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abstract

Accurate localization for underwater robot is

a big challenge in the mobile robot commu-

nity. We will use acoustic and visual-based ap-

proaches to solve the problem. In this paper,

we focuses on the artificial landmark visual-

based localization. The robot carries the cam-

era to localize its position by calculating the

camera’s viewpoint through looking at the land-

marks. The position of landmarks is known in

a world-centered coordinate system (WCCS). A

method is presented in this paper to recover the

camera’s viewpoint with minimum three feature

points and a single image from one camera. Two

steps are used in this paper: first step is to calcu-

late the feature points’ 3D coordinates in a cam-

era centered coordinate system (CCCS); second

step is to obtain a closed-form solution through

the geometric transformations to map the 3D

points from CCCS to WCCS. The algorithm is

robust and efficient. It uses the fewest feature

points required so far to deal with the same prob-

lem.
Keywords: localization, landmark, robot naviga-

tion

1 Introduction

The Autonomous Underwater Robot, also called
Autonomous Underwater Vehicle (AUV), usually

works in the unknown environment for sea bed sur-
vey, salvage, ocean species monitoring, and disaster
operation. In order to ensure it works properly, it
is important to know its position with respect to a
map or landmarks at known positions.

Figure 1 The robot underwater off the Barbados west
coast

There are two main kinds of approaches for the
localization of AUV: acoustic and visual method.
The acoustic method [7] uses hydrophone, long
baseline (LBL), short baseline (SBL) or ultra short
baseline (USBL) system to measure the time flying
of sound which generated by the AUV, and then
to determine the position of the AUV. The visual
method can be classified into two types: there are
methods that explicitly recover 3D information us-
ing stereo and others that use a single camera.

In our robot (Fig. 1), we will use both of the
acoustic and visual methods for its localization. On
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the working area, a set of buoys (Fig. 2) will be set
on the surface of the water. On each of the buoys,
GPS and compass will be mounted to measure its
position and orientation; and four hydrophones and
four landmarks (LED) will be mounted, which have
the coordinates in a world-centered coordinate sys-
tem (WCCS) Pi = (xi, yi, zi)T ,(i = 1, · · · , n). Lo-
calization estimates from both the visual and the
acoustic system will be fussed by the consistent
pose estimation (CPE) system.

Figure 2 The buoy for the robot localization

In this paper, we introduce the method for the
localization of underwater robot using landmarks
with a single image. In robot working area, we
can not put too much buoys in the ocean environ-
ment. The reasons are that too many buoys will
affect the proper working of the robot, and are ex-
pensive. So we will use two buoys for our system.
In most of cases, due to the limitation of the view
angle, the camera can take only one buoy’s image.
So we must find a solution for the 3D localization
with the smallest number of visual landmarks.

The problem can be stated formally as fol-
lows: Given a set of m control points whose 3-
dimensional coordinates are known in a world co-
ordinate system, and given an image (taken by a
calibrated camera) in which some subset of the m
control points are visible, determine the location
from which the image was obtained.

Many researchers have extensively investigated
the problem in the previous two decades. Most
of the approaches attempting to solve the problem
can be classified into two groups: (1) closed form
solutions [3, 1], and (2) numerical solutions [2, 8, 6].

We use two steps to solve the problem: The fea-
ture points in camera centered coordinate system
(CCCS) can be derived from the camera model and

their geometric constraints; and these 3D points
based on CCCS can be transformed to real world
coordinate system (WCCS) by a series of geometric
transformations. The transformation matrix dur-
ing this process includes orientation and position
of the camera. The algorithm is very simple, ro-
bust, and efficient. The most significant contri-
bution in this paper is that we introduce a novel
approach, geometric transformation, to solve the
problem with as few as three feature point corre-
spondences.

This paper is organized as following: in section
2, a critical survey related to the 2D to 3D corre-
spondence is presented; in section 3, we derive the
feature point recovery based on CCCS; in section
4, a new approach is introduced to mapping the
feature points from CCCS to WCCS; in section 5,
experimental results are presented.

