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This paper presents a new sensing modality for multirobot exploration. The
approach is based on using a pair of robots that observe each other, and act in
concert to reduce odometry errors. We assume the robots can both directly sense
nearby obstacles and see each other. The proposed approach improves the quality
of the map by reducing the inaccuracies that occur over time from dead reckoning
errors. Furthermore, by exploiting the ability of the robots to see each other, we can
detect opaque obstacles in the environment independently of their surface reflectance
properties. Two different algorithms, based on the size of the environment, are
introduced, with a complexity analysis, and experimental results in simulation and

with real robots.
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1. Introduction

In this paper we discuss the benefits of cooperative localization during the
exploration of a large environment. A new sensing strategy is used in order to
improve the accuracy of the position estimation of each robot and hence the
accuracy of the ensuing map. The robots explore the environment in teams of
two; each robot is equipped with a robot tracker sensor that observes the other
robot and reports its relative pose. The observing robot is using the position
of its partner in order to update the estimate of its position. Our approach is
sufficiently robust to be able to cope with environments that may have uneven
or slippery terrains, or whose surface reflectance properties are not well suited to

conventional sensors.
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Conventional approaches to robotic mapping and navigation typically as-
sume environments of rather limited size. Most existing approaches that func-
tion with real robots neglect issues like optimality and computational complexity.
Further, the sensing techniques used to both explore the environment and posi-
tion the robot often make rather optimistic assumptions about the environment
such as: diffuse visual reflectors, substantial reflectivity. In practice, surfaces
may either be specular (mirror-like) reflectors or be hard to detect due to low
reflectance. Furthermore real terrains may have frictional properties that make
large-scale odometry unreliable.

We deal with these issues in two ways, based on a polygonal approximation
to the environment and the detection of convex (reflex) vertices. First, the two
robots always move in such a way that they can see each other. More precisely,
while one robot stays still the other robot moves, hence mapping the area swept
by the line connecting the two robots as an area of free space. If an obstacle is
located between the two robots, they can not see each other, and thus detect the
obstacle. Second, the use of the other robot as an intelligent landmark decouples
the odometry error from the environment. In other words, the moving robot
localizes itself with respect to the stationary robot, thus improving its pose esti-
mate independently of the floor conditions in the environment. The presence of
reflex vertices is critical since it is these reflex vertices that determine the occlu-
sion of regions of the environment. We use a pair of robots observing each other
to build a map and circumvent problems of object visibility. The exploration
strategy depends on the scale of the environment. When areas of free space are
larger than the range of the robot tracker then a trapezoidal decomposition is
used in order to guide the exploration. If the environment is small enough that
it can be covered by the robot tracker then a triangulation of the environment is
used.

In practice, a non-polygonal environment can always be described using a
polygonal approximation where the number of segments depends on the fidelity
of the approximation. Such an approximation can be readily computed so that
it is either conservative in the sense that the interior of the approximated free
space is assured to be free, or it can be designed to be accurate in a least-squared
sense, so that for a given number of vertices in the approximation the discrepancy
between the polygonal model and the actual environment is minimized [34,28].

The paper is structured as follows. In Section 2 we present an overview of
previous work in mapping, localization and multi-robot applications. In Section
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3 we present the fundamental ideas in our approach of cooperative localization.
In Section 4 we present an outline of the exploration algorithm used for mapping
environments with large areas of free space. Section 5 contains the outline of
the algorithm used in environments where the two robots could stay in visual
contact if an obstacle is not interfering. Section 6 covers the complexity analysis
for the two algorithms, both the mechanical complexity and the computational
complexity are examined. In Section 7 we examine experimental results from
simulation and from laboratory experiments with real robots. Section 8 deals
with extensions of the previous algorithms to more than two robots. Finally,

Section 9 presents our conclusions.

2. Background
2.1. Mapping

Mapping via exploration is a fundamental problem in mobile robotics. The
different approaches to mapping could be roughly divided into two categories:
theoretical approaches that assume idealized robots and environments without
uncertainty, and practical approaches that contend with issues of a real envi-
ronment. The theoretical approaches provide lower bounds for the exploration
problem while the practical approaches produce algorithms that operate in envi-
ronments under uncertainty. Many algorithms have been proposed that explore
the interior of a polygon or a collection of polygons, under the assumption of
perfect sensing and dead reckoning: the resulting map consists of a collection of
linked lines [47,46,56,51,13,14,36]. Another approach is to construct a graph like
map that would encode the topological structure of the explored environment
[23,19,20,17,38,53]. Real world applications have also been proposed that take
into account the uncertainty of the sensors. The first approaches centered on
the exploration of an unknown world using a single sensor such as vision, sonar
or a laser range finder [11,27,5,67,41]. Subsequently data from different sensors
were fused into a map in order to improve the efficiency and the accuracy of
the map [21,1,66,12]. Thrun et al. proposed a novel approach combining an
occupancy grid with a topological map in order to construct a reliable map for
a mobile robot exploring an office like environment. Thrun’s algorithm is based
computationally on a Partially Observable Markov Model [64,63].
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2.2. Estimation Theory

During the exploration of the unknown environment, the robots maintain a
set of hypotheses with regard to their position and the position of the different
objects around them. The input for updating these beliefs comes from the various

“ optimal estimator” [31] needs to be employed

sensors the robots posses. An
in order for the mobile robots to update their beliefs as accurately as possible.
More precisely, the position of an obstacle observed in the past should be updated
every time more data become available (a process called smoothing). Moreover,
after an action the estimate of the pose of the robot should be updated, based
on the data collected up to that point in time (a process called filtering).

Kalman filtering [31,10] is a standard approach for reducing the error, in
a least squares sense, in measurements from different sources. In particular, in
mobile robotics, Smith, Self and Cheeseman provided a framework for estimating
the statistical properties of the error in robot positioning given different sets of
sensor data [60,61]. A variation is based on Extended Kalman filtering (EKF),
where a nonlinear model of the motion and measurement equations is used [42,
16]. A least squares fit provides a faster alternative to EKF but with less precise
modeling of the kinematics and sensing [7,35]. Kurazume proposed the use of
multiple robots, equipped with a sophisticated laser range finder, in order to
localize, using some of them as movable landmarks [40,39]. The team of mobile
robots was implementing a swarm behavior, using each other for localization.
The fact that two robots could see each other was not used to infer that the
space between them was empty.

