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ABSTRACT

Surrogate models in black-box optimization can be exploited to

different degrees. At one end of the spectrum, they can be used

to provide inexpensive but inaccurate assessments of the quality

of candidate solutions generated by the black-box optimization

algorithm. At the other end, optimization of the surrogate model

function can be used in the process of generating those candidate

solutions themselves. The latter approach more fully exploits the

model, but may be more susceptible to systematic model error.

This paper examines the effect of the degree of exploitation of the

surrogate model in the context of a simple (1 + 1)-ES. First, we
analytically derive the potential gain from more fully exploiting

surrogate models by using a spherically symmetric test function

and a simple model for the error resulting from the use of surrogate

models. We then observe the effects of increased exploitation in an

evolution strategy employing Gaussian process surrogate models

applied to a range of test problems. We find that the gain resulting

from more fully exploiting surrogate models can be considerable.
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1 INTRODUCTION

Surrogate modelling techniques are commonly used when solving

black-box optimization problems where the evaluation of the objec-

tive function is expensive. Models are built based on information

gained through evaluation of the objective function in previous
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iterations. These models can then be used as inaccurate but in-

expensive surrogates for the true objective function. Jin [8] and

Loshchilov [13] provide surveys covering the use of surrogate mod-

elling techniques in evolutionary computation.

Black-box optimization algorithms that employ surrogate mod-

els need to weigh the savings in cost from using those models

against the potentially poor steps made as a result of their inac-

curacy. Surrogate model assisted algorithms differ in the degree

to which they exploit those models. One approach is to leave the

generation of candidate solutions under the control of the black-box

optimization algorithm. The surrogate model is used in place of

the true objective function in order to avoid the costly evaluation

of likely poor candidate solutions. An example of an algorithm

that implements this approach is the Local Meta-Model Covariance

Matrix Adaptation Evolution Strategy (lmm-CMA-ES) by Kern et

al. [10]. A second approach is to involve the surrogate model in the

generation of candidate solutions themselves. The surrogate model

function is optimized in each iteration, and the optimizer of the

surrogate model is subsequently evaluated using the true objective

function. This approach is employed for example in the Gaussian

Process Optimization Procedure (GPOP) by Büche et al. [6], who

define several merit functions based on Gaussian process surrogate

models in an attempt to balance exploitation and exploration. Ar-

guably, the latter approach more fully exploits the surrogate models.

At the same time, at least in its pure form, it may be more prone

to make poor steps due to surrogate model error. Loshchilov et

al. [15] explicitly address the degree of exploitation of surrogate

models and empirically find that more intensive exploitation has

the potential to provide a significant speed-up in their surrogate

model assisted evolution strategy.

Implications of design decisions when incorporating surrogate

models in black box optimization algorithms are not well under-

stood. As a step toward understanding the consequences of different

degrees of exploitation of surrogate models, we consider the per-

formance of a surrogate model assisted (1 + 1)-ES1. The (1 + 1)-ES
provides a baseline that has been well established since the early

work of Rechenberg [17], and a large body of research concerning

the performance of other evolution strategies relative to that of

the (1 + 1)-ES exists [5]. Kayhani and Arnold [9] have studied the

performance of a surrogate model assisted (1+1)-ES that minimally

exploits the models in that they are used only to determine whether

a candidate solution is to be evaluated by the objective function.

They both analytically consider the performance of the algorithm

on spherically symmetric test functions by using a simple model for

1See Hansen et al. [7] for evolution strategy terminology.
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the error resulting from the use of surrogate models, and they exper-

imentally evaluate it on a wider range of test functions. We use their

algorithm, but generalize the approach to the generation of can-

didate solutions to potentially more intensively exploit surrogate

models. Using their error model, we compare the speed-up resulting

frommore intensive exploitation relative to that of the strategy that

minimally exploits the models. We then experimentally consider a

range of test functions and find that while the benefits predicted

under the simple error model for spherically symmetric functions

cannot be fully realized, the gain from increased exploitation of the

surrogate model can nonetheless be considerable.

The remainder of this paper is organized as follows. In Sec-

tion 2 we review related work and introduce a surrogate model

assisted (1 + 1)-ES with (µ/µ, λ)-preselection. Section 3 studies the

performance of that algorithm on spherically symmetric objective

functions by assuming a simple model for the error resulting from

the use of surrogate models. Section 4 employs Gaussian process

surrogate models and applies the algorithm to a range of test func-

tions. Section 5 concludes with a brief discussion and proposed

future work.

