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Abstract

The paper is the first report on approximation algo-
rithms for computing the maximum weight triangula-
tion of a set of n points in the plane. We prove an Ω(

√
n)

lower bound on the approximation factor for several
heuristics: maximum greedy triangulation, maximum
greedy spanning tree triangulation and maximum span-
ning tree triangulation. We then propose the Spoke Tri-
angulation algorithm, which always approximates the
maximum weight triangulation for points in general po-
sition within a factor of six and can be computed in
O(n log n) time. We also prove that Spoke Triangula-
tion approximates the maximum weight triangulation of
a convex polygon within a factor of two.

1 Introduction

Let P be a set of n points in the plane. A triangulation
T (P ) of P is a maximal set of non-intersecting straight-
line segments connecting points in P . The weight |T (P )|
of T (P ) is the sum of the Euclidean lengths of edges in
T (P ). The minimum weight triangulation (MWT) is
a triangulation of P with minimum weight. The maxi-
mum weight triangulation (MAT) is a triangulation of P
with maximum weight. Computing the former is a well
known problem in computational geometry and neither
known to be NP-complete, nor known to be solvable in
polynomial time [1].

The best approximation result to MWT(P ) is due
to Levcopoulos and Krznaric [5]. Their algorithm pro-
duces a (very large) constant factor approximation to
the MWT(P ). Other known heuristic algorithms were
described in [7], [6] and [3]. Lingas [6] and Heath and
Pemmaraju [3] introduced so-called minimum spanning
tree triangulation and greedy spanning tree triangulation
heuristics. Levcopoulos and Krznaric [4] showed that
these heuristics have approximation ratio Ω(n), Ω(

√
n),

respectively, in the worst case.
In contrast to the extensive literature on minimum

weight triangulation, there is only one published result
[9] on maximum weight triangulation to the best of the
author’s knowledge. In that paper, the authors gave
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an O(n2) algorithm for finding the MAT of an n-sided
polygon inscribed in a disk.

In this paper, we prove that the worst-case approxi-
mation lower bound for MAT by maximum greedy tri-
angulation, maximum greedy spanning tree triangula-
tion and maximum spanning tree triangulation heuris-
tics (which are the natural analogues of their MWT
counterparts) is Ω(

√
n). We also obtain a tight bound

of Θ(n) for degenerate cases. Our construction is more
complicated than its counterpart for minimum weight
triangulation. We then propose the Spoke Triangulation
and prove that it approximates the maximum weight tri-
angulation for points in general position within a factor
of 6 and can be computed in O(n log n) time. We also
prove that Spoke Triangulation approximates the max-
imum weight triangulation of a convex polygon within
a factor of 2.

We begin with an easy observation and some defi-
nitions. Gilbert [2] showed that the minimum weight
triangulation of a simple polygon can be computed in
O(n3) time by dynamic programming. In an analo-
gus manner, its maximum weight triangulation can also
be computed in O(n3) time. The greedy triangulation
GT(P ) of P is obtained by repeatedly adding a longest
possible edge that does not properly intersect any of
the previously generated edges. The greedy spanning
tree triangulation GSTT(P ) of P is obtained as fol-
lows: Start with a maximum spanning tree of the greedy
triangulation, triangulate optimally each of the simple
polygons bounded by this spanning tree and the convex
hull of P . The maximum spanning tree triangulation
MSTT(P ) of P is obtained similarly to GSTT(P ) ex-
cept that it starts with the Euclidean maximum non-
crossing spanning tree of P .

2 Lower bounds for GT, GSTT and MSTT

Theorem 1. For any integer n ≥ 0, there exists a set
P of n points such that |MAT(P )|

|GT(P )| = Ω(
√

n), |MAT(P )|
|GSTT(P )| =

Ω(
√

n), and |MAT(P )|
|MSTT(P )| = Ω(

√
n).

Proof. We first construct a point set P for which
|MAT(P )|
|GT(P )| = Ω(

√
n). We start by allowing degenera-

cies, that is, we permit three or more collinear points
in P . Assume the points in P are distributed as shown
in Figure 1(a). All the points are on the sides of the
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Figure 1: (a) Degenerate case (b) Maximum spanning
tree

Figure 2: Non-degenerate case

right triangle apb, where p is only an imaginary point
(p �∈ P ) satisfying ∠apb = π/2, |ab| = n, |pb| = |pa| =
n/

√
2, |pc| = 1, |ppj | < 1 for 1 ≤ j ≤ n − 3.