2.3. Dead Reckoning

Dead reckoning is the procedure of modeling the pose (position and head-
ing) of a robot by updating an ongoing pose estimate through some internal
measures of velocity acceleration and time [9,22]. In most mobile robots this is
achieved with the use of optical encoders on the wheels and is called odometric
estimation. The estimate of the pose of the robot is usually corrupted with er-
rors resulting from conditions such as: unequal wheel diameters, misalignment
of wheels, finite encoder resolution (both space and time), wheel-slippage, travel
over uneven surfaces [9]. The process of correcting the pose estimate is referred
to as localization.
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2.4. Localization

There are two major approaches to localization of a mobile robot. For
both approaches a variety of sensing methodologies can be used including com-
putational vision, sonar or laser range finding [22].The first approach is to use
landmarks in the environment in order to localize frequently and thus reduce the
odometry error [9]. A common technique is to select a collection of landmarks
in known positions and inform the robot beforehand [30,43,32]. Another tech-
nique is to let the robot select its own landmarks according to a set of criteria
that optimize its ability to localize, and then use those landmarks to correct
its position [6]. The second approach to localization is to perform a matching
of the sensor data collected at the current location to an existing model of the
environment. Sonar, and laser range finder data have been matched to geomet-
rical models [42,44,45,68,48,50], and images have been matched to higher order
configuration space models [3,26] in order to extract the position of the robot.
Borenstein suggested a two-part robot that would measure more accurately its
position by moving one part at a time [8]. Also, Markov models have been used
in order to describe the state of the robots during navigation [37].

The existence of clearly identifiable landmarks is an optimistic assumption
for an unknown environment. Even in man-made environments, the cost of main-
taining labels in prearranged positions may be prohibitive. Moreover, in large-
scale explorations the robot may have to travel a large distance (larger than its
sensor range) before being able to locate a distinct landmark.

2.5. Multiple robots

As mentioned earlier the multi-robot approach has both advantages and
disadvantages over a single robot approach. Motion planning [62,2,69,24,33] and
performing simple tasks such as box pushing and parcel delivery [49,18,65,29] with
multiple robots have been studied extensively. In general, most prior methods
assume complete information or neglect mapping.

Exploration using multiple robots is characterized by techniques that avoid
tightly coordinated behavior [4,55,15]. In earlier work multiple robots used each
other to localize when the luck of land marks made it otherwise impossible [25].
No previous work has considered the use of localization among the group members
using each robot’s neighbors to correct the pose estimate during mapping in order
to remove uncertainty from the resulting map.
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3. Cooperative Localization

Since sensing is being used to correct pose estimation errors, the major
source of error in the localization of the robots is the inaccuracy of the “robot
tracker” sensor that is used to update/correct the position of the moving robot
relative to the position of the stationary one. Therefore, if the two robots start
with one stationary robot in an initial position P4y, then the moving robot
could localize itself with respect to that position, (see figure 2a). Note that,
in practice, information from both sensing and odometry is combined using a
probabilistic framework.

There are three potential sources of information for the localization of the
moving robot. First, the odometry measurements Xodom(t) provide a base es-
timate of the moving robot’s position (with high uncertainty ¢,). Second, the
different objects in the environment, when sensed from different positions, could
provide updates in the robot position [48,64]. Finally, the robot tracker pro-
vides pose measurements Xtmck (t) relative to the position of the stationary robot
X stat(t). In practice, over large scale environments, the position of moving ob-
jects changes over time and they cannot provide safe position updates. On the
other hand the estimate of the robot tracker is influenced by the uncertainty in
the position of the stationary robot o5 plus the error of the tracker measurement
Xirack (t). The accumulation of uncertainty in the position of the stationary robot
depends only on the number of role exchanges the two robots had. Consequently,
over large open spaces where the odometry error grows without bound the mov-
ing robot could always reference back to a stationary landmark (a role that can
be played by the second robot). In general the optimal way to (linearly) com-
bine two information sources is to weight them as a function of their standard
deviations. This is, in fact, the essence of the Kalman filter (an optimal estima-
tor under appropriate conditions). Thus we compute a net pose estimate as in
Equation 1.

A~

X(t) _ Og (Xt'rack (t) + Xstat(t)) n UoXodom(t)
05+ 0, o5 + 0o,

3.1. Tracker implementation

A variety of sensing technologies could be used for the robot tracker. Our
implementation of the robot tracker is based on visual observation of a geomet-
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ric target on the robot [24]. Alternative implementations use retroreflectors or
laser light striping. Our actual robots are also equipped with such alternative
technologies.

Each robot is equipped with a camera that allows it to observe its partner.
The robots are both marked with a special pattern for pose estimation. The first
part of the pattern is a series of horizontal circles (in fact these are cylinders and
they project into almost linear pattern in the image). This allows the robot to
be easily discriminated from background objects: the ratio of spacing between
the circles is extremely unlikely to occur in the background by chance. Thus, the
presence of the robot is established by a set of lines (curves) with the appropriate
length-to-width ratio, and the appropriate inter-line ratios. The second compo-
nent of the pattern is a helix that wraps once around the robot. The elevation of
the center of the helix allows the relative orientation of the robot to be inferred
(see Figure 2a, 1). In practice, this allows the robot’s pose to be inferred with an
accuracy of a few centimeters in position and 3 to 5 degrees in heading.

Figure 1. Robot Tracker: (a) The raw image of the moving robot as observed by the robot
tracker. (b) The helical and cylindrical pattern detected in the image.

By mounting the observing camera above (or below) the striped pattern
of the other robot, the distance from one robot to the other can be inferred
from the height of the stripe pattern in the image, due to perspective projection
(scaling of the pattern could also be used). The difference in height between the
observing camera and the target can be selected to provide the desired tradeoff
between range of operation and accuracy. One advantage of the helical target for
orientation estimation is that it functions correctly even at very large distances
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(although with reduced accuracy, of course) !.
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Figure 2. (a) The visual robot tracker system with the camera mounted on one robot and
the helical target pattern mounted on the second robot. (b) Calibration data for the distance
estimation relating observed image position to actual distances.

3.2. Experimental results for the Robot Tracker

The accuracy of the visual tracker is shown in Table 1. While the rela-
tionship between the appearance of the target and the actual distance can be
computed analytically, this would presuppose an accurate knowledge of the cam-
era parameters. In order to relax this requirement, as well as to accommodate
potential deviations from our ideal camera model, we use experimental calibra-
tion data to relate observed target positions with actual ranges. Calibration data
relating the projected image and the distance estimates is shown in Figure 2b.
It is possible to estimate distances between roughly 180 and 450 cm with the
camera, configuration used in this experiment, although accuracy degrades with
increasing distance (due to decreased image resolution).