2 BACKGROUND AND ALGORITHM

Many approaches that employ surrogate models in evolutionary

algorithms have been proposed. Jin [8] and Loshchilov [13] pro-

vide comprehensive overviews. Much recent work has focused

on surrogate model assisted variants of covariance matrix adapta-

tion evolution strategies (CMA-ES); see for example Loshchilov et

al. [15] and Bajer et al. [3]. Our goal here is to study the impact

of the degree of exploitation of the surrogate model on the perfor-

mance of evolution strategies, and is thus orthogonal to the use of

covariance matrix adaptation.

The value of surrogate modelling approaches is usually quanti-

fied through the notion of speed-up, which is defined as the number

of objective function evaluations required to solve a given optimiza-

tion problem using some black box optimization algorithm that

does not employ surrogate models, divided by the number of objec-

tive function evaluations required by the corresponding algorithm

that does use surrogate models. That is, it is assumed that the cost of

surrogate modelling is negligible compared to the cost of evaluating

the objective function.

A straightforward use of surrogate models has been proposed by

Kern et al. [10]. Their algorithm in each iteration generates λ > 1

candidate solutions, employs a surrogate model that is based on

information gained in previous iterations to generate estimates of

their relative fidelities, and then uses the true objective function to

evaluate those candidate solutions that score best under the model.

The ratio of candidate solutions evaluated using the objective func-

tion is adapted based on whether the true objective function values

that are obtained are in conflict with the ranking of the candidate

solutions according to the surrogate model. As in each iteration at

least one candidate solution is evaluated using the true objective

function, the maximum speed-up compared to the strategy that

uses the objective function to evaluate all λ candidate solutions

is λ, but will be lower if the accuracy of the surrogate models is

poor. Kern et al. [10] report experimentally observed speed-ups by

factors between two and eight on unimodal functions, including

Input:

• candidate solution x ∈ Rn
• step size parameter σ ∈ R>0
• a surrogate model

1: Generate step vector z ∈ Rn and let y = x + σz.

2: Evaluate y using the surrogate model, yielding fϵ (y).
3: if fϵ (y) ≥ f (x) then
4: Let σ ← σ e−c1/D .
5: else

6: Evaluate y using the objective function, yielding f (y).
7: Update the surrogate model.

8: if f (y) ≥ f (x) then
9: Let σ ← σ e−c2/D .
10: else

11: Let x← y and σ ← σ ec3/D .
12: end if

13: end if

Figure 1: Single iteration of the surrogatemodel assisted (1+
1)-ES.

Schwefel’s ellipsoid and Rosenbrock’s function, where dimensions

range from two to sixteen.

Notice that candidate solutions in the algorithm by Kern et

al. [10] are generated by the evolution strategy, and are thus ran-

dom and unbiased. An algorithm that more fully exploits surrogate

models is the Gaussian Process Optimization Procedure by Büche

et al. [6]. In that algorithm, candidate solutions are obtained by in

each iteration attempting to determine optimal solutions to merit

functions that are based on the surrogate model function. Those so-

lutions are then evaluated using the true objective function. Büche

et al. [6] report speed-ups by a factor between four and five com-

pared to CMA-ES on quadratic sphere functions and on Schwefel’s

ellipsoid, and smaller speed-ups on Rosenbrock’s function.

We argue that it is meaningful to determine speed-up values

relative to a well established baseline, and that in the context of

evolution strategies, the (1 + 1)-ES forms a natural baseline. A sur-

rogate model assisted variant of the (1 + 1)-ES has been proposed

by Kramer [12]. That algorithm uses a surrogate model to evaluate

the offspring candidate solution. If the value obtained suggests that

the candidate solution is superior to the parental candidate solution

from t iterations prior, then the objective function is used to estab-

lish its true fitness. The 1/5th rule [17] is used for the adaptation of

the step size.

Kayhani and Arnold [9] consider that same algorithm for t = 0,

but with a novel form of step size adaptation derived from the im-

plementation of the 1/5th rule due to Kern et al. [11]. Assuming that

the task at hand is minimization of function f : Rn → R, a single
iteration of that algorithm is detailed in Fig. 1. Parental candidate

solution x ∈ Rn and step size parameter σ ∈ R>0, together with an

archive of those candidate solutions that have been evaluated using

the objective function and that are used to generate the surrogate

models, form the state of the algorithm. Step vector z ∈ Rn is gen-

erated by sampling from a multivariate Gaussian distribution with
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zero mean and unit covariance. The resulting offspring candidate

solution y = x + σz is then evaluated using the surrogate model

function fϵ (·). If the value obtained suggests that the offspring is

inferior to the parent, then the step size is reduced. Otherwise, the

offspring candidate solution is evaluated using the objective func-

tion, and it replaces the parent if and only if it is superior. The step

size is increased in that case, and it is reduced if the parent prevails.

