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ABSTRACT
In this work, we propose an approach based on analyzing
the spatio-temporal partitions of a system log, generated
by supercomputers consisting of several nodes, for alert de-
tection without employing semantic analysis. In this case,
“Spatial” refers to the source of the log event and “Tem-
poral” refers to the time the log event was reported. Our
research shows that these spatio-temporal partitions can be
clustered to separate normal activity from anomalous activ-
ity, with high accuracy. Therefore, our proposed method
provides an effective alert detection mechanism.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering—algorithms

Keywords
Network Control and Management, Event Log Mining, Fault
Management, Systems Administration

1. INTRODUCTION
Faults and downtime events are routine in the world of

large scale system management. Such faults can in some
situations be fixed with a simple solution like a reboot, if
there is adequate redundancy in the system. In more serious
cases, quick diagnosis and repair are crucial to maintain up-
time requirements and conform to service-level-agreements
(SLAs). Information sources, such as system logs, which
can provide pointers to the failure root cause(s), are crucial
at this point [7]. Furthermore, recent adoption of virtual-
ized cloud computing infrastructure causes systems logs to
be multi-tiered, i.e. disjoint log information is gathered on
multiple physical, and virtual appliances. Due to this fact,
current research efforts have focused on the development of
tools and techniques for the automatic analysis of system
logs [14].
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This work describes our research efforts at developing a
framework for alert detection in system logs, which we call
Spatio-Temporal Alert Detection (STAD). We refer to alerts
as events (or groups of events) in a system log that are symp-
tomatic of failure or require the attention of an administra-
tor. The framework consists of three main steps. Firstly, it
decomposes the contents of a log spatio-temporally. “Spa-
tial”refers to the source of the log event e.g. a node in the su-
percomputer, and“Temporal”refers to the time the log event
was reported i.e. a timestamp. Secondly, it clusters the re-
sultant decomposed units. If the clustering technique used in
the second step is able to produce clusters that group differ-
ent kinds of normal and anomalous activity together, then a
third step is activated to separate the clusters that contain
anomalous activity from those that contain normal activ-
ity, thus effectively detecting the alerts in the anomalous
clusters. The framework can be implemented with limited
user (system/network administrators) input and the meth-
ods used at each step of the framework can be chosen at the
discretion of the user.

In our implementation, we utilize nodehours [9] as spatio-
temporal units. Other spatio-temporal units can be chosen,
the choice is purpose and system dependent. A nodehour
is one hour of log information from a single node on the
network. We utilize entropy based information content for
clustering of the nodehours. The entropy based Nodeinfo
alert detection is already deployed on production systems
[9]. On the other hand, we utilize a rule-based approach
for cluster identification. The main contributions of this
research are: 1.) The basic assumption for entropy based
alert detection is that “Similar computers correctly execut-
ing similar code will have similar logs” [9]. Our work goes
beyond this by assuming that “System logs events which are
produced by similar spatial sources or produced during peri-
ods of similar system activity are likely to be similar”. The
new assumption allows us to extend the entropy-based ap-
proach to groups of dissimilar nodes. 2.) Our system allows
the determination of alerts without resort to the information
content ranking of spatio-temporal partitions. 3.) A novel
feature set for the identification of the anomalous clusters.
The rules employed for identification use these features.

Our evaluations of the proposed technique show that we
are able to detect 100% of all alerts with a false positive rate
of 0.8% in the best case, while achieving a detection (recall)
rate of 78% and a false positive rate of 5.4% on average.
This evaluation was carried out using real-world log data



from four high performance clusters (HPC), which are some
of the fastest supercomputers in the world [10]. These logs
are publicly available from the USENIX Computer Failure
Data Repository (CFDR) and contain approximately 750
million log events in 81GB of text files [15]. The alert states
in these system logs have been previously labelled by the sys-
tem administrators where these HPC systems are deployed
1.

We compare STAD and a version of Nodeinfo [9]. Re-
sults show that the average false positive rate achieved by
Nodeinfo across the datasets is approximately 25% com-
pared to 5.4% for STAD, the proposed system. An analysis
of variance (ANOVA) test (at 5% significance) carried be-
tween the false positive rates achieved by Nodeinfo and those
achieved by STAD show a statistically significant difference
in favor of STAD.