! Note that constraints due to specific task (such as mine sweeping) can sometime introduce

additional constraints on the maximum inter-robot separation or optimal sensor geometry.
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Distance Accuracy 1.5cm/pixel
Orientation Accuracy 1.3°
Table 1

Accuracy of simple visual tracker
3.8. Ezxploration with the Robot Tracker

Our mapping strategy exploits standard sensing technology in a new way.
The two robots maintain an uninterrupted line of visual contact between them.
When the moving robot proceeds along a trajectory, the line of visual contact
sweeps a wedge defined by the lines connecting the stationary robot position to
the initial and final positions of the moving robot (see Figure 3) and the trajectory
of the moving robot. If an obstacle obstructs the line of visual contact the moving
robot backtracks and then proceeds to map around the interfering obstacle. This
permits the robots to measure objects with reflectance properties that would be
unmanageable with traditional sensors (like laser range finders).

Moving Robot
Initial Position

\ Swept Area
Stationary

Moving Robot
Robot

Final Position

Figure 3. Area covered when one robot moves and the other one is stationary.

4. Exploration of large areas

In [57] we introduced an algorithm for exploring an area of size much larger
than the sensing range of the robots. In environments consisting of large areas
of open space (eg. warehouses, docking areas, open fields) it is quite common
for the robots to be unable to follow a wall or to detect any landmarks. In such
environments the moving robot is using the stationary robot as a portable marker

for relocalizing and mapping. Different motion strategies are examined for the
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complete mapping of the environment. The core idea of the algorithms is the
mapping of an area of free space by one moving robot while the other robot is
stationary. The purpose of the algorithm described below is to provide the order,
in which the free areas are going to be explored, without duplication and ensuring
full coverage of free space. In a bottom up description of the algorithm there are
the following operations. One robot moves and sweeps the line of visual contact
across the free space, thus mapping a single region of free space. Then the two
robots exchange roles in order to explore a chain of free-space areas which forms
a stripe; a series of stripes are connected together to form a trapezoid. Finally,
the entire collection of the trapezoids provides the trapezoidal decomposition of
the entire free space — a complete spatial decomposition of the interior of the

environment.

4.1. Outline of the trapezoidation algorithm

The proposed algorithm is based on the trapezoid spatial decomposition
of a polygon [52,54]. A top down description of this algorithm is illustrated in
Figure 4a-d. More specifically, the two robots explore the world using a trapezoid
decomposition of the free space as their guide, as can be seen in Figure 4a. Each
trapezoid is mapped completely before the two robots proceed to the next one.
The order in which the trapezoids are mapped is given by a depth-first traversal
of the embedded graph (see Figure 4b). Every trapezoid corresponds to a vertex
in the graph; vertices corresponding to adjacent trapezoids are connected with
an edge in the graph. The sensing range of the robot tracker provides a limit on
the space that can be explored at any single time. Consequently if a trapezoid
is larger than the range of the robot tracker then it is broken down into stripes
with a width that depends on the sensing range R (see Figure 4c).

The exploration of a single stripe can be accomplished using different motion
strategies. At the top of Figure 4d, two different motion strategies are displayed.
One obvious approach (Strategy A) is, in each exchange, for one of the robots to
move on a straight line (dotted line in figure 4d) sweeping (and hence mapping)
a triangular region. The optimal strategy (Strategy B) is, in each exchange, for
one of the robots to traverse the two chords shown as dashed lines in figure 4d,
sweeping a diamond shaped area. The moving robot travels across the first chord
and at an angle /2 changes heading and follows the second chord (see Figure
4d).
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Figure 4. A top down description of the Trapezoidation algorithm. (a) The environment is
divided into trapezoids. (b) The order in which the trapezoids are mapped is given by a traversal
of the Dual Graph. (c) Each trapezoid is further divided into stripes with a width proportional
to the sensing range R. (d) Each stripe is covered by areas of free space one next to the other.
Each area of free space is explored by the motion of a single robot. Different motion strategies

can be used, and the size of the area is controlled by the angle 6.

Strategy A is simpler, and requires a smaller number of changes in direction,

but unfortunately, the width of the stripe (d) produced is suboptimal (d < R),
and thus a larger number of stripes is needed in order to cover the same area.




12 Toannis Rekleitis et al. / Multi-Robot Collaboration for Robust Exploration

Strategy B is optimal in terms of path traveled over area covered (see Appendix
A) because at any single time the width of the stripe covered (d) is the maximum
possible (d = R). At the bottom of Figure 4d, the mapping of free space is
presented over a single exchange. Angle 6 is an input parameter, that can be
chosen to minimize a cost as a function of 8. In the case of reflex corners one
trapezoid splits into two new trapezoids, and the two agents decide which branch
of the embedded graph to follow.

When a series of explored regions are linked to each other as the exploration
progresses, different types of stripes are created. In the case of the coverage of
a triangular area, the two robots travel in parallel lines separated by d, and the
stripe mapped has the same width d. In the case where each robot covers a
diamond area, the trajectory of each robot would be a zig-zag line creating a
stripe with width R (equal to the sensing range of the robot tracker). A series
of stripes connected together (lengthwise) map a single trapezoid. At the end of
each stripe the two robots follow the walls and reposition themselves to explore

the next stripe.

5. Exploration of small areas

In environments where the two robots can maintain visual contact and effec-
tively track each other across any open space a different strategy is employed. In
[58] we presented an algorithm for mapping the interior of such an environment.
The size of the area should be small enough to be covered by the range of the
tracker sensor. Both robots use a traditional range finder in order to detect and
circumnavigate obstacles during the exploration. In addition, each robot has a
robot tracker sensor that is used to detect interfering obstacles when the line of
visual contact is broken. The exploration strategy is based on a triangulation of
the free space.

5.1. Qutline of the triangulation algorithm

The exploration algorithm is based on the following idea. At any single
time one robot is positioned at a vertex (corner) of the environment operating
as an intelligent landmark, while the other robot moves along the perimeter of
the environment maintaining visual contact with the stationary robot (see Fig.
5). More precisely, as the moving robot follows one wall of the environment,
it “sweeps” the line of visual contact across the triangle defined by the corner
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where the stationary robot is positioned and the two ends of the wall. Thus, the
robot establishes the position of the wall and the occupancy status of the swept
free space inside the triangle. The two robots progressively map the environment
by dividing it into triangles of free space, thus constructing a triangulation of
the environment. Both robots run the same exploration algorithm, taking turns
between (a) moving, thus mapping the free space, and (b) being stationary, thus
providing a fixed localization reference for the moving robot 2. First, a few defi-
nitions are presented, then, the major operations of the algorithm are discussed
and finally, an outline of the exploration algorithm is presented.

Interior of the Polygon The free space of the environment where the robots
explore.

Polygon Vertex The corner where two walls meet.

Reflex Vertex A Polygon Vertex with its internal angle (the angle in the interior
of the polygon) strictly greater than 180 degrees.

Internal Diagonal A line segment connecting two polygon vertices completely
contained in the interior of the polygon.