By the definition of greedy triangulation, ab, bc, bpn−3

(recall that p �∈ P ) will be the first three edges to
be added. After that, there is only one possible way
to complete the triangulation: to connect pj to c for
1 ≤ j ≤ n− 3, connect pj to pj+1 for 1 ≤ j ≤ n− 4 and
connect a to c. Note that |ab|+ |bc|+ |bpn−3|+ |ac| < 4n
and |pjc| <

√
2, 1 ≤ j ≤ n − 3, so |GT| = |ab| + |bc| +

|bpn−3|+
�n−4

j=1 |pipi+1|+
�n−3

j=1 |pic|+ |ac| = Θ(n). On
the other hand, a larger weight triangulation LWT (P )
(clearly |LWT (P )| ≤ |MAT(P )|) is obtained by first
connecting pj to a for 1 ≤ j ≤ n − 3. Then |LWT | ≥�n−3

j=1 |pja| = Θ(n2), thus |MAT(P )|
|GT(P )| = Ω(n). This

bound is tight immediately from Observation 3.
Next we consider the non-degenerate case, that is, we

do not allow three or more collinear points. In [4], the
authors started with the degenerate construction and
then just moved the points pj (1 ≤ j ≤ n − 3) from a
line to a curve (parabola). However, it is not hard to
see this will not work in our case. Our idea is roughly
that we distribute the first

√
n points in a nice way on

a unit half-circle such that the total length of the first√
n edges in GT(P ) is O(

√
n). Then we claim that

the total length of all remaining edges is also O(
√

n).
However MAT(P ) has weight Ω(n), which will complete
the proof.

Refer to Figure 2. Let ab be the diameter of the unit
half-circle C and let d lie slightly above the center of C.
So |�ab| = π. We place all other points inside or on C.
We say p is below a chord xy when p lies in or on the
boundary of the closed region bounded by arc �xy and

chord xy, then |xy| > |xp|, |yp| (note that p lies in the
closed half-disk). We distribute the next k − 2 points
denoted by p1, p2, . . . , pk−2 on C as follows.

Place p1 on C such that |�bp1| = π/x1, where 1 < x1 <
2. We place remaining points below bp1. We want to
add bp1 to GT(P ) and we can do this if all remaining
points lie below the chord p1p2 such that |�bp1| > |�ap2|.
Let x2 = |�p1b|

|�p1p2|
> 1 and restrict x2 < 2. Then x2 >

1
2−x1

. Next we will add p1p2 to GT(P ) if all other points

lie below the chord p2p3 such that |�p1p2| > |�bp3|. Let

x3 = |�p2p1|
|�p2p3|

> 1 and restrict x3 < 2. Then x3 > 1
2−x2

.

Generally we place the points incrementally. Sup-
pose we have just added the edge pj−1pj , that is, the
last point we placed is pj+1, and all remaining points lie
below pjpj+1 and we have determined x1, x2, . . . , xj+1

where xj+1 = |�pjpj−1|
|�pjpj+1|

and thus |�pj−1pj+1| = (1 −
1

xj+1
)|	pjpj−1|, |	pjpj+1| = π/


j+1
k=1 xk.

Now we want to add edge pjpj+1, thus we should
place the point pj+2 on C such that all the remain-
ing points lie below pj+1pj+2 guaranteeing |	pjpj+1| >

|�pj−1pj+2|. Let xj+2 = |�pj+1pj |
|�pj+1pj+2|

, then |�pj+1pj+2| =

|	pjpj+1|/xj+2 = π/

j+2

k=1 xk. It is easy to see |	pjpj+1| >
|�pj−1pj+1| + |�pj+1pj+2| and (1 − 1

xj+2
)|	pjpj+1| > (1 −

1
xj+1

)|	pjpj−1|. Thus xj+2 > 1
2−xj+1

.
Let xj = 1/(2 − xj−1) + ε (ε > 0). Suppose we

have added the points p1, p2, . . . , pk−2 and determined
x1, x2, . . . , xk−2. If 1 < xj < 2 for j = 1, 2, . . . , k − 2,
then x1, x2, . . . , xk−2 is a valid sequence for our example,
i.e., xj > 1/(2 − xj−1). Then it is not hard to see that
1/(2 − xj−1) > xj−1, thus x1, x2, . . . , xk−2 is a mono-
tonic increasing sequence. This is why we did not place
the points symmetrically on the circle C. Lemma 2
guarantees the condition if select x1 = (k + 1)/k,
ε = 1/kk, and xj = 1

2−xj−1
+ 1

kk , for j = 2, 3, . . . , k − 2.
Since any chord in C is shorter than its correspond-
ing arc, we can safely use the length of the arc to
bound above the length of chord. The total length of
the first k − 2 edges is (note that 1/


i
j=1 xj < 1/xi

1

since x1, x2, . . . , xj is a monotonic increasing sequence)
|ab|+ |bp1|+

�k−4
i=1 |pipi+1| < π+π

�k−4
i=1 (1/

i

j=1 xj) <

π + π
�k−4

i=1 (1/xi
1) < π + π

x1−1 = O( 1
x1−1 ) = O(k).

