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On the Number of Pseudo-Triangulations of Certain Point Sets

Oswin Aichholzer∗ David Orden† Francisco Santos† Bettina Speckmann‡

Abstract

We pose a monotonicity conjecture on the number of
pseudo-triangulations of any planar point set, and check
it in two prominent families of point sets, namely the
so-called double circle and double chain. The latter has
asymptotically 12nnΘ(1) pointed pseudo-triangulations,
which lies significantly above the maximum number of
triangulations in a planar point set known so far.

1 Introduction

Pseudo-triangulations, also called geodesic triangula-
tions, are a generalization of triangulations which has
found multiple applications in Computational Geome-
try in the last years. They were originally studied in
the context of visibility [10, 11] and ray shooting [5, 6],
but recently have also been used in kinetic collision de-
tection [1, 8], rigidity [17], and guarding [16].

A pseudo-triangle is a planar polygon that has exactly
three convex vertices, called corners, with internal an-
gles less than π. A pseudo-triangulation for a set A
of n points in the plane is a partition of conv(A) into
pseudo-triangles whose vertex set is exactly A. A vertex
is pointed if it has an adjacent angle greater than π.

The set of all pseudo-triangulations of a point set has
somewhat nicer properties than that of all triangula-
tions. For example, pseudo-triangulations of a point
set with n elements form the vertex set of a certain
polyhedron of dimension 3n − 3 [9]. The diameter of
the graph of pseudo-triangulations is O(n log n) [3] ver-
sus the Θ(n2) diameter of the graph of triangulations
of certain point sets. For standard triangulations it is
not known which sets of points have the fewest or the
most triangulations, but it was shown in [2] that sets
of points in convex position minimize the number of
pointed pseudo-triangulations.

Let A be a point set and let AI be its subset of interior
points. Let PT (A) be the set of pseudo-triangulations
of A. For each subset W ⊆ AI we denote by PTW (A)
the set of pseudo-triangulations of A in which the points
of W are pointed and those of AI \W are non-pointed.
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For example, PT ∅(A) and PTAI
(A) are the triangula-

tions and the pointed pseudo-triangulations of A, re-
spectively. In [12], the following inequality is proved:

3 |PTW\{v}(A)| ≥ |PTW (A)|.

We pose the following conjecture in the opposite direc-
tion, implicit in previous work:

Conjecture 1 For every point set A in general position
in the plane, the cardinalities of PTW (A) are monotone
with respect to W . That is to say, for any subset W of
its interior points and for every v ∈W , one has

|PTW (A)| ≥ |PTW\{v}(A)|.

In this paper we consider three families of point sets
in the plane: double circles, double chains and what
we call single chains. The first two are the examples
with asymptotically the smallest and biggest number of
triangulations known (see, e.g., [4, 14]). The third is
studied as a step to analyze double chains. Our goal
is twofold: check Conjecture 1, and compare the num-
bers |PTAI

(A)| and |PT (A)| to the number |PT ∅(A)| of
triangulations in these point sets. Our results are sum-
marized in the following table. In all cases the set has
n points and a polynomial factor has been neglected.

double single double
circle chain chain

|PT ∅(A)|
√
12

n
4n 8n

|PTAI
(A)|

√
28

n
8n 12n

|PT (A)|
√
40

n
12n ?

Conjecture 1 YES YES ?

Conjecture 1 would imply that the total number of
pseudo-triangulations in the double chain is between
16n and 24n. We have reasons to believe it to be 20n.
We show that Conjecture 1 in the double chain would
follow from a certain conjecture on pointed pseudo-
triangulations of the single chain.

2 The double circle and its relatives

For any given pair of positive integers v ≥ 3 and i ≤ v,
a point set in almost convex position with parameters
(v, i) consists of a set of v points forming the vertex set
of a convex v-gon and a set of i interior points, placed
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sufficiently close to i different edges of the v-gon. The
double circle is the extremal case v = i.

This situation is a special case of what is called
“almost-convex polygons” in [7]. There it is shown that
the number of triangulations of such a point set does not
depend on the choice of the i edges of the v-gon. Indeed,
if we call this number n(v, i), the recursive formula

n(v, i) = n(v + 1, i− 1)− n(v, i− 1).

allows to compute n(v, i) starting with n(v, 0) = Cv−2

(Catalan numbers). The array obtained by this recur-
sion (difference array of Catalan numbers) appears in
Sloane’s Online Encyclopedia of Integer sequences [15]
with ID number A059346. The double circle, with
v = i = n/2 has asymptotically Θ(

√
12

n
n−3/2) trian-

gulations [14]. It is conjectured in [4] that this is the
smallest number of triangulations that n points in gen-
eral position in the plane can have.