Parameter D > 0 controls the speed with which the step size pa-

rameter can be adapted. Values for the coefficients c1, c2, c3 > 0 are

derived from an analysis of the performance of the algorithm on

spherically symmetric test functions, using a simple model for sur-

rogate model error to be detailed in Section 3. Employing Gaussian

process surrogate models, speed-ups between 1.6 and 3.5 relative

to the (1 + 1)-ES without surrogate model assistance are observed

on several unimodal test functions.

The algorithm considered in this paper is identical to that con-

sidered by Kayhani and Arnold [9], save for the generation of step

vectors in Line 1 of Fig. 1. Rather than sampling z from a zero mean

Gaussian distribution, we sample λ ≥ 1 trial step vectors zi ∈ Rn ,
i = 1, 2, . . . , λ, from a Gaussian distribution with zero mean and

unit covariance. We then compute fitness estimates fϵ (x + σzi )
using the surrogate model. Finally, using k ; λ to refer to the index of

the kth smallest of the λ values observed, we compute the average

z =
1

µ

µ
∑

k=1

zk ;λ (1)

of the µ ≥ 1 seemingly best trial steps as the step to be used in

Line 1 of the algorithm in Fig. 1. As this approach to computing step

vectors amounts to the same process as the generation of a step in

the (µ/µ, λ)-ES, we refer to the resulting algorithm as the surrogate

model assisted (1 + 1)-ES with (µ/µ, λ)-preselection. Notice that
the algorithm makes no more than one true objective function

evaluation per iteration, independent of λ. The algorithm bears

similarities to the model assisted steady-state evolution strategy

by Ulmer et al. [19], but differs in several aspects, including the

averaging of trial step vectors and its mechanism for step size

adaptation. Also notice that the algorithm considered by Kayhani

and Arnold [9] is included as the special case that µ = λ = 1.

Choosing larger values for λmore intensively exploits the surrogate

model in that themodel is used to evaluate a larger number of points

per iteration. Letting λ → ∞, fϵ (x + σz1;λ) will converge almost

surely to the optimum of the surrogate model function. Practically,

due to the inaccuracy of the surrogate models, we expect the gain

from increasing λ to level off, and values of µ > 1 to be useful.

3 ANALYSIS

This section studies the performance of the algorithm presented

in Section 2 by considering spherically symmetric test function

f : Rn → R with f (x) = xTx, using the simple model for the

surrogate model error proposed by Kayhani and Arnold [9]. It

generalizes the analysis presented there by considering step vectors

from distributions other than a Gaussian distribution. Specifically,

we consider the case that the step in Line 1 of the algorithm in Fig. 1

is generated by (µ/µ, λ)-preselection.
As Kayhani and Arnold [9], in this section we assume that the

surrogate model error (i.e., the difference f (y) − fϵ (y) between

the true objective function value of a candidate solution and its

estimated value according to the surrogate model) can be modelled

by an independent Gaussian random variable with mean zero and

variance σ 2
ϵ , and that this variance is the same for all candidate

solutions generated within an iteration. The standard deviation σϵ
is a measure for the quality of the surrogate model in that more

accurate models correspond to smaller values of σϵ . We expect the

quality of this simple model to deteriorate as λ increases as espe-

cially the assumption of the independence of samples is unrealistic

for deterministic surrogate models.

As proposed by Beyer [4], step vector z can be decomposed into a

component z1 in the direction of the negative of the gradient of the

objective function at x and a component z2...n orthogonal to the

gradient direction. Due to the assumptions made with regard to the

surrogate model error, the distribution of both components can be

obtained from earlier work on the performance of the (µ/µ, λ)-ES
applied to noisy spherically symmetric functions [1, 2]. Component

z2...n is of random direction in the (n − 1)-dimensional subspace

orthogonal to the gradient. Its squared length for large dimensions

is governed by limn→∞ ∥z2...n ∥2/n = 1/µ. The component z1 of

step vector z in direction of the negative gradient has a signed length

with a probability density that cannot generally be given in closed

form. However, expressions for the cumulants of the distribution

can be obtained, allowing to approximate the density by using the

initial terms in a Gram-Charlier expansion (see [18])

p1(z) =
1

√
2πκ2

exp

(

−(z − κ1)
2

2κ2

)

[

1 +
γ1

3!
He3

(

z − κ1√
κ2

)

+ . . .