The rest of this paper is organized as follows. We discuss
previous work in Section 2. Section 3 discusses the steps
of the STAD framework in detail. Section 4 and Section 5
discuss observed characteristics and the identification rules,
respectively. Section 6 describes the methodology for eval-
uation and the results are presented in Section 7. Finally,
conclusions are drawn and the future work is discussed in
Section 8.

2. PREVIOUS WORK
Earlier work recognizes the importance of system log events

to automatic system management and autonomic computing
and proposes a 3-tiered data driven approach to discovering
knowledge in system logs [14]. Other interesting approaches
to the use of system logs in system management propose
frameworks that classify system logs events into categories
and the use of temporal information, statistical modeling
and visualization to interpret and find relationships between
the event categories [6, 11].

Specifically, approaches to alert detection vary from sim-
ple approaches that search system logs for message patterns,
which are indicative of previously known failure conditions
[12], to visualization techniques that aid the detection of
alerts manually [6]. Recent computational approaches in-
clude entropy-based detection [9], automatic generation of
classification rules [3], Principal Component Analysis (PCA)
based detection [17], Principle Atom Recognition in Sets
(PARIS) [1] and Finite State Auotmata (FSA) based de-
tection [2]. Moreover, other recent work has attempted to
improve on the Nodeinfo entropy based alert detection tech-
nique [8] by introducing the concept of message types into
the framework and making modifications to its anomaly
scoring mechanism. Entropy based alert detection in sys-
tem logs works by assigning an information content score
to spatio-temporal partitions of an event log. The infor-
mation content scores of the spatio-temporal partitions are
calculated by exploiting the similarity between node sources.
When the spatio-temporal partitions of the log are ranked
based on their information content scores, it is assumed that
the partitions on the top of the list are more likely to contain
alerts. The STAD framework an entropy based approach for
clustering spatio-temporal log partitions. The STAD frame-
work is described in detail in the next section.

1A detailed description of these alert states and how they
were identified can be found in [10]

Table 1: HPC log Data Statistics
System # Days Size(GB) # Events

Blue-Gene/L (BGL) 215 1.21 4,747,963
Liberty 315 22.82 265,569,231
Spirit 558 30.29 272,298,969
Thunderbird(Tbird) 244 27.37 211,212,192

3. SPATIO-TEMPORAL ALERT DETECTION
In this section, we detail the methods and techniques used

in the STAD framework. The STAD framework has three
main steps that are described in the following.

3.1 Spatio-Temporal Decomposition of log events
System logs on large and complex systems would contain

information from several components that make up the sys-
tem. However, a single reported event in the system log is
unlikely to be a good indicator of system state. Strongly
correlated events in the log are generally more interesting
and are better indicators of system state [13].

Previous approaches to finding correlated events in logs
include frequent itemset mining [16, 7], tracking of variables
reported in message types [17] and the PARIS algorithm
[1]. One of the major obstacles to finding correlated events
in system logs is the fact that correlated events may not
always follow each other in sequence in the system logs [16].
To this end, the approach utilized here is the decomposition
of the event log spatio-temporally.

Events in system logs are typically not homogenous en-
tities. Apart from the textual descriptions of the event,
they also contain information about the reporting compo-
nent (source), which could be a hardware and/or software
component, and the occurrence time of the event (times-
tamp). By using the source and timestamp information to
decompose the events in an event log, such that each re-
sultant unit of the event log contains only events from a
single source over a unit of time, we increase the chance
that the events reported in such units are correlated. Any
combination of source and time information can be used for
decomposing the contents of an event log spatio-temporally.
However we utilize nodehours in this work.

3.2 Clustering of Spatio-Temporal partitions
The aim of this step of the process is to place the spatio-

temporal partitions of the event log into partitions based on
their similarity while minimizing the similarity between the
eventual clusters. We utilize an information content based
technique for this step [8]. Clustering using a traditional
distance-based approach is not feasible. The features used in
clustering will be the unique terms(words) that appear in the
log. The number of unique words in a log can easily number
in the millions, leading to the curse of dimensionality. The
information content scores used in our technique are derived
from the terms that appear in the log, after several steps of
abstraction [8]. This simple conceptual clustering technique
exploits the strong clustering of nodehours around informa-
tion content values, which we observed in our experiments.
Our work has shown that these scores provide an accurate
means of finding the clusters without much computation.