Let p be a specific interior point of a set A in almost
convex position and let qr be the convex hull edge which
has p next to it. Let B and C be the point sets obtained
respectively by deleting p from A and by moving p to
convex position across the edge qr (see Fig. 1).

p

r

q
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r

q

B

p

r

q

C

Figure 1: An almost convex point set
A with v = 9 and i = 4.

Lemma 1 For every W ⊂ AI not containing p (so that
W is also a set of interior points of B and C) one has:

1. |PTW (A)| = |PTW (C)| − |PTW (B)|.
2. |PTW∪{p}(A)| = 2 |PTW (C)| − |PTW (B)|.

Proof: 1. It is clear that there are bijections between:
(1) pseudo-triangulations of C pointed at W that use
the edge qr and pseudo-triangulations of B pointed at
W and (2) pseudo-triangulations of C pointed at W
that do not use the edge qr and pseudo-triangulations
of A pointed at W . These bijections give the statement.

2. Pseudo-triangulations of A in which p is pointed
come in three flavors: those using the edges pq and
pr (and hence having no other edge incident to p),
those using pq but not pr, and those using pr but
not pq. The first set is in bijection with the pseudo-
triangulations of B. Each of the other two is in bijec-
tion with pseudo-triangulations of C that do not use
the edge qr, that is pseudo-triangulations of C minus
those of B. Since the bijections preserve pointedness at
interior points (other than p), we get |PTW∪{p}(A)| =
|PTW (B)|+ 2 (|PTW (C)| − |PTW (B)|), as desired. ¤

Observe that Lemma 1 implies that A satisfies Con-
jecture 1 and that the number |PTW (A)| depends only
on v, i and k := |W |. Let n(v, i, k) denote this number.
Since n(v, i, 0) = 4v3i (modulo a polynomial factor) and
since

n(v, i, k) = 2(v + 1, i− 1, k − 1)− n(v, i− 1, k − 1),

we conclude that n(v, i, k) ∼ 4v3i−k7k, modulo a poly-
nomial factor. Adding the numbers over all the possible
subsets of interior points gives

i
∑

k=0

(

i

k

)

4v3i−k7k = 4v10i.

Hence, a double circle (the case i = v = n/2) has√
28

n
pointed pseudo-triangulations and

√
40

n
pseudo-

triangulations in total, modulo a polynomial factor.

3 The single chain

By a single chain we mean the following point set A:
three extremal vertices and a concave chain of l points
p1, . . . , pl next to an edge. Let p be the extremal point
opposite to the chain. We call p the top of A.

We classify the pointed pseudo-triangulations of the
single chain according to which interior points are joined
to the top. For any subset W ⊂ AI we denote by
PPTW (A) the set of pointed pseudo-triangulations of
A in which p is joined to pi if and only if pi ∈ W . For
example, PPT ∅(A) is in bijection to the set of triangu-
lations of the convex l + 2-gon, hence its cardinality is
the Catalan number Cl. It is easy to show that:

Lemma 2 For every W :

|PTW (A)| =
∑

W ′⊂W

|PPTW ′(A)|.

Hence, Conjecture 1 holds for A.

For example, the equality |PT ∅(A)| = |PPT ∅(A)| is
the easy observation that triangulations of A are in bi-
jection to triangulations of the convex l + 2-gon. Curi-
ously enough, PPTAI

(A) (that is, the pointed pseudo-
triangulations in which the top point p is joined to ev-
erything), have the cardinality of the next Catalan num-
ber Cl+1, and flips between them form the graph of the
corresponding associahedron, by Section 5.3 of [13] (see
also the remark and picture on pp. 728–729). The fol-
lowing is a 1-dimensional analog of Conjecture 1.

Conjecture 2 For every W ⊂ AI and p ∈ AI\W ,

|PPTW∪{v}(A)| ≥ |PPTW (A)|.

We do not know how to compute the numbers
PPTW (A). But we can compute the sum of all the
PPTW (A)’s for each cardinality of W , via the following
recursive formulae whose bijective proof we omit.
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Theorem 3 Let a(l, i) :=
∑

|W |=i |PPTW (A)|. Then:

1. a(l, 0) = Cl, and a(l, 1) = (l + 1)Cl.

2. For every i ≥ 2,

a(l, i) =

(

l + 1

i

)

Cl − a(l − 1, i− 2).

The first few values of a(l, i) are as follows:

l \
i 0 1 2 3 4 5 al =

∑

a(l, i)

0 1 1
1 1 2 3
2 2 6 5 13
3 5 20 28 14 67
4 14 70 135 120 42 381
5 42 252 616 770 495 132 2307

The recursion also tells us that the array a(l, i) equals
the sequence A062991 in [15]. The row sums, that is, the
numbers |PTAI

(A)| of pointed pseudo-triangulations,
form the sequence A062992. We can obtain them adding
over all values of i in the formula of Theorem 3:

Corollary 4 The number al = |PTAI
(A)| of pointed

pseudo-triangulations of the single chain satisfies:

al = 2l+1Cl − al−1.