Map A set of triangles residing exclusively in the polygon, which cover com-
pletely the interior of the environment (polygon) without overlaps ( Triangula-
tiom).

Unfinished Triangle is a triangle that is not completely mapped, in other
words, one of the wall sides is not fully explored.

Internal Triangle is a triangle constructed by three internal diagonals of the
polygon. The corresponding Dual Graph Verter has degree three.

Dual Graph A graph (V,€) such that every vertex v; € V corresponds to a
triangle T;, and an edge e;; € £ between two vertices v;,v; exists iff their
triangles T;, T} share an internal diagonal.

Open Edge is an edge in the dual graph that connects a mapped triangle with
an Unfinished Triangle.

Degree of a triangle is the degree of the corresponding vertex in the dual graph,
and is equal to the number of triangle sides that are internal diagonals of the

polygon.

2 In the following we assume no three vertices are collinear. If not, it would involve a minor but

tedious change to the algorithm.
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As mentioned earlier the basic operation is the mapping of a triangle of free
space as the moving robot travels along one (or two) sides of each triangle. After
the triangle is mapped it is included in the map and the corresponding node is
added to the dual graph. Internal diagonals that separate fully mapped triangles
from unexplored (or partially explored) areas (unfinished triangles) correspond
to open edges in the dual graph; these open edges guide the next step of the
exploration (which triangle to map next). The exploration continues as long as
there are areas of free space to be mapped and the line of visual contact between
the robots is uninterrupted. Adjacent mapped triangles form a chain of nodes
in the dual graph which ends either in an internal triangle (where there is a
bifurcation), or, at a triangle with degree one (where two of its sides are walls,
as in the top left triangle in Fig. 5f). One instance where the exploration halts
is when a triangle of degree one is fully mapped. In that case, the two robots
search the dual graph and select the closest open edge, then they travel to the two
ends of the corresponding diagonal and resume the exploration.

The second instance where the exploration stops is when the line of visual
contact is interrupted. There are four distinct cases where the line of visual
contact is interrupted (see Figs. 5a,b,c,e). In these cases the moving robot
cannot continue its previous course and it has to make a decision where to move

next in order to maintain visual contact with the stationary robot.

Case 1: The stationary robot is located at a non reflex vertex while the moving
robot reaches a reflex vertex. If the moving robot continues to follow the next
wall then the line of visual contact is interrupted (see Fig. 5a). In this case the
two robots simply switch roles, the moving robot sends a signal to the station-
ary robot to start exploring and then becomes stationary and the stationary
robot (which was waiting, see Algorithm 3) continues the exploration.

Case 2: During the mapping of a triangle a reflex vertex located between the
two robots interrupts the line of visual contact (see Fig. 5b). First, the par-
tially mapped triangle is stored as an unfinished triangle. Then, the moving
robot travels towards the stationary robot until the reflex vertex is encountered
and mapped. Consequently, an internal triangle is constructed defined by the
reflex vertex and the first internal diagonal of the unfinished triangle (see Fig.
5b, Algorithm 2). The internal triangle is connected with three triangles the
previous fully mapped triangle, and two unfinished triangles located at the two
sides of the reflex vertex (see Fig. 5b).
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Case 3: Both robots are located next to reflex corners and any motion along
the unexplored walls would result in a break of the line of visual contact (see
Fig. 5c). In this case, the moving robot explores in a direction perpendicular
to the internal diagonal between the two reflex vertices until a wall and then
a vertex is encountered (see Fig. 5d). An internal triangle is created from the
newly found vertex and the two reflex vertices, and two unfinished triangles
are attached to it on the two sides of the newly mapped vertex (see Algorithm
2). Then the exploration continues in the unfinished triangle that is closer to
the robots.

Case 3: During the exploration an occluding edge interrupts the line of visual
contact (see Fig. 5e). This is a subcase of the occluding reflex vertez case where
the stationary robot is placed next to the edge adjacent to the occluding vertex.
It is treated differently in order to eliminate redundant traveling. The two
robots exchange roles and the previously stationary robot receives a command
to explore only up to the occluding reflex verter and add the triangle to the
map. Then the two robots exchange roles again and continue the exploration.

These four cases cover all possible configurations of interruptions in the line
of visual contact. An outline of the algorithm is presented in Algorithm 1.

Occluding
ef|

Figure 5. Thick line represent walls, dashed lines represent unexplored walls, grey area is

explored free space, dashed lines inside the grey are are internal diagonals. Line of Visual

Contact interrupted: (a) Case 1: The stationary robot is at a non-reflex vertex and the moving

robot encounters a reflex vertex that would interrupt the line of visual contact (b) Case 2:
Occluding Vertex between the two robots.
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while Dual Graph contains Open Edges do
while (No Occlusion) AND (Dual Graph has Open Edges) do
Assign closest Open Edge to Unfinished Triangle
Explore Unfinished triangle
end while{Occlusion has occurred Or branch of Dual Graph is completed}
if Occlusion is of Case 1 then {One Robot at reflex vertex, Fig. 5a}
SIGNAL(OtherRobot,Continue){ Exchange role with the other Robot.}
WAIT {see Algorithm 3}
else if Occlusion is of Case 2 then {Occluding Vertex between the two
Robots, Fig. 5b}
Mark current position as a temporary Polygon Vertex
repeat
Go Towards the Stationary Robot
until Occluding Polygon Vertex Encountered
Map the Occluding Polygon Vertex
CreateInternal Triangle() {see Algorithm 2}
else if Occlusion is of Case 3 then {Both Robots at Reflex Vertices, Fig.
5c,d}
while New Polygon Vertex Not Found do

Explore perpendicular to the line of visual contact

end while
Map New Polygon Vertex
CreateInternal Triangle() {see Algorithm 2}

else if Occlusion is of Case 4 then {Occluding Edge, Fig. 5e}
SIGNAL(OtherRobot,ExploreOccludingEdge)
WAIT {see Algorithm 3}

end if

if Current branch of Dual Graph ends then {see Fig. 5f}
Traverse the Dual Graph towards the closest Open Edge

end if

end while{The Map is complete}

Algorithm 1: Triangulation Algorithm; functions are noted as underlined text,
comments are inside curly brackets “{}”.
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Figure 6. Same notation as in Fig. 5. Line of Visual Contact interrupted: (a) Case 3: Both

robots are placed at reflex vertex such that any further exploration would break the line of visual

contact (b) The moving robot explores and creates an internal triangle. (c) Case 4: Occluding

Edge next to the stationary robot.(d) One branch of the dual graph is completely mapped, the
robots would proceed to the nearest open edge of the dual graph.

function CreatelnternalTriangle()

Create an Internal Triangle with two Open Edges

Add node to the Dual Graph

Connect the Unfinished Triangle to the Internal Triangle
via the first Open Edge

Continue the exploration following the second Open Edge

Algorithm 2: Create Internal Triangle
6. Complexity Analysis

In order to analyze the complexity of the exploration we need to distinguish
between two qualitatively different stages of exploration, the local and the global
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function Wait()

repeat
Check Condition from Signal

until Condition is set

if Condition=ExploreOccludingEdge then
Map the Occluding Edge up to the next corner
Create Triangle containing the occluding edge
Add Triangle to the Map.
SIGNAL(OtherRobot,Continue)
WAIT()

end if

Algorithm 3: Wait

exploration phases. The local exploration strategy guides the path traveled for
the mapping of a convex area of free space (a triangle, or a trapezoid). The global
exploration strategy provides the order in which these areas are explored.

