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Abstract

We continue, and in a sense complete, our study the
motion of a rod (line segment) in the plane in the
presence of polygonal obstacles, under an optimal-
ity criterion based on minimizing the trace length of
a fixed but arbitrary point (called the focus) on the
rod. In an earlier paper, we showed that this problem
is NP-hard when the focus is in the relative interior
of the rod. Our proof did not cover the case where
the focus lies at one of the rod endpoints. Indeed,
considerable evidence suggested that this special case
might admit a polynomial time solution. In this pa-
per we settle this open problem by proving, by means
of a non-trivial adaptation of our earlier construction,
that this remaining case is also NP-hard.

1 Introduction

Although the feasibility of motion planning is very
well studied, comparatively little is known about op-
timal motion planning. The exceptions to this con-
cern the cases where the robot body is a point (or,
more generally, a sphere) or a rod (a directed line seg-
ment). The only known efficient general algorithms
apply to the case where the robot body is a disc in
the plane. Other cases are hard; specifically:

(A) In three dimensional space, the problem of de-
termining the shortest path for a point robot moving
amidst polyhedral obstacles is NP-hard[4];

(B) In the plane, the problem of minimizing
the“d1- distance” of a rod motion (defined to be the
length of the trace of a specified point (the focus) on
the rod) in the presence of polygonal obstacles is NP-
hard, when the focus lies in the rod interior [1].

For rod motions, d1-distance is certainly not the
only reasonable notion of distance to try and opti-
mize. One natural alternative is that of maximizing
the clearance (i.e., distance to the nearest obstacle).
Here, an efficient algorithm based a generalization
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of the Voronoi diagram is known [11, 12]. Another
interesting approach is to minimize the area swept
by the motion of the rod. This problem attracted
some interest in the past under the name “Kakeya’s
problem” (see [3]), but this turns out not to be a
good idea. (For example, one can sweep an arbitrar-
ily small area in a motion that moves a rod from any
position to its complementary position, which occu-
pies the same points in space. The obvious way to
achieve this is to rotate the rod by 180◦ about its
midpoint.)

Other notions of optimality can be formulated in
terms of other concepts of distance or length. If X
is any fixed point on the rod, the curve traced by
X in any continuous motion µ of the rod is called
the trace of X in µ. One natural choice here is to
minimize the average lengths of the traces of the two
endpoints of the rod. In the absence of obstacles, this
has been called Ulam’s problem [13]. Again it has an
interesting history (see [5] and the references therein).
The paper of Icking et al. [5] revisits this problem,
introducing a simple tool based on Cauchy’s surface
area formula. They call the metric in Ulam’s problem
the d2-metric. There is a natural generalization to dn

for any n ≥ 3 or n = ∞ (corresponding to minimizing
the average trace length of n evenly distributed points
on the rod).

Other than [5], there are few previous papers on
dn-optimal motions. Papadimitriou and Silverberg
[7] studied d1-optimal motions with the focus F at
one endpoint of the rod. However, they severely re-
stricted the motions so that F travels only in straight
lines between obstacle vertices. Their results were
improved by Sharir [10]. O’Rourke [6] studied d∞-
optimal motions restricted to either pure translations
or rotations by ±90◦.

In contrast to these last cited papers, we are in-
terested in unrestricted motions of the rod, except of
course when the rod collides with obstacles. In this
paper we settle the remaining open problem concern-
ing d1-optimal motion of a rod in the plane. Specifi-
cally, we show the following:
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Theorem 1 The problem of determining if their ex-
ists a collision free motion of a rod, from a specified
initial configuration to a specified final configuration,
whose d1-length, with the focus at one of the rod end-
points, is at most some specified value D, is NP-hard.

This result is somewhat surprising giving the con-
siderable evidence that suggested that this problem
(essentially that of finding optimal motions of a point
with a line segment “tail”) would admit a polynomial
time solution.

2 The Construction

Our NP-hardness construction is an non-trivial modi-
fication of our earlier construction [1] that establishes
the NP-hardness of determining d1-optimal motions
when the focus is in the rod interior. Like the pre-
vious construction our modified construction exploits
the characterization of d1-optimal motions developed
in [1] (see the appendix of [2] for a proof). In partic-
ular, it makes essential use of the fact that polygonal
obstacles induce a collection of curves that behave
like mirrors in the sense that in optimal motions the
trace of the focus point visits and “reflects” off these
mirror curves (in accordance with Snell’s law). Fig-
ure 1 illustrates a simple polygonal obstacle, its asso-
ciated displaced features (mirrors), and two optimal
motions from initial configuration S to target config-
urations T1 and T2.
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Figure 1: Displaced features (mirrors) and reflecting
motions

If optimal motions never include more than
some fixed constant number of reflections between
stopovers (configurations where the focus lies at one
of polynomially many locations determined by the
obstacle set and the initial rod configuration), then
it it is straightforward to demonstrate a polynomial
time algorithm for constructing optimal motions, by
reduction to a shortest path search in a “visibility
graph” on the set of stopovers. (Indeed this is pre-
cisely the approach that gives a polynomial time al-
gorithms for finding shortest paths for a disc, and

for finding ε-approximation algorithms for d1-optimal
paths for a rod [2]. It is also what made the existence
of a polynomial time algorithm for minimizing the
trace of a rod endpoint quite plausible.)