We refer the reader to [8] for the details of information
content clustering. The statistics of the datasets utilized to
test the clustering method are shown in Table 1.

The graph in Fig. 1 shows a scatter plot of nodehours from
the BGL-Link category. The BGL-Link category is one of



the functional node categories derived from BGL HPC log
in Table 1. Aside from the fact that the alert nodehours, i.e.
nodehours that contain alert signatures have high informa-
tion content scores (ICS), we also notice a strong clustering
of nodehours around single ICS values. The ICS value is in
a way a hash value for the set of unique message types in a
given nodehour, so we can link a distinct information con-
tent score to one or more sets of unique message type com-
binations. We therefore hypothesize that nodehours with
the same information content score value contain the same
unique set of message types. Therefore information content
scores, which occur frequently, can represent some system
state.
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Figure 1: BGL-Link Category: Scatter Plot of nodehours

(x-axis) vs. information content scores (y-axis). The plot dif-

ferentiates between alert nodehours and normal nodehours.

Nodehours are sorted based on information content score in

the plot.

Our evaluations of the clusters formed from the nodehours
of the functional node categories of the four HPC logs has
shown these hypotheses to be plausible. These clusters cre-
ated via information content clustering showed high inter-
nal cohesion and high external separation. We also observed
that if the signature of an alert type could be found in one of
the nodehours in a cluster then we could predict with 96%
confidence that all the other nodehours in the cluster would
also contain the signature for the alert type. This can be
observed in the Circos [5] visualization of the clustering of
the BGL-Link nodehours shown in Fig. 2. The figure shows
the mapping between the nodehours in the four alert clus-
ters derived using our technique i.e. 1, 2, 3, 4 and the node-
hours known to belong to the five alert categories identified
by system administrators in the log data. This visualiza-
tion shows that all the derived clusters do not contain any
NORMAL nodehours and that a 1−1 or 1−M mapping ex-
ists between the derived clusters and the alert categories i.e.
Cluseter1 → LINKDISC, Cluster2 → LINKPAP & LINKIAP ,
Cluster3 → MONPOW and Cluster4 → LINKBLL. We note
that the LINKPAP and LINKIAP alert categories are simi-
lar. With this observation, alert detection is reduced to the
task of identifying the derived clusters based on the possibil-
ity that they contain alert nodehours. This is what the third
step of the proposed STAD framework attempts to achieve.

3.3 Anomaly based Identification of clusters
This step of the framework involves the separation of the

clusters into two classes; an anomalous class and a normal
class. Once a cluster is determined to be anomalous, all
the nodehours that are part of that cluster are assumed to

Figure 2: Circos-Table Plot showing the mapping between

the administrator defined alert categories and the clusters

produced using the information content clustering technique

for the BGL-Link data set.

contain alerts. As with the other steps of the framework,
any method of separation can be utilized to achieve this.

To carry out the separation of the clusters, we identi-
fied four important characteristics of alerts. These are the
Bursty, Endemic, Epidemic and Near-Periodic properties.
Using these properties, we derive three assumptions about
alert clusters, which can be used in separating them from
normal clusters. By alert cluster, we refer to clusters that
contain a majority of nodehours with alert signatures.

4. CLUSTER SEPARATION
In this section, we first describe the four alert charac-

teristics. Then, we propose three assumptions about alert
clusters based on the identified characteristics. Finally, we
describe the rules based on the assumptions as implemented
in our evaluations.

4.1 Alert Characteristics
Four important alert characteristics are identified. They

are described in detail below. We note that these alert prop-
erties are not mutually exclusive and are not intended to be
exhaustive.