]

, (2)

where κk denotes the kth cumulant, Hek (·) is the kth Hermite

polynomial, and γ1 = κ3/κ3/22 is the skewness of the distribution.

Expressions for the first three cumulants are derived in [1, 2] and

reproduced in the appendix below.

We refer to δ (z) = n(f (x) − f (x + σz))/(2R2), where R = ∥x∥,
as the normalized fitness advantage associated with step vector z.

Introducing normalized step size σ ∗ = nσ/R, if z is generated

through (µ/µ, λ)-preselection it follows that

δ (z) = n

2R2

(

xTx − (x + σz)T(x + σz)
)

=

n

2R2

(

−2σxTz − σ 2∥z∥2
)

n→∞
= σ ∗z1 −

σ ∗2

2µ
, (3)

where
n→∞
= denotes convergence in distribution, z1 = −xTz/R is

the signed length of the component of the step in the negative

gradient direction, and the presence of µ in the denominator sig-

nifies the presence of genetic repair [5]. Moreover, introducing

σ ∗ϵ = nσϵ /(2R2), the estimated normalized fitness advantage associ-

atedwith z (i.e., the normalized fitness advantage estimated by using

the surrogate model to evaluate y = x + σz) is δϵ (z) = δ (z) + σ ∗ϵ zϵ ,
where zϵ is a random variable with Gaussian distribution with zero

mean and unit variance.

The algorithm in Fig. 1 evaluates y = x + σz using the objective

function if and only if the estimated fitness advantage associated
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Figure 2: Expected single step behaviour of the surrogate model assisted (1 + 1)-ES with (3/3, 10)-preselection and unbiased

Gaussian surrogate model error for noise-to-signal ratio ϑ ∈ {0.0, 0.25, 1.0, 4.0}. The dashed and solid lines represent results

obtained analytically in the limit n →∞ by considering Gram-Charlier approximations with cumulants up to the second and

third included, respectively. The dots represent measurements made in runs of the algorithm with fixed normalized step size

for n = 100 (circles) and n = 10 (crosses). The dotted black line in the leftmost subplot shows the expected fitness gain of the

(1 + 1)-ES without surrogate model assistance.

with z is positive. The probability of using the objective function

to evaluate a step generated using (µ/µ, λ)-preselection is thus

peval = Prob [δϵ (z) > 0]

=

1
√
2π

∫ ∞

−∞

∫ ∞

y0(z)
e−

1
2y

2
p1(z) dy dz

=

∫ ∞

−∞
p1(z)Φ

(

σ ∗z − σ ∗2/(2µ)
σ ∗ϵ

)

dz , (4)

where Φ(·) is the cumulative distribution function of the Gauss-

ian distribution with zero mean and unit variance, p1(·) is the

probability density function given in Eq. (2), and y0(z) = −(σ ∗z −
σ ∗2/(2µ))/σ ∗ϵ is the value of zϵ below which δϵ turns negative for

given z1 = z.

Similarly, the probability of using the objective function to evalu-

ate a step generated by (µ/µ, λ)-preselection that has an associated

negative fitness advantage is

pfalse = Prob [δ (z) < 0 | δϵ (z) > 0]

=

Prob[δ (z) < 0 ∧ δϵ (z) > 0]
Prob[δϵ (z) > 0]

=

1
√
2πpeval

∫ σ ∗/(2µ)

−∞

∫ ∞

y0(z)
e−

1
2y

2
p1(z) dy dz

=

1

peval

∫ σ ∗/(2µ)

−∞
p1(z)Φ

(

σ ∗z − σ ∗2/(2µ)
σ ∗ϵ

)

dz (5)

asδ (z) < 0 is equivalent to z1 < σ ∗/(2µ).We refer to this probability

as the false positive rate.

Finally, the expected value of the normalized change in objective

function value

∆ =

{

δ (z) if δϵ (z) > 0 and δ (z) > 0

0 otherwise

from one iteration of the surrogate model assisted (1 + 1)-ES to the

next can be computed as

E[∆] = 1
√
2π

∫ ∞

σ ∗/(2µ)

∫ ∞

y0(z)

(

σ ∗z − σ ∗2

2µ

)

e−
1
2y

2
p1(z) dy dz

=

∫ ∞

σ ∗/(2µ)

(

σ ∗z − σ ∗2

2µ

)

p1(z)Φ
(

σ ∗z − σ ∗2/2µ
σ ∗ϵ

)

dz . (6)

With Eq. (2), Eqs. (4), (5), and (6) can be used to numerically com-

pute the evaluation rate, the false positive rate, and the expected

normalized change in objective function value of the strategy.