2 Literature Survey

The vision based localization of the robot is
equivalent to the external camera calibration prob-
lem. The solution for the problem can be classified
into two approaches. One is using stereo or se-
quence images to establish constraints, and then
get the pose of the camera. Roth [10] and Madjidi
[9] proposed a method of computing camera po-
sitions from a sequence of overlapping images ob-
tained from a binocular/trinocular camera head.

Se & Lowe [11] solved the local and global lo-
calization for the mobile robot by using the SIFT
(Scale Invariant Feature Transform) features. Jang
[5] proposed a robot self-localization using artifi-
cial and natural landmarks by computing the local
Zernike moments.

Another approach is using a single image and fa-
miliar environment (landmarks) to solve the cam-
era pose problem. Early work was done by Fischler
and Bolles [3] who found the closed-form solution
by using 3 point correspondences, but there are
four solutions. Further information is need to select
the right solution. In the book Robot Vision, Horn
describes an approach based on a set of non-linear
equations among the camera viewpoint and feature
points based on the basic camera model and per-
spective projection [4]. Correspondences between
three points pairs between image and world coor-



dinates are the basic requirement to get the pose of
camera. Marquardt-Newton iterative method can
be used to solve the equations.

Liu et al. [8] examined alternative iterative ap-
proaches by using line and point correspondences.
They can solve the problem with only three line or
point correspondences, but the three Euler angles
must be less than 300.

In this paper, we will use at least three point cor-
respondences to solve for the camera pose (position
and orientation). The method used in this paper
is different from the previous method [4, 3, 8]. It is
shown to be more stable respect to the initial value
than the previous methods, and even efficient and
simple.

3 Feature Point Recovery in the CCCS

Assuming there are feature points Pi =
(xi, yi, zi), i = 1, · · · , n in the WCCS, which are
not collinear. By using the calibrated camera to
take an image which includes all the feature points,
their corresponding image coordinates can be taken
(ui, vi), i = 1, · · · , n. From the basic camera model,
we have the equation as

ui =
fx′i
z′i

vi =
fy′i
z′i

(1)

here f is the focal length of the camera, i =
1, · · · , n, and x′i, y′i, and z′i are the points in the
CCCS corresponding to features.

In equation (1), we know that for every feature
point correspondence, it is possible to get two con-
straints, but there are three unknowns. For three
feature points, there exist six constraints and nine
unknowns. Three additional constraints are needed
to solve for the unknowns.

Figure 3 Invariant parameters between the two
coordinate systems

By exploiting the relationship between (x′i, y
′
i, z

′
i)

and (xi, yi, zi), we note that both of them represent
the same feature points in the 3D space, but from
different coordinate systems: (x′i, y

′
i, z

′
i) is based on

CCCS, while (xi, yi, zi) is based on WCCS. The
distance between any two feature points is inde-
pendent of the coordinate system in which they are
described (Fig. 3). Therefore the distance between
any two feature points dij in WCCS is as same as
d′ij in CCCS. So if we use the distance between the
feature points, we have

dij = d′ij ; i, j = 1, · · · , n, and i 6= j (2)

where

di,j =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (3)

So it is possible to solve for the unknowns in the
system, which are the coordinates in the CCCS,
with only three correspondent points. Since this is
a nonlinear system of equations, we will use New-
ton method to solve it. The initial value can be
taken from the landmark’s coordinates in WCCS
directly.

An alternative approach is to cast the problem
as an optimization problem, where the objective
function is:

F =
n∑

i,j=1,i6=j

(dij − d′ij)
2 (4)

If we take
minx′

i,y
′
i,z

′
i
F (5)

subject to the constraint equation (1). We can
solve this optimization problem with Newton-
Lagrange method to the appropriate results.

4 Closed-Form Solution for the Ge-
ometric Transformation between
CCCS and WCCS

From CCCS to WCCS, there exists an Euclidean
transformation. If we use P̃i and P̃

′
i to express

the homogenous coordinates of Pi and P
′
i , the Eu-

clidean transformation can be expressed as

P̃
′
i =

[
R t
0T 1

]
P̃i (6)

where R is the 3 × 3 rotation matrix, and t is the
translation.