6.1. Complezity of Global Exploration

As noted earlier, the exploration strategy is guided by the dual graph of
the spatial decomposition used. More specifically, during the trapezoidation al-
gorithm the two robots explore one trapezoid at a time and then proceed to map
the next trapezoid by following the dual graph in a depth first traversal. Every
trapezoid is “traversed’ twice, a first time when is being mapped and a second
time when the two robots pass through in a shortest path traversal to visit the
rest of the graph. When the triangulation algorithm is used, the dual graph
is attached to the triangles. The two robots visit every triangle in a depth first
traversal, thus passing through at most twice (the first time exploring, the second
moving through towards the unmapped parts of the environment). In general the
complexity is proportional to the number of edges of the polygon, also the size
of the environment and the range of the tracking sensor.

6.2. Complezity of the exploration over a single exchange

During the exploration of a triangle (triangulation algorithm) the stationary
robot is located at a corner of the environment while the moving robot is con-
strained to move along the wall it is mapping. If it moves in a different trajectory
then some areas would be unmapped. When the moving robot has completely
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Covering Triangle Area | Diamond Area
XYy 2 Xy 2
Path length Pp N+For | YVt TRaz
# of exchanges Ejy % Siie % 'si,: z
# of turns Ry 2RC§S% 25 + 2R2);1:,%
Table 2

Analytical complexity of two different path curves.

map one wall, the triangle defined by the location of the stationary robot and
the two corners of the wall is added to the map of the environment.

In contrast, when the trapezoidation algorithm is used, the moving robot
could move through different trajectories as long as it stays inside the sensing
range of the stationary robots. Different motion strategies present certain advan-
tages and disadvantages. More precisely, there are different factors that affect
the cost of the exploration depending on the configuration of the different robots.
Every time the two robots exchange roles, the moving robot uses the stationary
one to correct its position and then the stationary one starts exploring. Each
of these operations introduces a time delay, therefore the number of exchanges
increases the cost. In addition, every time one of the robots has to change di-
rections the rotation adds to the total cost. Finally, the total path traveled has
to be taken into consideration. For the two different motion strategies (diamond
area covered, and triangular area covered) examined earlier, the total mechani-
cal effort can be computed as shown in Table 2. The cost is calculated for the
exploration of a rectangle X by Y, when the robot tracker sensor range is R.

6.2.1. Cost Analysis

The factors that affect the cost of the exploration are: the number of ex-
changes, the total path traveled and the number of rotations. For a specific team
of robots the cost of the above factors could be determined beforehand. Specifi-
cally, the total cost of the exploration could be computed as the weighted sum of:
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the total path traveled (P) multiplied by the cost of path traveled (C} in sec/m),
the total number of exchanges (Ejp) multiplied by the cost for an exchange (Ce
in sec/exchange), and the total number of rotations (Ry) multiplied by the cost
of rotation (C, in sec/rotation). The factors (Cp, Ce,C;) could be determined
before the exploration, while the sensing range (R) of the robot tracker is known.
Equations 2 and 3 provide the total cost Cyytq(6) as a function of angle 6 for the
exploration, using diamond area and triangular area covering respectively (Fig.
4d), of a rectangle X x Y as a function of 0, using the cost estimates and the
analytical results from table 2. The optimal 8 for the exploration is the one that
minimizes Cyytq1(6).

Ctotal,diamond (9) =C PG +C, E0 + CT'R9 =
= Gp(2Y + 2207) + (gine) + GO + ) (2)
S 7

R2s R2 sin %

Ctotal,triangle(e) =C, PB +C Ea + C, R@ =
= G2y + XX, )+C( 2XY )+ (52

sm

S
Rcos 3

For one of our robots, a Nomad 200, the cost factors, for a typical exper-
imental arrangement are: C, = 4.1 sec/m, C. = 7 sec/exchange, C, = 4.65
sec/rad. The optimal angle @ is 180°, for the diamond area motion strategy. For
the same costs the optimal angle 8 is 90° for the triangular area motion strat-
egy. As expected the total cost is lower for the motion strategy that covers the
diamond area than that which covers a single triangular area.

7. Experimental Results

Experiments were conducted in simulation, using the robotic simulation
package RoboDaemon ® and in the lab. Experiments in the lab were used in order
to validate the improvement in the localization based on the robot tracker over a
pure odometry approach. In simulation a variety of odometry error models were
applied in order to simulate different surfaces as well as different model worlds
were explored.

3 RoboDaemon is robot control software employed at McGill University. It allows us to control

the robots in the lab and also to perform experiments with simulated robots. The main
advantage is that the simulated robots can be replaced by the real ones with no overhead.
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7.1. Trapezoidation Algorithm

7.1.1. Simulation

In order to estimate the improvement in position estimation when the two
robots collaborate a series of experiments were performed. The two robots ex-
plored a single stripe, exchanging roles 120 times. Odometry error estimates
gathered during experiments with an RWI robot were used to model the error in
dead reckoning. The accuracy of the helix vision tracker was used to model the
accuracy and the range of the robot tracker. The same path was traveled twice,
and the error in positioning was measured. The first time no cooperation took
place between the two robots, while the second time every time the two robots
exchanged roles they corrected their position estimates. In the case of no coop-
eration the two robots are following the same trajectory as before but without

correcting their position estimate.

Robot 0 Robot 1

[N
@

No Cooperation|

B P e
o N b
T o © O

raosiuoning krror in cm
rosiuoning krror in cm
=]

N A O

Cooperation

Cooperation

20 40 60 80 100 12 20 40 60 80 100 121
# of exchanges # of exchanges

(a) (b)

Figure 7. Exploration of one stripe (120 exchanges). The results are from a single run.