All of the equations thus derived consider only a single iteration

of the surrogate model assisted (1 + 1)-ES. However, if a step size

adaptation mechanism and surrogate modelling approach are in

place such that the distributions of the normalized step size σ ∗ and
the normalized surrogate model error strength σ ∗ϵ are invariant

across iterations, then the algorithm converges linearly in expecta-

tion with dimension-normalized rate of convergence

c = −n
2
E

[

log

(

f (xt+1)
f (xt )

)]

= −n
2
E

[

log

(

1 − 2∆

n

)]

, (7)

where subscripts denote iteration number. As the rate of conver-

gence does not account for computational cost and costs are in-

curred only in those iterations where a call to the objective function

is made, we use η = c/peval (normalized rate of convergence per

objective function call) as performance measure and refer to it as

the expected fitness gain. For n →∞ the logarithm in Eq. (7) can

be linearized and the expected fitness gain is simply η = E[∆]/peval.
We will see in experiments reported in Section 4 that linear conver-

gence can indeed be achieved.

We define noise-to-signal ratio ϑ = σ ∗ϵ /σ ∗ as a measure for the

accuracy of the surrogate model relative to the step size of the

algorithm. We run experiments with the surrogate model assisted

(1+1)-ES as given in Fig. 1, but with Gaussian distributed surrogate

model error in place of a true surrogate model and with the normal-

ized step size set to a fixed value rather than being adapted. Figure 2
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Figure 3: Single step performance of the surrogate model assisted (1 + 1)-ES with (µ/µ, λ)-preselection for optimally set nor-

malized step size and unbiased Gaussian surrogate model error. The lines represent values obtained analytically in the limit

n → ∞, where cumulants up to the third have been considered. The dots represent experimental results for n = 100 (circles)

and n = 10 (crosses). The dotted black line in the leftmost subplot shows the optimal expected fitness gain of the (1 + 1)-ES
without surrogate model assistance.

plots the expected fitness gain η, the evaluation rate peval, and the

false positive rate pfalse against the normalized step size σ ∗. The
dots represent data measured in runs of the algorithmwith (3/3, 10)-
preselection in dimensions n ∈ {10, 100} that have been averaged

over 106 iterations. The dashed and solid lines represent analyti-

cally obtained results using cumulants up to the second (dashed

lines) or third (solid lines). It can be seen that consideration of the

skewness of the distribution has only a minor impact on the results.

Deviations between experimental measurements and analytical

predictions generally decrease with increasing dimension.

It can be seen from Fig. 2 that for given noise-to-signal ratio, the

evaluation rate of the algorithm decreases with increasing normal-

ized step size while the false positive rate increases. Unsurprisingly,

false positive rates also increase with increasing noise-to-signal

ratio. The expected fitness gain peaks at a finite value of the normal-

ized step size and decreases with increasing noise-to-signal ratio.

For ϑ →∞ the surrogate model becomes useless and the expected

fitness gain of the (1 + 1)-ES without surrogate model assistance

(shown as a dotted black line in the plot) is recovered. As shown by

Rechenberg [17], the optimal expected fitness gain of that strategy

is 0.202 and achieved at a normalized step size of 1.224. The strategy

with (3/3, 10)-preselection achieves expected fitness gain values

significantly in excess of this, at larger normalized step sizes.

In order to illustrate the effect of increased exploitation of the

surrogate model, Fig. 3 plots the optimal expected fitness gain (i.e.,

the fitness gain achieved for optimally set normalized step size)

as well as the corresponding values of the evaluation rate and

the false positive rate against the noise-to-signal ratio for (µ/µ, λ)-
preselection with λ ∈ {1, 10, 20, 40} and µ = ⌈λ/4⌉. Notice that the
results obtained for µ = λ = 1 are the same as those obtained by

Kayhani and Arnold [9]. It can be seen that the optimal expected

fitness gain increases with increased exploitation of themodel.With

increasing noise-to-signal ratio, the curves approach the value of

0.202 attained without the use of surrogate models. As expected, in

finite dimensions the gains predicted in the limit n →∞ cannot be

fully realized, and for n = 10 the optimal expected fitness gain of

the strategy with (10/10, 40)-preselection for small noise-to-signal

ratios is only about half of the analytical prediction.