Our proposed method is based on the geomet-
ric invariant of the feature points [12]. It is pos-
sible to solve the mapping problem with as few as
three points. If there are more than three points,
the basic requirement is that all the points are on
the approximately planar. If the number of feature
points Pi is 3, they define a planar patch; but if the
number of feature point Pi is bigger than 3, sup-
posing it is n, it is possible to get a n connected
un-overlapped planar patches as following.

Assuming Pc is the center of mass of the set of
Pi, we have

Pc =
1
n

n∑
i=1

Pi (7)

By using the centroid point Pc and two adjacent
point Pi and Pi+1, we can define a triangular patch.
Over all, we can get n triangle patches which inter-
sect at point Pc. For each of these triangle patches,
we can get its normal vector Ni. The average nor-
mal vector of all the patches is defined by

N =
1
n

n∑
i=1

Ni (8)

We can get the centroid point P ′
c and normal

vector N ′ for the set of feature points P ′
i in the

same manner.

Figure 4 Geometric transformation from CCCS to
WCCS in 3 point correspondences case

The set of constructed planar patches for each
feature point set Pi and P

′
i (i = 1, · · · , n) can be

expressed by Ω and Ω
′

in 3D space, respectively.
We consider the three point correspondences as an
example, in Fig 4. Three steps, one translation
and two rotations, will be used to transform the

plane Ω
′

to plane Ω. First, the plane Ω
′

is trans-
lated from its centroid P

′
c to Pc, the centroid of the

plane Ω (Fig 4.b). Suppose the translation ma-
trix is Mt, then the new plane can be expressed by
MtΩ

′
. Second, the plane MtΩ

′
is rotated with Pc

as pivot around the axis N × N
′
until N

′
reaches

N . Here the rotation angle can be expressed by ϕ.
After this process, the normal vectors of both

patches Ω
′

and Ω coincide (Fig 4.c). Both of the
patches have the same centroid and normal vector,
but different orientation on the (common) plane.
So it necessary to carry out a second rotation.

The normal vector N of patch Ω is the axis for
the second rotation, and the pivot of the rotation
is the centroid Pc of patch Ω. The angle for the
rotation must be decided. For every feature point
correspondences Pi and P ′

i , we can get a rotation
angle 6 PiPcP

′
i = θi, i = 1, · · · , n, so we can get the

average rotation angle as

θ =
1
n

n∑
i=1

θi (9)

It must be pointed out that in most of the cases,
θi 6= θj , where i = 1, · · · , n, and i 6= j. This is
because of the noise of measurement data and op-
timization approximation in the previous section.
So it is necessary to take the average of all the
available angles.

Assuming the translation matrix is Mt, the first
rotation matrix is expressed by Mr1, and the sec-
ond rotation is expressed by Mr2. So the total
transformation from plane Ω

′
to plane Ω is that

M = Mr2Mr1Mt (10)

The matrix M is actually the homogenous ma-
trix of external camera calibration. So we got the
closed-form solution for rotation matrix R3×3 and
its correspond translation t3×1.

The translation part of the transformation is

tx = M(1, 4) ty = M(2, 4) tz = M(3, 4) (11)

We know that the Euler angles and the rotation
matrix have the following relationship [2]

R =

 c2c3 s1s2c3 + c1s3 −c1s2c3 + s1s3

−c2s3 −s1s2s3 + c1c3 c1s2s3 + s1c3

s2 −s1c2 c1c2


(12)



where c1 = cosφx, c2 = cosφy, c3 = cosφz,s1 =
sinφx, s2 = sinφy, and s3 = sinφz. So we can get
the Euler angles directly from the following formu-
las if there is no Gimbal lock state.

φy = arcsin(M(3, 1)) (13)

φz = arccos(M(1, 1)/cos(φy)) (14)

φx = arccos(M(3, 3)/cos(φy)) (15)

The algorithm of the camera viewpoint recovery
is summarized in Fig. 5.

