of marine life.  A major drawback
for traditional vehicles is the usage of thrusters at shallow
depths which stirs up much of the ocean floor reducing
visibility and endangering the coral and marine life.

Reefs are ecologically important environments that are
seriously threatened yet a clear objective assessment of their
health is a serious challenge to which automated methods may
prove valuable.  In particular, coral reefs occupy only 0.7% of
the ocean floor, but provide homes and vital nursery grounds
for 25% of all marine species on the planet. Furthermore, reef
monitoring serves as a valuable template for a range of other
significant applications. A well established bio-assessment
methodology is to either repeatedly visit a set of selected
locations or to regularly swim over a particular trajectory and
visually inspect the marine flora and fauna.  This specific task
is labor intensive for human operators and, as a sample
application, it may be well suited to the AQUA vehicle.

This paper provides some details of the design and control
of the AQUA vehicle and of one of its primary visual
components, a combined inertial-trinocular camera module.
Further details of the vehicle, and in particular details of an
acoustic localization system for the robot can be found in [4].

 II. THE AQUA PLATFORM

The AQUA vehicle represents a novel approach to aquatic
vehicle design. Rather than relying on thrusters and control
surfaces, the AQUA vehicle relies on legged locomotion. The



vehicle uses its six actuators, coupled to specially designed
legs and/or fins, to move either as a walking vehicle or as a
legged swimmer. Legs provide the vehicle with a variety of
different locomotive strategies including the ability to walk on
solid surfaces, and to swim on the surface of the water or in
the open ocean.  Walking behaviors are based on variations of
a rotary gait (Figure 1(a)), while swimming behaviors depend
on variations of an oscillating leg motion (Figure 1(b)).

AQUA is based on RHex, a terrestrial six-legged robot
developed in part by the Ambulatory Robotics Lab at McGill
in collaboration with the University of Michigan, the
University of California at Berkeley and Carnegie Mellon
University [1]. AQUA’s required capabilities include surface
and underwater swimming, diving to a depth of 15m, station
keeping and crawling at the bottom of the sea. For propulsion,
the vehicle deviates from traditional ROV through the use of
six paddles, which also act as control surfaces during
swimming, and as legs when walking. The paddle
configuration gives the robot direct control over five of the six
degrees of freedom: surge, heave, pitch, roll and yaw. An
inclinometer and a compass onboard are used to assist in the
control of the robot’s motion underwater.

The robot is approximately 65 cm long, 50 cm wide (at the
fins), and 13cm high. It is encased within an aluminum
waterproof shell and displaces about 18 kg of water. The robot
is powered by two onboard NiMH batteries providing over
two hours of continuous operation. Onboard computation is
performed using PC/104 computers, one running a real-time
operating system (QNX), and the other an embedded version
of Linux.  Camera, sensor and control signals are sent to a
floating platform at the surface via fiber-optic tether.  This
information is used by the operator to control the robot via
usage of a gamepad controlled command interface.

Each of AQUA’s six legs is individually controlled by a
single axis motor. The onboard computer provides real-time
control of the set of six limbs. Although a number of different
leg designs have been developed and tested on the vehicle, a
common design feature of the legs is that they are compliant.

The spring energy stored in the legs as they bend under load is
an integral part of the vehicle’s locomotion strategy.

AQUA’s unique locomotion strategy provides great
flexibility in terms of potential modes of locomotion. Figure 1
shows the AQUA vehicle moving in three very different
modes. In Figure 1(a), the AQUA vehicle is shown with its
amphibious legs walking along the beach near the surf zone.
During walking locomotion, the AQUA vehicle uses its six
single-jointed limbs to walk using an alternating gait based
upon a gait originally designed for the Rugged RHEX
platform. When the vehicle moves through the surf zone, it
transits to a surface swimming gait (see Figure 1(b)). Here the
amphibious legs are used to provide thrust along the surface of
the water. Finally, when the water depth is sufficient, the
vehicle can transit to an open water swimming mode in which
the vehicle ``swims’’ in the full 6DOF space that exists in the
open ocean.  Figure 1 also illustrates that the AQUA vehicle
can be deployed with different sets of legs. Individual legs are
designed to be easily attached and removed from the vehicle,
and the design of a robust set of ‘all weather’ legs is the topic
of ongoing research.