It is interesting to note that compared to the other strategy vari-

ants, the strategy with (1/1, 1)-preselection shows a fundamentally

different relationship between noise-to-signal ratio and evaluation

rate in Fig. 3. For the strategy with µ = λ = 1, preselection is

random and step vectors generated in Line 1 of the algorithm in

Fig. 1 will form an obtuse angle with the gradient vector of the

objective function as often as they form an acute one. What allows

the strategy to outperform the (1 + 1)-ES without surrogate model

assistance is its ability to operate with a significantly larger step

size. The test in Line 3 of the algorithm in Fig. 1 serves as a filter,

ensuring that for a majority of the generated (and mostly poor)

steps no computational costs are incurred. In order to be maxi-

mally effective, the strategy needs to operate with an evaluation

rate below 0.5. Strategies using (µ/µ, λ)-preselection with µ < λ on

the other hand generate step vectors in Line 1 of the algorithm in

Fig. 1 that predominantly have a positive component in the direc-

tion of the negative gradient. Optimal evaluation rates are much

higher and increase with increasing exploitation of the surrogate

model as the gains of the strategy are derived from the mostly

beneficial steps, not from avoiding the evaluation of mostly poor

ones. The rightmost subplot in Fig. 3 shows that this difference

allows the strategy with µ < λ to operate with step sizes that afford

significantly smaller false positive rates.

4 EXPERIMENTS

In order to further evaluate the proposed algorithm, we consider

three families of test functions:

• Sphere functions f (x) = (xTx)α/2 with α ∈ [0.25, 4.0]. For
α = 2, this family includes the quadratic function considered in

Section 3. The (1 + 1)-ES without surrogate model assistance

achieves the same rate of convergence on all sphere functions.

However, unless using comparison based surrogate models

as proposed by Loshchilov et al. [14], surrogate models may

exhibit different degrees of accuracy depending on α .

• Ellipsoid functions f (x) = xTAx, where n × n matrix A equals

diag(β, 1, . . . , 1) and β ∈ [10−2, 102]. This family includes both



GECCO ’19, July 13–17, 2019, Prague, Czech Republic Jingyun Yang and Dirk V. Arnold

cigar (β ≪ 1) and discus functions (β ≫ 1). Parameter β con-

trols the degree of ill-conditioning. For β = 1 the quadratic

sphere function is recovered.

• Quartic functions f (x) = ∑n−1
i=1 [γ (xi+1−x2i )

2
+(1−xi )2], where

x = (x1, . . . , xn )T, which combine the properties of being less

than perfectly conditioned and being non-quadratic. For γ =

100, this family includes Rosenbrock’s function, which is tedious

to optimize without covariance matrix adaptation. We use γ ∈
[1.0, 10.0]. Ill-conditioning increases with increasing γ , with,

depending on the dimension, condition numbers of the Hessian

matrix at the optimizer between 33 and 50 for γ = 1, and

numbers roughly 7.5 times higher for γ = 10.

All of the test problems are considered in dimensionsn ∈ {2, 4, 8, 16}.
Runs are initialized by sampling starting points x from a Gaussian

distribution with mean zero and with coordinate-wise standard de-

viations of 1000 for the sphere and ellipsoid functions and 1 for the

quartic functions. The step size parameter is initialized to σ = 1000

for the sphere and ellipsoid functions and to σ = 1 for the quartic

functions. The optimal function value of all test problems is zero.

As Rosenbrock’s function, the quartic functions with n ≥ 4 have

a second local minimizer. The stopping criteria used are for the

evolution strategy to evaluate a candidate solution with an objec-

tive function value below 10−12, to evaluate a candidate solution

within a radius of 10−8 of the global optimizer, or to decrease the

step size parameter below 10−15. The only runs in which the third

termination criterion was triggered were those that converged to

the second local minimizer of the quartic functions.

Two further things are needed in order to be able to test the

surrogate model assisted (1 + 1)-ES: a łtruež surrogate model to re-

place the assumption of Gaussian distributed surrogate model error,

and suitable values for the parameters that control the adaptation

of the step size in the algorithm in Fig. 1. For the former, we use

Gaussian process models with a squared exponential kernel [16].

We train the surrogate models by using the N = 8n most recently

evaluated points as the training set and use the Gaussian process’s

mean prediction as an estimate of the true objective function value.