Hence, al = |PTAI
(A)| ∈ Θ(8ll−3/2).

We now turn our attention to the total number of
pseudo-triangulations PT (A). Lemma 2 implies that:

|PT (A)| =
∑

W ′⊂AI

2|AI−W ′||PPTW ′(A)| =
l
∑

i=0

2l−ia(l, i).

Corollary 5 The number bl = |PT (A)| of pseudo-
triangulations of the single chain satisfies:

2bl = 3l+1Cl − bl−1.

Hence, bl = |PT (A)| ∈ Θ(12ll−3/2).

4 The double chain

Figure 2: A double
chain: l = 5 and

m = 4.

For any two numbers l,m ≥
0, a double chain is a convex
4-gon with l and m points,
respectively, placed forming
concave chains next to op-
posite edges of the 4-gon in
a way that the they do not
cross the two diagonals of
the convex 4-gon (see Fig. 2). The double chain has
exactly

ClCm

(

l +m+ 2

l + 1

)

triangulations. In the extremal case l = m = (n −
4)/2 this gives Θ(8nn−7/2). This is (asymptotically)
the point set with the largest number of triangulations
known so far.

Let A be a double chain with l and m interior points
in the two chains, resp. (so A has l +m + 4 points in
total). We call the l + 2 and m + 2 vertices in the two
chains the “top” and “bottom” parts.

To count the number of pointed pseudo-triangulations
of A, let us call B and C single chains with l and m in-
terior points each. B can be considered the subset of
A consisting of the top part plus a bottom vertex, and
analogously for C. Every pseudo-triangulation TA of
A induces pseudo-triangulations TB and TC of B and
C as follows: consider on the one hand all the pseudo-
triangles of TA that use at most one vertex of the bot-
tom, and contract these vertices to a single one. Do the
same for pseudo-triangles with at most one vertex in the
top (see Fig. 3).

(a) TA (b) TB and TC

Figure 3: Decomposing a
pseudo-triangulation of a double chain.

Conversely, given a pair of pseudo-triangulations of B
and C, if i (resp. j) denotes the number of interior edges
incident to the bottom (resp. top) point, there are ex-
actly

(

i+j+2
i+1

)

ways to recover a pseudo-triangulation of
A from that data, by shuffling the i+1 pseudo-triangles
of TB incident too the bottom and the j +1 of TC inci-
dent to the top.

Theorem 6 Let V and W be subsets of the top and
bottom interior points. For each V ′ ⊂ V and W ′ ⊂ W

let tV,W
V ′,W ′ =

(

l−|V \V ′|+m−|W\W ′|+2
l−|V \V ′|+1

)

. Then:

|PTV ∪W (A)| =
∑

V ′⊂V

W ′⊂W

tV,W
V ′,W ′ |PPTV ′(B)||PPTW ′(C)|.

Proof: The first observation is that the “shuffling” de-
scribed above preserves pointedness. The second obser-
vation is that in the expression

|PTV (B)| =
∑

V ′⊂V

|PPTV ′(B)|

of Lemma 2, each element of PPT V ′(B) corresponds to
an element of PTV (B) with exactly l − |V \V ′| interior
edges incident to the bottom point (same for C). ¤
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Corollary 7 If Conjecture 2 holds, then the double
chain satisfies Conjecture 1.

We now consider the number of pointed pseudo-
triangulations of the double chain. Theorem 6 can be
rewritten in this case as:

|PTAI
(A)| =

l
∑

i=0

m
∑

j=0

(

i+ j + 2

i+ 1

)

a(l, i)a(m, j),

where a(·, ·) is as in the previous section. The following
triangular array gives these numbers for l +m ≤ 5.

2
8 8

42 38 42
252 226 226 252

1630 1502 1476 1502 1630
11048 10618 10604 10604 10618 11048

The sequence for l = m is

2, 38, 1476, 81310, 5495276, 424398044, . . .

In order to analyze the asymptotics of this sequence we
need the following lemma on the numbers a(l, i):

Lemma 8

1− i(i− 1)

(4l − 2)(l − i+ 2)
≤ a(l, i)
(

l+1
i

)

Cl

≤ 1

Corollary 9 Let A be a double chain with n points and
with equal numbers on both sides (that is to say, l = m =
(n− 4)/2). Then:

Ω(12nn−9/2) ≤ |PTAI
(A)| ≤ O(12nn−3/2).
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