Limbed locomotion requires the development of
appropriate gaits to drive the legs in a coordinated manner in
order to move the vehicle. A set of gaits have been developed
that provide controlled motion of the vehicle when walking,
swimming on the surface and swimming in open water.

AQUA is a 6DOF vehicle. Each leg has a single
controllable degree of freedom used for gait generation. Figure
2 shows a sequence of snapshots of AQUA’s walking gait.
The sequence of snapshots should be viewed from left to right
and top to bottom. The walking gait is a basic hexapod
walking gait. Swimming in open water permits a rich class of
alternative gaits and behaviors, and allows motion with six
degrees of freedom (although there is often coupling).
Currently there are two mode of operation for AQUA. First,
the most commonly used teleoperation, where an operator can
send commands to the robot via the optical cable to control the
motion. Second, currently under development are a set of
prearranged behaviours based on visual servoing for following

(a) On the beach (b) Surface swimming (c) Free swimming

Figure 1. The AQUA robot. (a) The vehicle with its amphibious legs walking on the beach. (b) Shows the vehicle swimming on
the surface of the ocean using its amphibious legs. (c) Shows the vehicle swimming in the open ocean using its fins.  A number
of different leg structures have been tested on the vehicle. Two different sets of legs are shown here.



a visual target and also for following a set trajectory, In
particular, by application of the appropriate gait the robot is
able to roll, pitch, yaw, surge, and heave.  At present these
behaviors have been tested under manual control and the robot
appears rather easy to control manually.  Complex 6DOF
trajectories can be challenging to track, and this is one of the
factors motivating the use of servo-controlled gaits, even for
manual vehicle guidance.

 III. SENSING WITH AQUA

The AQUA robot enclosure contains both forward- and
rear-facing video cameras. These sensors are used primarily
for vehicle teleoperation and visual servoing tasks. Other
sensors (e.g. the acoustic localization sensor and the trinocular
sensor) are currently being evaluated in external housings and
will be integrated into the body of the robot in later versions of
the vehicle.  The acoustic localization sensor is described in
some detail elsewhere ([4]). Here we provide some details on
the trinocular vision sensor system, color correction
processesing and video servoing.

The AQUA platform is intended for use as a device to aid in
environmental assessment, and in particular to aid in the
assessment of reef damage and rehabilitation. Thus two key
inspection tasks are the collection of video footage, and the
construction of 3D surface and volumetric models of the reef
structure off-line. Later, off-line comparison of these models
over time can be used to assess the rate of variation, damage
or (hypothetically) restoration of the environment.  In the
context of the AQUA project we are addressing this task as a
general Site Acquisition and Scene Re-inspection (SASR)
task. A typical scenario in a SASR task is as follows. The
robot is deployed near the site, in our case on a nearby beach.
Under operator control or supervision, the robot walks out into
the water and is controlled or directed to a particular location
on the seabed where sensor measurements are to be made. The
robot then surveys the environmental location, possibly in a

teleoperation mode, and a surface model of the reef is
recovered. Once measurements are made, the robot then
returns home autonomously. At a later date, the robot actively
guides – and potentially controls – its motion to the previously
visited site in order to collect additional data.

Due to the inherent physical properties of the marine
environment, vision systems for aquatic robots must cope with
a host of geometrical distortions, colour distortions, dynamic
lighting conditions, and suspended particles (known as 'marine
snow'). The unique nature of the aquatic environment
invalidates many of the assumptions of classic vision
algorithms, and solutions to even simple problems -- such as
stereo surface recovery in the presence of suspended marine
particles -- are not yet fully understood.

Color Correction
For many inspection and observation tasks, high quality

image data is desirable.  We have developed a technique for
image enhancement based on training from examples.  This
allows the system to adapt the image restoration algorithm to
the current environmental conditions and also to the task
requirements.  Image restoration involves the removal of some
known degradation in an image. Traditionally, the most
common  sources of degradation are due to imperfections of
the sensors, or in transmission. For the case of underwater
images, additional factors include poor visibility (even in the
cleanest water), ambient light, and frequency-dependent
scattering and absorption both between the camera and the
environment, and also between the light source (the sun) and
the local environment (i.e. this varies with both depth and
local water conditions). The result  is  an image  that  appears
bluish, blurry and out of focus. Most prior work tends to
approximate the deblurring and noise processes by idealized
mathematical models. Such approaches are often elegant, but
may not be well suited to the particular phenomena in any
specific real environment. Image restoration is difficult since it

Figure 2. Eight snapshots of the AQUA vehicle walking along the beach. The individual frames should be viewed in a left to
right, top to bottom order. AQUA maintains a statically stable gait while walking.



is an ill-posed problem: there is not enough information in the
degraded image alone to determine the original image without
ambiguity.