Bursty Property: The bursty property occurs when we
see a significant increase in the number of events over a pe-
riod of time. An example of the bursty property is shown in
Fig. 3. This figure shows the number of events (measured
by size in bytes) produced by a single node (Ln30) on the
Liberty HPC on an hourly basis over a 24 hour period. We
see a significant increase in the number of bytes produced in
the 15th to 18th hours in the logs. Based on the labeling,
there were at least 9 alert types active during this period,
with the R EXT CCISS, R EXT FS IO and R EXT INODE1

types being the major contributors to the burstiness expe-
rienced during this period. The number of bytes produced
by this node drops to zero in the 19th hour right up to and
including the 24th hour. This indicates that the alert that
caused this burstiness, led to a failure of the node. This
graph highlights the importance of alert detection in system
management. The detection of this alert in the 15th hour
would have given administrators a 3 hour window within
which they could have applied remedial action to prevent
the failure of the node that occurred in the 19th hour.
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Figure 3: Bursty Property: Events produced by a single

node at hourly intervals over a 24 hour period.

Endemic Property: The endemic property occurs when
a cluster shows sporadic activity over a period of time and
also shows localized activity at each occurrence. The graph
in Fig. 4 shows the activity of a cluster from the BGL log.
This cluster is associated with the KERNMC alert type. We
can see that occurrences of this cluster type are sporadic
and affect only one node at each occurrence.
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Figure 4: Endemic Property: Localized sporadic activity.

Epidemic Property: The epidemic property on the other
hand occurs when a cluster shows sporadic activity over a
period of time just like in the endemic case but instead af-
fects a relatively large number of nodes at each occurrence.
The graph in Fig. 5 shows an example of another cluster
from the BGL log, which shows the epidemic property. This
cluster is associated with the KERNREC alert type. We can
see that occurrences of this cluster type are sporadic and
affect as many as 2, 000 nodes at each occurrence. The ac-
tivity, though wide spread, does not affect all nodes. The
total number of nodes in the BGL event log category to
which this cluster belongs contains 65,554 nodes.
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Figure 5: Epidemic Property: Sporadic activity that affects

a relatively large number of nodes.

Near-Periodic Property: The near-periodic property
occurs when activity in a cluster occurs at almost regular

intervals. The graph in Fig. 6 shows an example of a clus-
ter exhibiting the near-periodic property. In this example
from the Spirit event log, the cluster seems to occur almost
on an hourly basis, over a period spanning about 4 weeks.
This almost regular rate of occurrence and the frequency
of occurrence is an indication of the near-periodic property.
The cluster shown in Fig. 6 is linked to the R HDA NR and
R HDA STAT alert types.
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Figure 6: Near-Periodic Property: The graph shows very

frequent activity compared to either the endemic or epidemic

types and has an almost periodic rate of occurrence.

4.2 Alert Cluster Assumptions
Based on the aforementioned alert characteristics, we make

the following assumptions for cluster separation:

1. Bursty, Endemic and Epidemic alert types show activ-
ity in relatively few time periods. This implies that the
number of active periods for a cluster type should be
a good indication of whether a cluster contains alerts
or not. A cluster type that is active during relatively
few time periods is likely to contain alerts. This sup-
ports the assumption that alerts are usually infrequent
in an event log. The number of active periods is also
a better measure of frequency than the count of active
nodes or the count of nodehours.

2. Endemic alerts show localized activity each time they
occur. Measuring localized activity in a cluster would
therefore be a good indicator for an alert cluster. A
cluster type that shows a high degree of localized ac-
tivity each time it occurs is likely to contain alerts.

3. Near-Periodic alert types have frequent occurrences
and may or may not be localized. They therefore may
not be captured by the rules above. They, however,
have the property of having close to regular rates of oc-
currence. Measuring the periodicity of a cluster would
therefore be a good indicator of this property. Clus-
ters, which are relatively frequent and show periodic or
almost periodic activity are therefore likely to contain
alerts.

5. IDENTIFICATION RULES
We utilized the assumptions detailed above as a means of

identifying the alert nodehour clusters. To this end, there
are three rules, one for each assumption. Before describing
the rules, we first provide the following definitions.

• Let E be the event log, which we intend to analyze.
Let each temporal period spanned in E be assigned an



ordinal number, n. The first hour is assigned a value
of 1 and every subsequent hour is assigned a value of
n+ 1 relative to its preceding hour, which would have
a value of n.

• We define set C of spatio-temporal partition clusters
derived from E, where ci ∈ C is the ith element of C.

• We define arrays P and S, such that P[i] and S[i] are
the counts of temporal periods and event sources re-
ported in the nodehours in cluster ci respectively.