By limiting the training set to a fixed number of points we avoid

the issue of the computational cost of model fitting increasing with

increasing number of iterations. We do not use surrogate models

in the first N iterations of a run and revert to the simple (1 + 1)-ES
with the 1/5th success rule instead. We set the length scale parame-

ter of the squared exponential kernel to 8nσ . The proportionality

of the length scale parameter, which governs how rapidly correla-

tions between objective function values decrease, to the step size

parameter of the evolution strategy is motivated by the desire to

achieve scale invariance and consequently linear convergence. The

constant of proportionality has been obtained in preliminary exper-

iments and for the problems considered yields results somewhat

superior to those observed using the setting employed by Kayhani

and Arnold [9]. Finally, we use values of c1 = 0.05, c2 = 0.2, and

c3 = 0.6 for the strategy with (1/1, 1)-preselection as proposed by

Kayhani and Arnold [9]. When more fully exploiting the surrogate

model and doing (µ/µ, λ)-preselection with λ > µ, we use c1 = 0.2

and c2 = c3 = 1.0 in order to account for the qualitatively different

operating behaviour of the algorithm observed in Fig. 3. We use

D =
√
n + 1 in all cases.

For each test problem considered, we have conducted 101 runs

of the (1 + 1)-ES without surrogate model assistance as well as of

the surrogate model assisted algorithm using (µ/µ, λ)-preselection
with λ ∈ {1, 10, 20, 40} and µ = ⌈λ/4⌉. Runs that converged to the

second local minimizer of the quartic functions were repeated until

convergence to the global optimizer was achieved. Figure 4 illus-

trates runs on several problem instances in detail; Fig. 5 summarizes

all of the results.

The top row in Fig. 4 shows logarithmic histograms of the num-

bers of objective function evaluations required to reach termination

accuracy. It can be seen that surrogate model assistance consistently

results in substantial savings. The remaining rows of Fig. 4 illustrate

those surrogate model assisted runs that required the median num-

ber of objective function evaluations to terminate. From the second

row, it can be seen that all strategy variants appear to achieve linear

convergence for all test problems shown, demonstrating that the

adaptation of the step size is successful and that the local Gaussian

process surrogate models allow the evolution strategy to operate

under an eventually flat noise-to-signal ratio. This is further illus-

trated in the bottom row of Fig. 4, where the relative model error,

defined as the absolute deviation of surrogate model estimates from

true objective function values, divided by the absolute difference

between objective function values of parent and offspring, appears

to be characterized by a distribution that is stationary after initial-

ization effects have faded.

Figure 5 shows speed-up values of the surrogate model assisted

(1 + 1)-ES relative to the (1 + 1)-ES without surrogate model assis-

tance, where speed-up is defined as the median number of objective

function evaluations required to satisfy a termination criterion by

the strategy without surrogate model assistance divided by the

corresponding median number of objective function evaluations of

the algorithm with surrogate model assistance. It can be seen that

all speed-up values are in excess of 1.0, indicating that surrogate

model assistance is beneficial throughout. It can also be seen that

in almost all cases, preselection with λ > µ is superior to preselec-

tion with µ = λ = 1 and that the benefits generally increase with

increasing degree of exploitation of the surrogate model.

Speed-up values observed for sphere functions peak at α = 2,

where the Gaussian process surrogate models provide the high-

est accuracy. Speed-up values for α > 2 decrease rather rapidly,

indicating that Gaussian process models are less than well suited

for those problems. Indeed, sphere functions with values of α > 2

are the only test problems considered where median runs of the

strategy with minimal exploitation of the surrogate model in some

cases are superior to those of the strategy with more intensive

exploitation. Speed-up values for (1/1, 1)-preselection and sphere

functions with α ≤ 2 range from 2.5 to 6.1 for n = 2 and from 1.8

to 3.4 for n = 16. More intensive exploitation of the model through

(10/10, 40)-preselection achieves significantly higher speed-up val-

ues between 3.9 and 7.0 for n = 2 and between 2.9 and 4.4 for

n = 16.