As proposed in [11], our approach is based on learning the
statistical relationships between image pairs. In our case, these
pairs are the images we actually observe and corresponding
color-corrected and deblurred images. Our approach uses a
Markov Random Field model to learn the statistics from the
training pairs.  This model uses multi-scale representations of
the corrected (enhanced) and original images to construct a
probabilistic enhancement algorithm that improves the
observed video.  This improvement is based on a combination
of color matching, correspondence with training data, and
local context via belief propagation, all embodies in the

Markov random field. Training images are small patches of
regions of interest that capture the maximum of the intensity
variations from the image to be restored. The corresponding
pairs, i.e. the ground truth data containing the restored
information from the same regions, are captured when lights
mounted on the robot are turned on. Some experimental results
are shown in Figure 3.

There are a number of factors that influence the quality of
the results. These include the adequate amount of reliable
information as an input and the statistical consistency of the
images in the training sets.

Visual Servo Control Subsystem
The visual servo-control subsystem is used to permit semi-

autonomous navigation.  At present, this is aimed at allowing
the robot to follow a human guide during the mapping or
image acquisition process.  While not currently implemented,
this should allow the robot to subsequently re-play the same
trajectory in fully autonomous mode.  Servo-control also has
several other task-specific applications.  While the aquatic
medium essentially provides low-pass filtering for the vehicle
dynamics, the servo-control system still needs to operate at
near-real time.  This requirement is even more stringent for
terrestrial behaviors.  Thus, a second processor is devoted
exclusively to vision processing. This is a Pentium M
processor running at 1.1 GHz with CPU frequency scaling
capability, a Gigabyte of RAM and conforms to the PC/104
Plus form factor.  While faster processors are available, low
power consumptions and a desire to passive cooling and the
associated physical robustness it entails make this a suitable
chice. The vision stack uses Linux and runs off a 512
Megabyte CompactFlash card.  For image acquisition a
IEEE1394 digital color camera with resolution of 640-by-480
pixels is used with a PC/104 plus IEEE1394 capture card. The
vision processor interfaces with the camera through the
IEEE1394 capture card. The tracker has been written in C++
using an open source vision library called VXL (Vision-
Something-Libraries – the X stands for “something”). VXL
includes libraries for computer vision, mathematics, file i/o,
image processing and other useful vision processing
functionality. Communication between the control and vision
stack takes place over the ethernet using the UDP protocol.

Trinocular Vision

Figure 3:  Uncorrected and corrected images.  The color correction and deblurring is accomplished using a learning based
Markov Random Field model.

Figure 4: The AQUA Visual Servoing Architecture



A fundamental problem with visual sensing in the aquatic
domain is that it is not possible to assume that the sensor only
moves when commanded to. The aquatic medium is in
constant (and in general unpredictable) motion, and this
motion complicates already difficult problems in time-varying
image understanding. One mechanism to simplify vision

processing is to monitor the true motion of the sensor
independently of its commanded motion. Inertial measurement
units (IMUs) have found applications in various autonomous
systems for the determination of the relative pose of a vehicle
over time. IMU devices take measurements of the physical
forces applied to them using MEMS gyroscopes and
accelerometers and thus under normal conditions they provide
independent source-less measurements of relative motion.
Unfortunately, due to the use of numerical integration and
sensor/temperature characteristics, these systems drift.
Typically IMUs are employed with some secondary sensing
system in order to counteract this effect. Here we utilize
trinocular vision as this associated sensor. Real time trinocular
stereo sensors permit the recovery of 3D surfaces. Integrating
an inertial 6DOF navigation system with a trinocular stereo
sensor simplifies the registration process by providing relative
motion information between frames. With this initial estimate
of the camera pose, few features must be used to refine the
registration to the global coordinate system.  Figure 5(a)
shows the trinocular sensor module and its aquatic housing.
The module consists of three Firewire CCD cameras, and an
IMU. The IMU signal and the Firewire camera signal are
transmitted via optical fiber to the surface. An onboard 12V
battery provides power to the trinocular unit. Figure 5(b)
shows raw data obtained with the sensor during recent field
trials at a coral reef off Barbados. In Figure 5(b) the data has
been rectified in order to aid in stereo-based depth recovery.