According to Lemma 2,

k−3

i=1 xi > k+1
k

k
k−1 · · · 5

4 =
k+1
4 , then |�pk−4pk−3| = π/


k−3
i=1 xi = O(1/k). We now

place the remaining n − k − 1 points. Since they are
distributed below pk−3pk−2, we restrict them to be ar-
bitrarily distributed in an obtuse triangle pk−3pk−2pk−1

where pk−3pk−2 is the longest edge. We also require
pid for k ≤ i ≤ n − 3 must intersect pk−4pk−3. Since
pk−4pk−3 has already been added to GT(P ), no point
below pk−4pk−3 can be visible to any point above it.

2



CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

And since any edge we can add is bounded above by
|�pk−4pk−3| = O(1/k), the length of any triangulation of
the region bounded by pk−4pk−3pk−2pk−1 is bounded
above by O(1/k) × Θ(n − k) = O(n/k). In order to
complete the triangulation, we also need to add the
edges on convex hull whose length is bounded by π,
then |GT| = O(k) + O(n/k) + π. We select k =

√
n,

then |GT| = O(
√

n).
A larger weight triangulation LWT (P ) is easier to

compute. We connect d to p1, p2, . . . , pk−2 and all other
n − k − 1 points (pk−1, pk+2, . . . , pn−3). Each of first
k−2 edges is longer than 1/2 and we have the following
observation on the remaining n−k−1 edges. Through d
we make a line perpendicular to pk−3pk−2 intersecting
pk−3pk−2 at f . We can do so because d is very close
to center of C. (In fact, even if they cannot intersect,
the bound still holds.) Since |pk−3pk−2| = O(1/k), then
|df | >


1 − 1/k2 . Then each of the n−k−1 remaining

edges is bounded below by


1 − 1/k2 . Thus (even if
LWT is incomplete) |LWT | > (k − 2)/2 + (n − k −
1)


1 − 1/k2 = Ω(n) for k =
√

n. Then |MAT|/|GT| =
Ω(

√
n).

Finally we construct examples where |MAT(P )|
|GSTT(P )| =

Ω(
√

n), |MAT(P )|
|MSTT(P )| = Ω(

√
n).

With degeneracies allowed, we reuse the example of
Figure 1(a). The maximum spanning tree of GT(P )
and maximum spanning tree of P are the same, see
Figure 1(b). Then |GSTT| = |GT|, |MSTT| = |GT|
even if optimal algorithm is then used for completing
the triangulation.

In non-degenerate case, we reuse the example in Fig-
ure 2. It is not hard to see that edges ab, bp1, pjpj+1

for j = 1, 2, . . . , k − 4 also belong to MSTT(P ) and
GSTT(P ), thus |GSTT(P )|, |MSTT(P )| are asymptoti-
cally the same as |GT(P )| since no point below pk−4pk−3

can be visible to any point above pk−4pk−3. Thus the
approximation lower bound will not change. This com-
pletes the proof. �

Lemma 2. For sufficiently large k and ε = 1
kk , if a

sequence x1, x2, . . . , xk−2 is defined as x1 = (k + 1)/k,
and xj = 1/(2 − xj−1) + ε, for j = 2, 3, . . . , k − 2, then

1 <
k − (j − 2)
k − (j − 1)

< xj <
k − (j − 1)
k − j − εkj

+ ε

for j = 2, 3, . . . , k − 2.

Proof. Omitted. �

3 A Constant-Factor Approximation for MAT

The diameter of P is the longest segment with both
endpoints in P . For points in general position, we

present a new triangulation algorithm, which approx-
imates MAT(P ) within a small constant factor. We call
it the Spoke Triangulation algorithm (ST in short). Re-
fer to Figure 3 and Algorithm 1.

Since any triangulation has at most 3n− 6 edges, the
following observation is obvious

Observation 3. For any triangulation T (P ) of P with
a diameter D, |T (P )| ≤ (3n − 6)D.

Theorem 4. Spoke Triangulation algorithm properly
triangulates a set of points P (in general position) in
O(n log n) time and |MAT(P )|/|ST(P )| < 6.

Proof. It is obvious that the algorithm properly trian-
gulates P . Now we bound the running time of ST(P ).
Step 1 requires O(n log n) time. Step 2 requires O(n)
time. Running time of step 3 is bounded above by sort-
ing p1, p2, . . . , pn1 which takes O(n log n) time. So the
running time of ST(P ) is O(n log n).