• For each cluster ci, we define array Qi such that Qi[j]
is the ordinal number of jth temporal period of activity
for cluster ci.

• For each cluster ci, we define array Ri such that Ri[j]
is the count of the number of event sources reporting
activity of type ci during the jth temporal period of
activity for cluster ci.

• |Qi| = |Ri| = P[i] = m

5.1 Identified Rules
First Rule - Active Periods: This rule implements the

first assumption about alert clusters.

1. Letmed per = Median(P), ignoring values where P[i] =
1.

2. For cluster ci, if P[i] < med per, then ci is considered
an alert.

Due to the Pareto property, which is generally true for
statistics involving system logs [16], several values in array
P are = 1. Hence they are ignored in the calculation of
med per. If this is not done, then med per = 1 most of the
time.

Second Rule - Localization: This rule implements the
second assumption about alert clusters.

1. Calculate the average inverse node frequency INFi for
cluster ci using Eq. 1.

INFi =

Pm
j=1

1
Ri[j]

m
(1)

2. Set an average inverse node frequency threshold INT .

3. For cluster ci, if INFi >= INT , then ci is considered
an alert.

The average inverse node frequency metric, which is
described in Eq. 1 attempts to provide a measure for
localized activity. Its values are in the range (0, 1]
and the values close to one indicate localized activity
within the cluster. The graph in Fig. 7 is a scatter
plot of the alert clusters in the Liberty-Compute node
category versus their average inverse node frequency
values. The Liberty-Compute node category is one of
the functional node categories from the Liberty HPC
log detailed in Table 1. Fig. 7 shows that most of the
alert clusters have an average inverse node frequency
value of 1 and therefore are showing the endemic prop-
erty. In our implementation, INT is set to 0.95.

Third Rule - Periodicity: This rule implements the
third assumption about alert clusters.
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1. Calculate the mean time between activity µi for clus-
ter ci using Eqn. 2. µi represents the expected time
between system activity of type ci, if cluster ci was
periodic.

µi =

Pm−1
j=1 (Qi[j + 1]−Qi[j])

m− 1
(2)

2. Calculate the standard deviation STDi from µi of in-
tervals between system activity of type ci using Eqn.
3. We assume that STDi values close to 0 indicate
near-periodic activity.

STDi =

s Pm−1
j=1 [(Qi[j + 1]−Qi[j])− µi]

m− 1
(3)

3. Set a standard deviation threshold STT .

4. For cluster ci, if STDi < STT , then ci is considered
an alert.

Let us set the norm per cnti (normalized period count)

for any cluster ci as P[i]
Max(P)

. The bar graph in Fig. 8 shows

STD for the Spirit-Admin clusters with a norm per cnt
greater than 0.1. The Spirit-Admin node category is one
of the functional node categories from the Spirit HPC log
detailed in Table 1. Clusters with a norm per cnt greater
than 0.1 represent those clusters with relatively high number
of active periods. Cluster 16 with a STD value of approx-
imately 2 is the only cluster that contains alert nodehours.
The adjacent clusters i.e clusters 15 and 16 have STD values
of approximately 1.8 and 4.0 respectively. This shows that
a STD close to zero is a good indicator for an alert cluster.
In our implementation, STT is set to 2.5.
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Since the near-period property requires frequent occur-
rences, we only apply this rule to mid-size clusters, which



is in respect to the count of active periods. We leave out
clusters with large period counts as they are likely normal.
With this in mind, we can set upper and lower bounds for
the norm per cnt and apply this rule only to clusters with
a norm per cnt value, which falls within these bounds. In
our implementation, we set upper and lower bounds to 0.3
and 0.1, respectively. The values were set based on the
Pareto property of event logs. Clusters with mid-sized pe-
riod counts would likely fall within these bounds.

We can now summarize the procedure for identifying a
cluster ci as either an alert or a normal cluster using the
rules above. For any cluster ci, if either of the rules above is
true, it is set as an alert cluster and all the nodehours in it
are set as alert nodehours. If all of the rules are false then
ci is considered alert free along with all the nodehours in ci.
We note that the 2nd rule is not used, when dealing with
a dissimilar node scenario. The average inverse node fre-
quency metric has no value for distinguishing alert clusters
in such a scenario.