The trinocular sensor has two operational modes. The first
allows the cameras to operate at 640x480 grayscale resolution
at 30fps, while the second collects images at 640x480 RGB
colour images at 15fps.  The drop in frame rate is due to
bandwidth limitations on the 1394a bus.

Prior to operation the intrinsic and extrinsic camera
parameters are estimated using Zhang’s camera calibration
algorithm[16] using an underwater calibration target. The
appropriate homographies are then applied to each image,
rectifying the left-right camera pair to ensure horizontal
epipolar lines and the left-bottom pair is rectified to ensure
vertical epipolar lines.

A coarse-to-fine trinocular stereo algorithm based on
[Mulligan] is used to obtain dense 3D depth maps for each
time step.  Figure 3(b) shows typical results from the
trinocular stereo algorithm. As the 3D structure of individual
frames they are integrated together using invariant image
features and the 6DOF IMU data.

 IV. DISCUSSION AND FUTURE WORK

In recent sea trials, the physical robot, trinocular vision
system and other components were tested in the Caribbean Sea
near Holetown, Barbados up to a depth of about 45 feet.  Once
the buoyancy was manually adjusted to compensate for the
salinity where the test was conducted, the robot performed
well using nearly-neutral buoyancy.  Gait control was
accomplished manually but teleoperating the robot using only
the forward-mounted cameras proved to be a challenge.  In
ongoing work we will be adding both aninclinometer readout

(a) The Trinocular-IMU Sensor

(b) Rectified Imagery, Disparity Map and Reconstructed
3D Mesh of Coral growing on a sunken barge.

Figure 5. The Trinocular sensor package: (a) The sensor
shown partially removed from its aquatic housing, the
sensor package consists of three firewire CCD cameras,
and an IMU. Data from the CCD cameras and the IMU
are encoded onto an optical fiber cable and transmitted to
the surface via an optical fiber cable.  A 12V onboard
battery provides power. (b) The recovered 3D surface and
the rectified imagery that was used to obtain the recovered
surface.



and more sophisticated telerobotic control modes to improve
manual controllability.

The vehicle was able to exhibit the full range of swimming
motions, as well as the previously-tested walking behaviors
demonstrated on the RHex family of robots.  Swimming under
the control of visual servo control was demonstrated to be an
effective control paradigm even in water with limited
visibility. Initial tests indicated that the vehicle was able to
follow a cooperative free-swimming driver.  The tradeoff
between proximity to a diver, safety, and robustness is an area
for future work.  In addition, in preliminary tests of
amphibious operations the vehicle was able to make the
transition from walking to swimming and vice-versa, although
this entails skilled manual control and many technical issues
remain to be considered.

The trinocular sensor package was tested on both naturally
occurring and man-made underwater structures (wrecks and
other structures) at different depths and under different
environmental conditions. Aquatic snow and other particulate
matter provide challenges for traditional stereo algorithms, and
work is currently underway to investigate how to detect and
reject invalid matches that occur due to these effects.

One of the key challenges of the project is the extension of
the SLAM philosophy (Simultaneous Localization and
Mapping) into motion in three dimensions, with robot pose
depending on six degrees of freedom. Much of the SLAM
research so far has been restricted to three-dimensional
manifolds, either planar or topographic surfaces, with robot
pose depending on three degrees of freedom. Odometry
information of the same nature as in terrestrial robots is
difficult to obtain in the underwater domain, so one has to rely
instead on an accurate dynamic model of the underwater robot
combined with inertial sensors and sensors of external fields
(gravity, earth's magnetic field) to come up with differential
position estimates for mapping. Furthermore, GPS
information, which is available to outdoor robots, is not
available underwater, so the absolute position of the
underwater robot needs to be constrained by its relative
position with respect to surface vessels with access to GPS
signals. The key sensing modality for mapping in this project
is vision, aiming towards smaller scale mapping than that
based on sidescan sonar.
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