Unfortunately, as in the case where the focus is in
the rod interior, there exist polygonal obstacle sets,
with a total of n vertices, with respect to which d1-
optimal motions may involve Θ(n) consecutive reflec-
tions. Indeed, our NP-hardness proofs are based on
a obstacle set for which there exist placements with
exponentially many distinct optimal connecting mo-
tions, all of which involve a sequence of Θ(n) reflec-
tions and no stopovers.

Our NP-hardness proofs involve a polynomial time
reduction from 4CNF-satisfiability. Specifically, sup-
pose Φ is a formula in 4CNF involving m clauses and
the k variables X0, . . . , Xk−1. We show how to con-
struct a polygonal environment E, whose description
is bounded in size by some polynomial in k, together
with free placements S and T , and a distance D, such
that there exists a collision-free motion from S to T
whose d1-length is at most D if and only if Φ is sat-
isfiable.

The overall structure of our reduction is similar
to the Canny-Reif proof [4] that the shortest-path
problem (for a point amidst polygonal obstacles) in
3-dimensions is NP-hard: A basic environment is
designed that admits 2k topologically distinct d1-
minimal motions between two specified placements;
these paths are associated with distinct truth assign-
ments to the variables X0, . . . , Xk−1; and finally, the
environment is augmented with some additional ob-
stacles that serve to block (filter) every path whose
associated truth assignment does not satisfy Φ.

Our construction is necessarily different from that
of Canny and Reif since our problem is set in two
dimensions. As indicated above, the key to our con-
struction is to exploit the mirror-like properties of
reflection curves (displaced features). Our construc-
tion is modular in the sense that it consists of an
assembly of certain pre-fabricated modules. In fact,
our new construction borrows heavily from the collec-
tion of modules used in our earlier construction; we
essentially need just one new module together with a
slightly more involved (more global) analysis.

The reader is referred to [1] for details of the full
construction. Here we concentrate on the modifica-
tions needed to make the modules work in the case
where the focus is at one of the rod endpoints. Ad-
ditional details will be presented in the full version.
Each module is a collection of line segment barriers
together with certain distinguished points, called ter-
minals. Terminals play the dual role of attachment
points for neighbouring modules and checkpoints on
(potential) shortest paths. The trace of the rod focus
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F , as the rod follows shortest paths between place-
ments in our modules, is referred to as a beam. Beams
that connect terminals are called canonical beams.
There is just one basic module from which several
others are fabricated:

Wide beam splitter WBS(λ). This module has
one input terminal a and two output terminals b0

and b1, with a vertical separation of λ units (the sep-
aration factor). Let µx denote an optimal motion
between the horizontal rod placements Ha and Hx

(with the focus at a and x respectively). Then, for
all points x on the line b0b1 through b0 and b1, the
d1-distance of µx is minimized exactly when x = b0

or x = b1. We denote this minimum distance by σ.
(If the maximum value of λ is fixed then σ can be
fixed independent of λ). Figure 2 gives a schematic
description of this module; the details of its construc-
tion are exactly where the current paper differs from
[1].
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Figure 2: Wide Beam Splitter Schematic

In fact, we need a more general property to hold for
our wide beam splitter that says that the same split-
ting property holds for a sufficiently narrow cluster
of parallel beams (a sheaf). Specifically, if a′ (respec-
tively, b′0, b′1) is the point υ units above a (respec-
tively, b0, b1), where |υ| is sufficiently small, and µυ

x

denotes an optimal motion between the horizontal
placements Ha′ and Hx then, for all points x on the
line b0b1, the d1-distance of µυ

x is minimized exactly
when x = b′0 or x = b′1. Furthermore, this minimum
distance is equal to σ (independent of υ).

The left-right mirror image of a wide beam splitter
behaves like a wide beam combiner. It is not hard to
imagine (see [1] for details) that wide beam splitters
and combiners (with suitably chosen values of pa-
rameter λ) can be composed to form a module that
splits a single beam into a sheaf of 2k parallel beams
all of which correspond to d1-optimal motions from
a single initial configuration. Composing this multi-
beam splitter with its mirror image produces a mod-
ule with exactly 2k distinct minimum length beams
joining two specified points a and a′ (corresponding
to d1-optimal motions from initial placement Ha to
final placement Ha′).