6. EXPERIMENTS
The evaluations involved 13 datasets. The 13 datasets

are based on the functional node groups from the 4 HPC
event logs listed in Table 1. Statistics about these datasets
are provided in Table 2. In the table, # Events refers to
the number of lines in the log, # Nodes refers to the num-
ber of nodes in the functional group, # Nodehours refers to
the number of spatio-temporal partitions derived from the
dataset via Nodehour decomposition, # Msg-Types refers
to the number of message types found in the dataset us-
ing IPLoM, % Alerts refers to percentage of spatio-temporal
partitions, which contain alert signatures based on the do-
main expert labeling in the logs, while Similar Nodes refers
to processing methodology used for the dataset. A Y in the
Similar Nodes column indicates that the dataset was pro-
cessed under the assumption that the nodes in this dataset
were sufficiently similar, while an N indicates that the nodes
were assumed to be dissimilar.

The values for all parameters were set as described in
Section 5, except in the case of the med per parameter.
Our implementation calls for the value of this parameter
to be set automatically. We found that the value automat-
ically assigned to this parameter was always in the range
[3, 5]. Based on this observation, we ran experiments for
each dataset where the value of med per was set manually
to values in the range [2, 6], in addition to experiments where
its value was set automatically. We compare the manually
set evaluations against the auto-tune evaluations in the Re-
sult section.

The evaluation metrics used for the experiments are Recall
(Detection) and False Positive Rates. These metrics are
calculated using Eqs. 4 and 5, respectively. The values for
the true positives (TP), false positives (FP), true negatives
(TN) and false negatives (FN) used in these equations were
derived using the binary scoring metric as defined in [9]. In a
dissimilar node scenario, processing is performed on a node-
by-node basis, but during the evaluation the TPs, FPs, TNs
and FNs are summed to provide a single value for Recall
and False Positive Rates for the functional group.

Recall =
TP

TP + FN
(4)

FPR =
FP

FP + TN
(5)

7. RESULTS
For the similar node categories, we note that we were

able to achieve 100% recall in three node categories, BGL-
Link, BGL-Other and Tbird-Other, irrespective of the value
of med per. Also, depending on the value of the med per
parameter, we were able to achieve above 50% recall, with a
single digit false positive rate for all node categories except
the BGL-IO category, see Figs. 9a and 9b. With the BGL-
IO node category only about 8% recall was achieved. The
reason for this performance is that in this node category, ap-
proximately 80% of the alert events are closely correlated to
message type signatures that have entropy based informa-
tion content values, which are less than 0.1. This indicates
an almost equal rate of occurrence across nodes. This ob-
servation is due to the fact that certain error types in this
category are not generated by the individual nodes but by
an IO subsystem. Such errors are then sensed and reported
by all nodes. This means that these errors are attributed to
the wrong source for the entropy based analysis. The high
alert nodehour ratio (38.22%) of this node category further
emphasizes the fact that the alerts in this node category are
unusual. If the results for this node category are adjusted by
ignoring the alerts that show this property, the recall rate
goes up to approximately 60%.

For the dissimilar node categories we were able to achieve
100% recall in two node categories, Liberty-Admin and Tbird-
Admin, irrespective of the value of med per. We were also
able to achieve above 60% recall for all node categories de-
pending on the value setting of the med per parameter.
What is however interesting here is that while we note that
setting the med per = 2 gives us single digit false positive
rates for 4 out of 5 node categories, the false positive rates
here tend to be on the order of about 1.5 times larger than
those experienced with similar node detection. However,
they are still better than what NodeInfo achieves on the
same data sets.

A summary of the results of the evaluation is given in
Fig. 10. In this graph, we select the best case result for
each dataset, from the experiments where the value of the
med per parameter was manually set and compare it with
the result where the value of med per was set automatically.
We also show a baseline false positive rate result using Node-
info. In choosing the best case, a balance between a high re-
call and low false positives was considered. The graph shows
that the overall best case was achieved with the BGL-Link
category with 100% recall at a false positive rate of 0.8%.
The average recall (across node categories) was 78% and 77%
for the manual experiments and auto-tuned experiments, re-
spectively, while the average false positive rate was 5.4%,
6.9% and 25% for the manual experiments, auto-tuned and
Nodeinfo experiments, respectively. An ANOVA test carried
out at 5% significance indicates that there is no statistically
significant difference between the results achieved by setting
the value of med per manually and those achieved by setting
it automatically. A similar test between the baseline false
positive rates achieved by Nodeinfo against those achieved
by the auto-tuned STAD results show a statistically signif-
icant difference. Statistical tests show that STAD achieves