From the results shown in figures 7(a,b), it is clear that the cooperative
exploration strategy improves performance substantially over the non-cooperative
strategy. It is worth pointing out that in the previous experiment no systematic
error was included in the model, such as would occur on an inclined floor where
with every translation a small amount of slippage would occur. It is clear that
the cooperation of the two robots helps to maintain reduced localization error

and improves mapping robustness.
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7.1.2. Real Robots
A pattern similar to the one traveled by the two robots was traced by one

robot while the other one was stationary.

i T

@‘ca"‘e“) @(Camera)

(a) (b) (c)

Figure 8. (a) Path of the moving robot as estimated by the visual tracker. Measurements taken

in different position validate the accuracy with precision of roughly 2cm. (b) The desired path

of the moving robot. Although the robot can driven along this path using open-loop control,

dead reckoning error lead to a substantial discrepancy. (c) The error in positioning from the
odometry estimations.

In order to measure the accuracy of the map, a few locations along the
path were selected and the position of the robot was estimated relative to the
stationary camera. The accuracy of the positions estimated by the camera-based
tracker was between 1.0 and 2.3 cm. As can be seen in Figure 8a,b the inaccuracy
is largely due to rotational error and thus it is more evident near the sides of the
rectangle. Figure 8c presents the absolute odometry error as it accumulates over
the distance traveled by the robot.

7.2. Triangulation Algorithm

Different sets of experiments have been conducted in order to validate our
approach. Experiments in simulated environments (using the RoboDaemon pack-
age, see Figure 9) provided verification in a variety of model worlds. In addition,
laboratory experiments with the real robots helped us estimate realistic values
for the uncertainty of the sensors and the odometry.
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Figure 9. The paths of the two robots after the completion of the exploration.

7.2.1. Simulation

Extensive experiments have been contacted using the robotic simulation
package RoboDaemon. The simulations allowed us to specify different parameters
such as odometry error, robot-tracker uncertainty and the complexity of the
explored environments. Figure 9 presents two typical environments used in the
simulations (approximate area 144 m?) and the path the two robots followed.
Figures 10 and 11 present the exploration of two model environments; these
examples illustrate different aspects of the triangulation algorithm. Figures 10 (a-
i) present snapshots of the exploration as perceived by Robot 0, Robot 1, and the
resulting map at different instances of the exploration. The two robots exchange
roles when the line of visual contact breaks. In the first row an early phase of
the exploration is presented. The two robots have exchanged roles twice and
Robot 0 explores five new triangles. Consequently, in the second row Robot 1 is
exploring again (Figure 10d) and then the two robots exchange roles and Robot
0 explores three additional triangles. The third row illustrates the final stages of
the exploration where Robot 1 explores the final parts of the environment using
Robot 0 as a reference.

In Figure 10, in the last row, the early phase of the exploration is presented,
using pure odometry for positioning. The dashed line depicts the real path of
the robot and the solid line the odometry based paths. In small worlds and/or
cluttered environments multiple observations of the same object could be used in
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order to correct the positioning of the moving robot. As can be seen in Figure
10(j,k), the accumulation of uncertainty causes the map to be distorted although
local comnsistency is maintained. These distortions could lead over time to a map
that is not even topologically sound.

The results from the exploration of a different environment are presented in
Figure 11. The presence of reflex vertices that interrupt the line of visual contact
introduce internal triangles and therefore branches in the dual graph making the
exploration more complicated. The results are presented in three columns. The
first column presents the trajectory of Robot 0 and the environment as perceived
by that robot. The second column presents the trajectory of Robot 1 and its
perception of the world. Finally, the third column presents the constructed map
up to that point in the exploration. The light grey disk represents the position
of the stationary robot and the black disk the location of the moving robot in
the figures of the moving robot. In the first row, Robot I is stationary (after
mapping two triangle), while Robot 0 is mapping the right branch of the first
bifurcation. The line of visual contact was broken by a reflex vertex, thus, a
internal triangle was built (node with degree 3), and two branches were started.
Each branch consists of one open triangle with a gateway to unexplored space.
In the second row, Robot 0 is stationary (after adding two more nodes in the
embedded graph, and Robot 1 is mapping the second occluding vertex. Again an
internal triangle is created (node with degree 3), and Robot 1 is mapping the left
branch of the bifurcation. In row three the environment is mapped for the area
that corresponds to the branch being explored, with the last triangle having two
walls and one internal diagonal (node with degree 1). Figure 11i presents the
map up to that point where the last wall (not fully explored yet) is marked with
a thiner line. Then the two robots proceed to the closest gate (following a depth
first traversal of the embedded graph). Row four demonstrates the exploration
of Robot 0 of the final branch (right) of the second bifurcation, while Robot 1
is stationary at the second occluding vertex. Finally, the fifth row illustrates
the final step of the exploration. Robot 0 is stationary at the first occluding
vertex encountered, while Robot 1 maps the final triangle. In Figure 1lo the
completed map is shown. The dual graph is presented in the figures of the third

row superimposed on the metric map.
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(a) (b) (c)

@ (k)
Figure 10. First three rows: Exploring an unknown environment, figures b and e illustrate the
trajectory of Robot 0. Figures a,c,d,f,gh illustrate the trajectory of Robot 1. Finally the third
column ( Figures c,f,i) presents the map up to that point. Last row: Close-up on the build up of
the uncertainty when only odometry was used. The solid line is the odometry based estimation
of the robots while the dashed line is the real position of the robots (see text Section 7.1.1).
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(m) () (0)

Figure 11. Exploring an unknown environment with two occluding vertices: The first

column illustrates the trajectory of Robot 0. (a,d,g,j,m). The second column illustrates the

trajectory of Robot 1 (b,e,hk,n). Finally the third column presents the map up to that point
(c,fi,1,0). (See text Section 7.1.1).
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7.2.2. Physical Validation

In order to demonstrate the effectiveness of the proposed approach with real
robots, several preliminary exploration tests were carried out in our laboratory
in workspaces of area roughly 16 m?. This comparatively small testbed allowed
us to control various factors such as inhomogeneities in the terrain as a function
of trajectory and obtain ground truth data. Using this testbed we compared
the time, accuracy, and robustness of different exploration strategies. In our
experimental arrangement the role of the stationary robot is played by a tripod
mounted camera at the same height as one of our robots. The camera was
placed next to the first wall. This allowed us to more reliably and repeatably
verify ground truth. It is worth noting that our strategy works equally well with
homogeneous robots and with heterogeneous robots, eg. one robot has a camera
the other robot has the pattern.

A laser pointer pointing straight down to the floor has been placed on top
of the moving robot in order to accurately mark its current position on the floor.
This setup allowed us to measure the displacement from the initial position after
the completion of the tour.