The reduction proceeds by interpreting the 2k dis-
tinct paths as possible truth assignments to the vari-
ables of a given k-variable formula Φ. Additional
modules inserted between the multi beam splitter

and combiner are designed to filter out all but those
beams whose associated truth assignments satisfy Φ.
The result is a module which admits a beam traversal
of a specified length joining two specified points (cor-
responding to d1-optimal motions joining two speci-
fied rod configurations) if and only if the formula Φ
is satisfiable.

3 Realizing the components

When the focus lies in the rod interior, a wide beam
splitter module can be built out of two simpler com-
ponents called turn “gadgets”. The basic (optional
turn) gadget (cf. Figure 3) behaves like a half-silvered
mirror: a beam originating at point I can proceed
straight through to point E0 or can reflect and exit
at point E1.

mirror

E 1

0EI

Figure 3: Optional Turn Gadget

A simple modification (blocking the exit to E0)
changes this into a forced turn gadget. Four of these
turn gadgets (one optional and three forced) are com-
bined into a wide beam splitter, as shown in Figure
4. Note that the length of the paths traced by the
split beams can be easily adjusted (by modifying the
length of the channels) to achieve some fixed value
(σ) independent of λ.
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Figure 4: Mirror-based wide beam splitter

Unfortunately, when the focus lies at one of the
rod endpoints this construction fails because there is
only one endpoint that induces a mirror curve and the
construction relies on (alternating) mirror reflections
with respect to both rod endpoints. The essential
new gadget permits a sequence of mirror reflections
with respect to the same endpoint. This gadget, to-
gether with the rod (with focus at the tail end) in six
successive positions in transit, is illustrated in Figure
5 below.
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Figure 5: New Turn Gadget

The new turn gadget achieves not only a forced
turn (by π/3 as illustrated) but also (importantly)
a reorientation of the rod: the rod enters with the
focus end behind, and exits with the focus end in
front. This, alternating with our conventional 2π/3
optional and forced turn gadgets (the alternation en-
suring that the reflection always occurs with respect
to the correct end of the rod) allows us to build a
wide beam splitter that exploits reflection behaviour
at only one end of the rod.

References

[1] T. Asano, D. Kirkpatrick, and C. Yap. d1-Optimal
motion of a rod. 12th ACM Symposium on Computa-
tional Geometry, pages 252–263, 1996.

[2] T. Asano, D. Kirkpatrick, and C. Yap. Pseudo ap-
proximation algorithms with applications to optimal
motion planning. 18th ACM Symposium on Compu-
tational Geometry, pages 170–178, 2002.

[3] A. S. Besicovitch. On Kakeya’s problem and a similar
one. Mathematische Zeitschrift, 27:312–320, 1928.

[4] J. Canny and J. H. Reif. New lower bound techniques
for robot motion planning problems. IEEE Founda-
tions of Computer Science, 28:49–60, 1987.

[5] C. Icking, G. Rote, E. Welzl, and C. Yap. Shortest
paths for line segments. Algorithmica, 10:182–200,
1993.

[6] J. O’Rourke. Finding a shortest ladder path: a special
case. IMA Preprint Series 353, Institute for Mathe-
matics and its Applications, University of Minnesota,
1987.

[7] C. H. Papadimitriou and E. B. Silverberg. Optimal
piecewise linear motion of an object among obstacles.
Algorithmica, 2:523–539, 1987.

[8] J. H. Reif, J. D. Tygar, and A. Yoshida. Computabil-
ity and complexity of ray tracing. Discrete Comput.
Geom., 11:265-287, 1994.

[9] J. T. Schwartz and M. Sharir. On the piano movers’
problem: I. the case of a two-dimensional rigid polyg-
onal body moving amidst polygonal barriers. Commu-
nications on Pure and Applied Mathematics, 36:345–
398, 1983.

[10] M. Sharir. A note on the Papadimitriou-Silverberg
algorithm for planning optimal piecewise-linear mo-
tion of a ladder. NYU Robotics Report 188, Courant
Institute, New York University, 1989.

[11] M. Sharir, C. O’D’únlaing, and C. Yap. Generalized
Voronoi diagrams for moving a ladder I: topological
analysis. Communications in Pure and Applied Math.,
XXXIX:423–483, 1986.

[12] M. Sharir, C. O’D’únlaing, and C. Yap. General-
ized Voronoi diagrams for moving a ladder II: efficient
computation of the diagram. Algorithmica, 2:27–59,
1987.

[13] S. M. Ulam. Problems of Modern Mathematics. Sci-
ence Editions, New York, 1964. Originally published
as: A Collection of Mathematical Problems, Inter-
science Publishers, New York, 1960.

[14] Chee Yap. Algorithmic motion planning. In
J. T. Schwartz and C. K. Yap, editors, Advances in
Robotics, Vol. 1: Algorithmic and geometric issues,
chapter 3. Lawrence Erlbaum Associates, 1987.

4