Finally we bound the approximation ratio. ST(P )
is composed of diameter, pia, qib and the edges added
in step 3. Suppose there exists pt ∈ R such that
|pta| < D/2 which means |ptb| > D/2. (For example, p′2
in Figure 3.) Then according to ST , in the final triangu-
lation there always exists a path from pt to b containing
no edge in {pia, qib, ab}. (For example, the path p′2p

′
3b

in Figure 3.) The length of the path is obviously longer
than |ptb| which means |ST | > D/2 + D +

�n1
i=1 |pia|+�n2

i=1 |qib| > 1.5D + (n1 + n2)D/2 = nD/2 + D/2.
Otherwise, there is no such point, i.e., for all pi ∈

R, |pia| > D/2. According to ST , there must exist an
empty triangle abpk in the final triangulation ( For ex-
ample, abp′5 in Figure 3.), then |ST | > D+|pka|+|pkb|+�

pi∈R−{pk} |pia| +
�n2

i=1 |qib| > nD/2 + D/2.
In either case, by Observation 3 we have

|MAT(P )|/|ST(P )| < (3n−6)D/(nD/2+D/2) < 6. �

Observation 5. For convex polygon P , |MAT(P )| <
nD + 0.15D.

Proof. We have n edges on the convex hull and n −
3 edges in its interior. The perimeter of the convex
hull is bounded above by πD according to [8]. Then
|MAT(P )| < (n − 3)D + πD < nD + 0.15D. �

Since |MAT(P )|/|ST(P )| < (nD + 0.15D)/(nD/2 +
D/2) < 2, ST(P ) approximates MAT(P ) of convex
polygon P within a factor of two and can be computed
in O(n log n) time compared with O(n3) time needed to
compute MAT exactly by using dynamic programming.
Thus we have shown

Lemma 6. If P is a set of n points in convex position,
ST(P ) properly triangulates P in O(n log n) time and
|MAT(P )|/|ST(P )| < 2.
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Figure 3: Spoke Triangulation (subset R)

Algorithm 1 Spoke Triangulation
1: Compute the diameter ab of P . Put D = |ab|. Let

R = {pi | pi lies to the left of the line ab} and
S = {qi | qi lies to the right of the line ab}. Let
n1 (resp. n2) denote the cardinality of R (resp. S).
Then n1 +n2 = n−2. Since at most one of R and S
can be empty, without loss of generality, we assume
R is not empty. Connect a to b.

2: At least one of
�n1

i=1 |pia| and
�n1

i=1 |pib| is larger
than n1D/2 since

�n1
i=1 |pia| +

�n1
i=1 |pib| > n1|ab|

by triangle inequality. Without loss of generality we
assume
�n1

i=1 |pia| > n1D/2 and connect all point
pi to a. Similarly, we connect all points qi to b
assuming

�n2
i=1 |qib| > n2D/2.

3: Now we have a spanning tree of P and we complete
the triangulation as in Graham’s scan algorithm for
computing convex hull. And algorithm for triangu-
lating the region to the left of ab is given below in
lines 4–11. We triangulate the region to the right of
it similarly.

4: Sort p1, p2, . . . , pn1 according to the angle piab (from
the largest to smallest), resulting in a sequence
p′1, p

′
2, . . . , p

′
n1

. Let p′n+1 denote b.
5: Put the point p′1 in the list Lleft.
6: for i = 2 to n1 + 1 do
7: Append p′i to Lleft and link p′i to p′i−1.
8: while Lleft contains more than two points and

the last three points (p′j , p
′
k, p′l, l < k < j) in Lleft

make a left turn (i.e., ∠p′jp
′
kp′l > π in quadrilat-

eral p′jp
′
kp′la). do

9: Connect p′j to p′l and remove p′k from the list.
10: end while
11: end for

(a) ST(P ) (b) MAT(P )

Figure 4: Lower bound for Lemma 6

Note that the above bound on approximation ratio
is sharp since the example shown in Figure 4 indicates
that |MAT(P )|/|ST(P )| can be arbitrarily close to two.
In the example, every point lies on a circle and two of
them are the endpoints of the diameter. Half of the
remaining points lie near to one endpoint of the diam-
eter, and the other half near its other endpoint. We
omit in this version an variant of the spoke triangula-
tion algorithm that produces spanning tree of the same
or larger weight by combining the spanning tree in ST
with a greedy heuristic. However, we cannot guarantee
that the weight of the entire triangulation will increase.
This variant, however, triangulates correctly some ex-
amples (such as those in Figure 4(b)) that are “bad”
for the spoke triangulation algorithm.

4 Conclusions

This paper is the first report of approximation algo-
rithms for maximum weight triangulation to the best of
the author’s knowledge. We first prove that in the worst
case maximum greedy triangulation, maximum greedy
spanning tree triangulation and maximum spanning tree
triangulation heuristics do not provide a constant fac-
tor approximation for the maximum weight triangula-
tion. We then propose the Spoke Triangulation whose
length is always within a small constant factor from the
maximum. However, it is still a challenging problem
to design a polynomial-time approximation scheme for
MAT(P ) of a general planar point set P . In fact, finding
an algorithm that would guarantee a smaller constant
factor approximation is interesting as well.
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