Figure 12b shows the actual path of the moving robot, the odometry-based
estimate of position, and the tracker-based estimate. The final displacement
from pure odometry estimates is approximately 15cm with an orientation error
of 15°. The tracker estimate has approximately 1.3cm error. This corroborates
our assumption that joint exploration and localization using a “tracker” can lead
to much more robust modeling than odometry alone.

8. More than two robots

The above strategies could be extended by the addition of more robots. By
forming a chain of robots that “sweeps” through the free space the range of the
tracker is multiplied by the number of robots, thus, covering a much larger area
in a single sweep. In addition, every robot could refer to more than one station-
ary robots therefore, gaining higher precision in its measurements. Two motion
strategies are proposed with respective advantages. Using the first motion strat-
egy, during the exploration only one robot moves while the stationary ones that
are still visible are used as landmarks. This method ensures minimum uncertainty
build up as, at any given time, the moving robot would correct its odometry error
with respect to more than one landmarks. Using the second motion strategy, the
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Figure 12. (a) The average error during the exploration of 50 triangles (over 100 experiments)

without and with cooperative localization. (b)The path of the robot after the completion of the

exploration. The outside solid line marks the position of the walls the moving robot followed.

The actual path of the robot is the solid line, the odometry based estimate of position is the
dotted line, while the tracker estimate is the dashed-dotted line.

robots divide into two teams and they interchange roles: while the first team is
moving the second team works as a set of landmarks. This method explores an

environment in less time but less robots are available as landmarks.

8.1. Triangulation Algorithm

The triangulation algorithm can be extended by using more than two robots.
The first robot is stationary at a corner, the N** robot moves along a wall of the
environment, while the other robots form a chain connecting the stationary to the
moving one, thus extending the range of the robot tracker. The robots between
the first and the last could move by using an odd-even strategy for minimum

time, or one at a time for maximum accuracy and robustness.

8.2. Trapezoidation Algorithm

As mentioned earlier an immediate extension of the trapezoidation algorithm
can be obtained by the addition of more robots. When the two robots sweep one
stripe of width d then by adding an extra robot (50% increase) we could double
the area swept. In the original algorithm, every robot has only one device to
track the other robots; in this case a scheduling algorithm should be applied in
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the order the robots are moving. If we add a second tracking device, one robot
could track robots on both sides, allowing a parallel cover of double the area at

the same time.

o Robot
« Lineof sight

——>»  Robot movement

([ J Robot
—»— Robot movement

(b)

Figure 13. (a) Exploration of a stripe with 5 robots. The robots move at time T1,T2,Ts, and
T4. (b) Exploration of a stripe with 3 robots, covering space in diamond areas. The robot move
at time T1—T19.



30 Toannis Rekleitis et al. / Multi-Robot Collaboration for Robust Exploration

In the example of Figure 13a we use five robots (Ryp ... R4) that are posi-
tioned in two lines at time Tj. First the robots Ry, R2, R4 move forward, tracked
by R; and Rj3 accordingly, mapping the four triangles as free space(time T1),
then both Ry, Re track R;, which moves forward (time 7%); while Ry, Ry track
Rj3, which moves forward (time T5. Then it is time for the other column of robots
(Ro, R2, R4) to advance marking more area as free space (time 73). The tracking
is marked with the dotted lines of sight. The same pattern is followed as the two
columns alternatively advance, marking a stripe of free space much wider than
that possible with only two robots.

The second part of the algorithm concerning the exploration strategy for the
whole space and the order in which the trapezoids should be explored is identical
to the previous algorithm where only two robots were used.*

Moving only one robot at a time can also be easily extended to multiple
robots. The robots start exploration aligned with each other in a straight line,
at distance R from each other, where R is the tracker sensor range. The first
robot and the last robot in the line act out the algorithm for two robots, while
the role of the other robots is simply to provide a communication path between
them. As such, the first robot in the line remains stationary, and the rest of the
robots are moving such that the distance between two robots is never more than
R. The width of the explored stripe is (n — 1) R, where n is the number of robots.
A pictorial representation of this strategy can be seen in Figure 13b, the robots
Ro and Rg sweep a stripe using the diamond pattern and the Robot R; stays
between them.

9. Conclusions

In this paper, we have described an approach to exploring and navigating
in large scale spaces where positioning and obstacle detection might be difficult
using traditional methods. In fact, such difficulties are likely to arise in many
real-world environments.

Our approach is based on exploiting a line-of-sight constraint between two
robots to achieve exploration with reduced odometric error. This approach can
also cope with obstacles with hard-to-sense reflectance characteristics. Different
algorithms were proposed depending on the scale of the environment. Where the

4 There is a possible speedup by splitting up the group in order to explore different parts in
critical points, but that would in the end spread the robots too thin.
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environment is small enough so that the robots can see each other from any two
points on its boundary that have clear line of sight between them (i.e. they are
never unable to see one another simply because they are too far away), then the
triangulation algorithm is applied. If the environment is larger than the range
of the robot tracker sensor then the trapezoidation algorithm is used. An open
issue is how to automatically detect such situations efficiently during exploration
and switch strategies, or switch back-and-forth between strategies based on local
properties of the environment.

We are currently planning large-scale experiments of this strategy in a real
physical environment. One difficulty that we must address is how to obtain
accurate ground-truth to validate the performance of our approach over a large
terrain. A standard practice is to simply observe the consistency and clarity
of the resulting map and use this as a performance metric [64]. We are also
considering combining this approach with more traditional localization methods
(such as using landmarks [59]).
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11. Appendix A: Optimality Proof

Every time one robot is moving it covers a small area of free space, by alter-
nating roles the two robots try to cover the whole area of free space. Therefore,
the total area covered is the sum of the areas covered every single exchange minus
the overlapping covered area. This is equivalent with the tiling problem where
every small area covered by the motion of one robot represents a tile, and the
objective is to cover the free space with tiles without leaving any space uncovered.
We present an optimal tiling of the space, under certain assumptions.

Assumptions: Every tile is contained in a wedge of radius R and angle 6.

We consider only tilings defined by the line of sight, between the two robots,
sweeping across the space. One end of the line is fixed (the position of the
stationary robot) and the other follows the trajectory of the second robot. The
length of the line of sight is bounded by the sensing range R.

Lemma 1: A tiling in which no tile with an angle more than 180° is used, can
replace any arbitrary tiling, without increasing the complexity.

61>180 8:1=180

62 =180

Figure 14. Equivalence among two pairs of tiles.

Proof: If a tile with an angle more than 180° is used then, at least another tile
with an angle less than 180° is necessary to cover the remaining free area. The
combination of the two (or more) tiles is equivalent (in terms of complexity) to
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two (or more) tiles of angle 180° or less (as in figure 14). The number of exchanges

stays the same and the total path traveled is 27 R for a 7R? area.