Table 2: System log Data Functional Grouping Statistics
# Events # Nodes # Nodehours # Msg-Types % Alerts Similar Nodes

BGL-Compute 4,153,009 65,554 1,581,845 399 4.2 Y
BGL-IO 400,923 1,024 219,722 49 38.22 Y
BGL-Link 2,935 517 1,395 13 2.37 Y
BGL-Other 191,096 2,167 13,666 97 0.43 Y
Liberty-Compute 200,940,735 236 1,748,865 481 0.29 Y
Liberty-Admin 52,211,676 2 27,162 601 0.04 N
Liberty-Other 12,416,820 6 44,447 510 0.22 N
Spirit-Compute 218,697,851 512 6,648,719 854 0.19 Y
Spirit-Admin 41,847,257 2 26,216 443 3.10 N
Spirit-Other 11,753,861 7 57,532 707 0.25 N
Tbird-Compute 155,403,254 4,514 14.520,204 1,262 0.17 Y
Tbird-Admin 15,306,749 20 100,740 627 0.02 N
Tbird-SM 19,109,810 2 8,859 597 0.00 N
Tbird-Other 21,392,379 1,319 626,030 1,387 0.02 Y

Table 3: ANOVA Test Summary
Treatment F P-Value F crit

FPR-Baseline vs. FPR-Autoset 5.036 0.034 4.259
FPR-BestCase vs. FPR-Autoset 0.003 0.957 4.259
DR-BestCase vs. DR-Autoset 0.817 0.375 4.259

similar results without the manual determination of k for
Topk analysis, as employed by NodeInfo. This is a signif-
icant achievement of our method. In the determination of
alerts through the information content ranking of spatio-
temporal partitions by a Topk analysis, it may be difficult
to choose a value for k, which can be used on all datasets.
The ANOVA results are summarized in Table 3.
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Figure 10: The best case results for the experiments where

the med per parameter is set manually and the results where

its value is set automatically.

8. CONCLUSION AND FUTURE WORK
In this work, we proposed and evaluated a Spatio-Temporal

alert detection framework on the system logs of four HPCs.
The results show that we could on average detect 78% of all
alerts while maintaining a false positive rate of 5.4%. In the
best case, 100% recall at a false positive rate of 0.8% was
achieved.

The FPRs achieved by our experiments are not uncommon
with anomaly detection systems [4]. The FPRs achieved are
sufficiently low to potentially support a semi-supervised ap-
proach. This would involve an administrator going over the
detected alerts to document root causes and signatures for
actual alerts and flagging signatures for the FPs. The sys-
tem can therefore use such information for future detection
by searching for and reporting known alert signatures thus
suppressing future FPs. Such an approach will, over time,
lead to the reduction of the FPs to much lower levels.

Perhaps the most important lesson learnt from our exper-
iments is that it is possible (with an appreciable level of ac-

curacy), once the right properties are identified, to separate
clusters of spatio-temporal partitions of event logs that may
contain anomalous activity from those that contain normal
activity.

The framework can easily be deployed with little or no
user input. The only significant user input is the defini-
tion of the similarity categories used in the entropy based
calculations. The methods involved in the framework are
computationally inexpensive and easy to understand. As re-
ported by our industry partner to this project, recent adop-
tion of virtualized cloud computing infrastructure causes
system logs to be multi-tiered. Thus, manual analysis of
these logs proves to be difficult. System administrators of
cloud computing systems are desperately in need of tools to
make sifting through large volumes of inter-related log data
an easier task. A data mining based tool such as STAD
would prove useful in the correlation of events across mul-
tiple tiers making log analysis efforts easier. The extension
to alert detection to dissimilar nodes provides the possibil-
ity of using this framework for alert detection on distributed
systems. Future work will involve the semi-supervised asso-
ciation of alerts to faults i.e. converting anomalies to fault
signatures.
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