Input:
(1) camera parameters
(2) coordinate of landmarks
Output: the pose of the camera (robot)
1 compute the feature points based on CCCS
2 mapping between CCCS and WCCS
2.1 translation from P ′

c to Pc

2.2 rotation Ω′ around N ×N with angle ϕ
2.3 rotation with new Ω′ around N with angle θ
2.4 get the transformation matrix M
3 calculate results
3.1 take the location from M directly (eq. (11))
3.2 calculate orientation from M by (eq. (13-15))

Figure 5 Procedure for the algorithm

5 Experimental Results

5.1 Experiment in Lab

Figure 6 Image which was taken from lab

We calibrated the camera in the air using a stan-
dard calibration pattern. We then used the calibra-
tion pattern as our artificial landmark set, and we
solved the camera localization problem for several
camera positions (Fig. 6).

By using our algorithm, we take only 3 outmost
corners as landmarks. Table 1 shows the recovered
camera poses in comparison with the actual pose.
In all eight cases of the experiment, the position es-
timation error, measured by the distance between
the actual and estimated point, is less than 4cm.
It must be pointed out that in the first step of our
method, we just use the feature points’ coordinates
in WCCS as the initial value, and it converges in
all the cases.

Table 1 The actual pose of camera recovered by the algorithm (cm)(er. – estimation position error)
Our Method Method in [4]

No ideal point estimated point er. estimated point er.
1 (-400,97,84.5) (-404.1,95.1,83.5) 3.1 (-371.2,98.1,78.7) 28.5
2 (-500,47,84.5) (-501.7,25.0,97.6) 2.4 (-517.4,35.9, 81.8) 15.8
3 (-500,-103,84.5) (-498.6,-114.0,91.0) 2.0 (-493.9,-115.2,87.0) 10.3
4 (-400,-3,84.5) (-403.8,0.3,77.4) 2.3 (-399.1,4.2,85.6) 0.6
5 (-300,-103,84.5) (-299.2,-104.2,88.1) 0.6 (-323.7,-105.6,82.3) 22.0
6 (-300,-153,84.5) (-301.2,-150.7,84.0) 0.1 (-291.6,-143.9,85.3) 11.0

In table 1, we also showed the results from our
implementation of the method described in [4]. We
observe that the method is quite sensitive to appro-
priate initial value for Newton’s method. By using
the result of ”our method” perturbed by a small
amount of noise as the initial value for the method
in [4], it is possible to achieve convergence.

5.2 Underwater experiments

Experiments were carried out in the swimming
pool of Dalhousie University. We calibrated the
camera in the water using a standard calibration
pattern. We then used the calibration pattern as
our artificial landmark set, and we solved the cam-
era localization problem for several camera posi-



tions (Fig. 7).

Table 2 The localization of the robot by this
algorithm (cm)(er. – estimation position error)
No ideal translation est. translation er.
1 (-332, -10.0, 56.8) (-325.3, -9.5, 43.2) 8.7
2 (-332, 17.0, 56.8) (-326.4, 13.8, 35.9) 8.6
3 (-332, 44.0, 56.8) (-328.9, 38.5, 43.1) 5.7
4 (-332, 126.5, 56.8) (-329.7, 112.5, 50.3) 7.8
5 (-332, 209.0, 56.8) (-328.9, 198.3, 47.6) 9.4
6 (-332, 291.5, 56.8) (-326.8, 281.3, 46.8) 11.2

The actual camera position and the estimated
camera position are displayed in table 2. The es-
timation error in the experiment is the distance
between the ideal position and the estimated posi-
tion.

Figure 7 Underwater Image

6 Summary

We have presented a new method for comput-
ing the camera location with as few as three point
correspondences. After the feature points are re-
covered in the CCCS with non-linear method, a
closed-form solution for the Euclidean transforma-
tion between the WCCS an the CCCS can be ob-
tained by geometric transformation. We demon-
strated the performance of the algorithm in both
the air and underwater.This approach is more reli-
able and efficient than previous approaches.
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