Lemma 2: When two tiles are connected along the arc part of their wedges, the
most efficient curve (in terms of path length) is the common chord they share.

Figure 15. Shortest path along the arc connections.

Proof:  Given two tiles (eg. PLAB and P, AB, see Figure 15), the shortest dis-
tance between A and B is given by the straight line connecting A and B. If the
two robots travel in a a different path (than a straight line) then the length of
the path traveled would be larger than AB.

Lemma 3: When the robots exchange roles they produce tiles (areas of free
space) that are connected along the rays that specify the boundaries of the wedges
(see Figure 16).

Figure 16. Sequence of adjacent tiles.
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Proof: Let two robots explore a series of areas of free space by exchanging roles.
Without loss of generality, let robot number one move inside the corresponding
wedges as it covers the paths, AC, CE, EG, GI while robot number two moves
across BD, DF, FH. That happens because after the motion of one robot and
the mapping of free space the two robots have to exchange roles and the other
robot would continue mapping the free space starting from the common line of
sight. Therefore each two neighboring tiles (such as ACB, BDC) are going to be
connected along the common ray / line_of sight (BC) that connects them when
they exchange roles.

Lemma 4: Assume a sequence of N tiles (a stripe) connected as in Lemma 3
with varying angles (§; 1 <14 < N) for each wedge. There exist an angle 6’ such
that: a sequence of N tiles with the same angle €' is going to cover an equal or
larger area for the same length of the path traveled.

Proof: The total length of the path traveled for the two stripes is a sum of the
sub-paths P% and P? and is given in Equation 4:

N N
S pli=%"p"
=1 i=1

which is equivalent to (4)
4Rsin — = ) 4Rsin—
=

We are going to prove that the sum of the areas covered with different angles
is smaller or equal to the area covered by the same angle (see Equation 5).

N N
S A<M A
=1 =1

N b N,
R%sin — < R*sin —
2 My < 2 M

Removing the constant terms from both sides Equation 4 and Equation 5

became:
Given N angles 8; : i =1,N. If
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N

0; o'
Zsin— = N sin — (6)
=1 4 4

Then

N 9. N /
Zsiné SZSiHE (7)
=1 =1

e For N=2, we solve equation 6 for §' (N=2):

.0 . O .0
smz—l—smz—Zst@

0’ inf 4 ginf
sin? — sin 7 + sin
4 2
For any pair (61, 602) where 6; € [0, 7] then AA = 2sin %/ — (sin %1 + sin %2) >0

(see the graph of AA in figure 17).

0.35

0.3

0.25

0.2

0.15

0.1

0.05

200

Figure 17. Graph of AA for 0 < 8; < 180°, AA > 0 for any pair of angles

As AA > 0 then

sine—1 —I—sine—2 < 2sin—l 9)
2 2~ 2
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Q.E.D. for N=2.

e For N > 2 we examine two cases, first N = 25 and then the general case.

x For N = 2K .
Let the angles be in pairs of (6g; 1,02 : 1 <4 < (N/2) = 2K=1). Then for

2K—1

every pair (69;_1,02;) calculate the angle 6} : 1 <7 < as in the case for

N=2 (Equation 10).

’ O2i—1 02
0; sm = tsin

in 10
sin 1= 2 (10)
From Equation 9:
2K 2K—1
0; 0o 02;
zsinEZ = Z (sin 2Z2 ! -l-sin%) <
=1 1=1
(11)
28in -t = —z
Z sm Z 5
Therefore:
§ sin 2] <2 ZKZI sin i (12)
=1 2 - =1 2

= 2K~1 angles (0!). Repeat the calculations for the 8! angles

Now we have M
finding M’ = 252 angles (0!). Solving for pairs of angles (6);_;,0%; : 1 <
i < (N/4) = 2K=2). Calculate from Equation 13 all the angles 6 : 1 < i <
2K—2

0} 0,
. 07 sin -2~ +sin
sin Z’ = 4 (13)

From Equation 9:
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2K71 0’ 2K72 01. 9’.
Z: siné = 2 (sin 2;_1 + sin %) <
=1 1=1
(14)
2K72 2K72
oY oY
Z 2sin =+ =2 Z sin -+
. 2 . 2
=1 i=1
From Equation 11 and Equation 14
oK 0, 9K—1 o 9K —2 o
. (] . ] . 3
sin— < 2 sin =+ < 2x2 sin 15
Loing <P L smg SBxE g "

(K)

Repeating the previous steps K times. For 6%/ that satisfies Equation 15

Equation 17 is true.

2K 2K71 2K72
9 o' 1" (K)
Zsini:Qzsinzz4zsin%:NSin9T (16)
=1 1=1 1=1
2K 2K71 2K72
0; 6! 6! 6(%)
in— <2 in= <4 in=*%+ <...< Nsin — 17
ZZ:lst_ Z:lsm2_ Z.:lemZ_ < sm2 ( )

Q.E.D. For any N in the form: N = 2%

For N # 2K:

Let K € N such that 26 < N < 2K+l Then for the §; : 1 < i < N
solve Equation 18 for the 6’. And we want to prove that the inequality in
Equation 19 is true.

Zsin% = Nsin— (18)

Zsini < Zsin§ (19)

Consequently, by adding in both sides of Equation 18 (M sin %') where M =
(2K+1 — N), Equation 18 becomes Equation 20.
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42
N
0; o' o' o' o'
Zzzlsinzz—i-MsinZ:NsinZ+MSinZ:2K+lsinZ (20)
Now the number of terms in each side of Equation 18, is 2€*! and from
Equation 17 we get:
N
0; o' o'
Zsin—z +Msin—- < (N+ M)sin—- &
i=1 2 2 2
(21)
N
0; o'
Y sin < Nsin—
. 2 2
i=1
Q.E.D.
Theorem 1: For any tiling, and with optimality criterion the shortest path for a

given number of exchanges, the optimal tile is the union of two isosceles triangles
(equal edges are R), with the angle of the two equal edges equal to 8/2 , where

0 the wedge angle (see figure 18).

TN Maximum Range ——— Lineof Sight/
Tilesides.

Actual Path

Figure 18. Positioning of the wedge stripes.

Proof: From lemma 3 and for the same angle 6 for every wedge, the wedges
are going to be arranged into stripes as in figure 16. Moreover given a constant
number of tiles the angle 6 is set. When one stripe is positioned next to its



Toannis Rekleitis et al. / Multi-Robot Collaboration for Robust Ezploration 43

neighbor, there must be complete coverage, with minimum overlap. The optimal
positioning of the wedges is displayed in figure 19, such that the curves are com-
plement each other. From lemma 2, the optimal path is that given in figure 18,
by connecting with straight lines the overlapped areas.

Figure 19. Optimal tiling.