For the ellipsoid functions, more intensive exploitation of the

model results in significantly higher speed-ups for some of the less

well conditioned problem instances. Speed-up values observed for

the cigar function with β = 0.01 and (10/10, 40)-preselection can

range as high as nearly 40.0, but except for the smallest dimensions

decrease with increasing dimension. Increased surrogate model
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Figure 4: Histograms and median runs for selected test problems with n = 8. The columns from left to right show results for

the quadratic sphere, cigar and discus with β = 0.01 and 100.0, respectively, and the quartic function with γ = 10. The top row

shows logarithmic histograms of the number of objective function evaluations required to attain termination accuracy for

the (1 + 1)-ES without surrogate model assistance as well for surrogate model assisted (1 + 1)-ES with (µ/µ, λ)-preselection for

λ ∈ {1, 10, 20, 40} and µ = ⌈λ/4⌉. The second and third rows show objective function values and relative model error observed in

the median runs of the surrogate model assisted algorithms.

exploitation in some instances triples the speed-up achieved by

the surrogate model assisted strategy with (1/1, 1)-preselection.
Speed-up values observed for the discus functions with β = 100 are

lower except in low dimensions, suggesting that either the Gaussian

process surrogate models do not adequately model a narrow one-

dimensional valley if the dimension exceeds n = 8 or that step size

adaption works less than well.

For the quartic test problems, speed-up values observed gener-

ally increase with increasing degree of ill-conditioning, and they

decrease with increasing dimension. While more intensive exploita-

tion of the surrogate model provides only small benefits for n = 2,

(10/10, 40)-preselection achieves roughly between two and three

times the speed-up of (1/1, 1)-preselection for n ∈ {8, 16}.

5 CONCLUSIONS

To conclude, we have proposed a surrogate model assisted (1+1)-ES
with variable exploitation of the model. Compared with the surro-

gate model assisted (1+1)-ES by Kayhani and Arnold [9], evaluating
multiple trial steps using the surrogate model before considering a

step to be evaluated by the objective function allows the strategy

to likely consider better steps. An analysis of the algorithm applied

to spherically symmetric test functions using a very simple model

for the surrogate model error suggests that the performance gains

resulting from preselection with λ > µ result from a fundamentally

different source than those observed by Kayhani and Arnold [9].

Rather than relying on large steps and a low evaluation rate, it is

the more beneficial steps resulting from preselection that allow the

algorithm to succeed. An experimental comparison using Gaussian

process surrogate models and considering several families of test

functions suggests that the benefits from (µ/µ, λ)-preselection with

λ > µ can indeed be substantial. Moreover, for most of the test

problems, λ has been observed to be an uncritical parameter in that

increasing its value (at least within the range of values considered

here) does not negatively affect the strategy’s performance.

In future work we plan to implement covariance matrix adap-

tation in the surrogate model assisted (1 + 1)-ES in order to see

whether the observed benefits on less than perfectly well condi-

tioned problems observed here persist when ill-conditioning is



GECCO ’19, July 13–17, 2019, Prague, Czech Republic Jingyun Yang and Dirk V. Arnold

Figure 5: Speed-ups observed in median runs. From top to bottom, the rows show results for sphere functions, ellipsoid func-

tions, and quartic functions. The columns hold results for dimensions for, from left to right, n = 2, 4, 8, and 16. The plots show

the speed-ups of surrogate model assisted (1+1)-ES with (µ/µ, λ)-preselection for λ ∈ {1, 10, 20, 40} and µ = ⌈λ/4⌉.

addressed by the evolution strategy itself. Considering covariance

matrix adaptation will also allow comparing the performance of the

surrogate model assisted (1 + 1)-ES with (µ/µ, λ)-preselection with

that of other surrogate model assisted black box optimization algo-

rithms that employ covariance matrix adaptation and thus other

approaches to the exploitation of surrogate models. Finally, we will

consider strategies for adapting the parameters of the Gaussian

process surrogate models, including the size of the training set and

the length scale parameter.
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A APPENDIX

Cumulants of the distribution of the signed length of the compo-

nent of the step vector in the direction of the negative gradient of

the objective function resulting from (µ/µ, λ)-preselection can be

obtained by computing expectations of concomitants of order sta-

tistics of the Gaussian distribution. Arnold and Beyer [1, 2] derive

the following expressions for the first three cumulants:

κ1 = ah
1,0
µ ,λ

κ2 =
1

µ

(

1 + a2h1,1
µ ,λ

)

+

µ − 1
µ

a2h
2,0
µ ,λ
− κ21
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)
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+
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(
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where a = 1/
√
1 + ϑ 2 with noise-to-signal ratio ϑ as defined in

Section 3, and

h
i ,k
µ ,λ
=

λ − µ
√
2π

(

λ

µ

) ∫ ∞

−∞
Hek (x)e−

1
2 x

2

[ϕ(x)]i [Φ(x)]λ−µ−1[1 − Φ(x)]µ−idx

with ϕ(·) and Φ(·) being the probability density and cumulative

distribution functions of the standard Gaussian distribution.
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