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Network Design Subject to Facility Location

J. Bhadury∗, R. Chandrasekaran†, L. Gewali‡

Abstract

We consider the problem of designing a transporta-
tion network to allow the residents of the network to
avail service provided by a single facility whose location
is predetermined. This problem is known to be NP-
Complete for general graph. The problem remains NP-
Complete even when the vertices of the network are re-
quired to lie on the boundary of a convex polygon in the
Euclidean plane. We present a polynomial time algo-
rithm for computing the median constrained minimum
spanning tree when the edges of the required network
are not allowed to cross with each other. Our technique
is based on the integer programming formulation of the
network design problem.

1 Introduction

Algorithms for computing median of networks and sets
have many applications in facility location and robust
estimation [1,3,5,6,9,10,11]. Median computing algo-
rithms have been considered in operations research,
computational geometry, and graph theory. In facility
location applications, it is known that a service facility
located at the median of a network of customers con-
nected by road links tend to minimize travel time.

In this paper we consider the problem of computing
the minimum spanning tree of a network constrained
to have median at a given vertex. The general version
of this problem is known to be NP-complete [3]. The
problem remains NP-complete even for vertices on Eu-
clidean plane. We consider the non-crossing version of
the problem where the edges of the spanning tree are
not allowed to cross. We develop a polynomial time
algorithm to obtain a non-crossing median constrained
minimum spanning tree by reducing the problem to the
problem of computing minimum cover for a 0/1 matrix
having circular-1 property.
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2 Preliminaries

Consider the problem of constructing a network con-
necting a service facility to customers. The n clus-
ters of customers are represented by a set of n vertices
V = {v1, v2, v3, ...vn}. The facility itself is required to
be located at one of its vertices, say vn. A weight wi

is associated with vertex vi. In the application of our
interest, the weight wi represents the number of cus-
tomers at the ith cluster. The desired network must
have path between all pair of customer sites. i.e., the de-
sired network must be connected. The network should
be such that the sum of weighted distance from facility
location vn to all customer sites is as minimum as pos-
sible. Let N(V,E′) be the desired network. The total
weighted distance from vn to all other nodes, denoted
by F (vn, N), is given by :

F (vn, N) =
n�

i=1

wid(n, i)

where d(n, i) is the length of the shortest path between
vn and vi.

Definition 1: A vertex that minimizes the to-
tal weighted distance to other vertices is called the
1-median of the network. Thus vn is 1-median if

F (vn, N) ≤ F (vi, N)∀vi ∈ V

With these notation, the median constrained minimum
spanning tree can be defined as follows.

Definition 2: Given a graph G(V,E) with weighted
nodes and weighted edges and a specified vertex vn ∈
V , the minimum spanning tree of G(V,E) with vn as
its median is called the median constrained minimum
spanning tree (MCMST) of the graph.

There is a nice characterization of 1-median of a
weighted tree in term of the weights of subtrees of
a node. Imagine removing a vertex vi and all edges
incident on it from a tree T . The removal breaks the
tree into several smaller trees which we call subtrees
spanned by vi. Goldman [8] has given a beautiful
characterization for the median of a tree in term of
the weights of subtrees spanned by a vertex. This
characterization is stated in the following Lemma.
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Lemma 1: [Goldman’s Characterization] Let
T1, T2, T3, ...Tk be the subtrees of vertex vi of a
tree T . Let w(Tj) denote the weight of tree Tj (sum of
weights of nodes in Tj) and let Tr be the one with the
largest weight, i.e., the heaviest subtree of vi. Then vi

is a 1-median of T if and only if w(Tj) ≤ W
2 , where W

is the weight of the tree T .

Solutions to many optimization problem in Euclidean
graphs satisfy the non-crossing property. (It may be
noted that a solution consisting of edges E in the plane
is said to satisfy non-crossing property if the edges in E
do not cross in their interior.) For example the short-
est watchman route inside a polygon can not intersect
with itself [4]. However, it turns out that the solution
to MCMST problem in the Euclidean plane could have
crossing edges. This observation hints that the two di-
mensional version of the MCMST problem could possi-
bly be solved in polynomial time if the edges of the tree
are not allowed to cross. Such a solution is referred to
as the non-crossing solution.

3 Algorithm for Non-Crossing Solution

In this section we develop a polynomial time algorithm
to obtain a non-crossing solution for the two dimen-
sional Euclidean MCMST problem. We are given a
set of points v1, v2, v3, ...vn representing vertices in the
plane. These vertices induce a complete graph. The
weights of the edges of the graph is given by their
Euclidean length. As before wi is the weight of vertex
vi. Without loss of generality, vn is taken as the vertex
desired to be the median of the spanning tree. The
remaining n-1 vertices are the customer vertices. By
fixing one of the customers vertex (say v1) as the
reference vertex, let ∠vi denote the angle v1vnvi. We
relabel (see Figure 1) the vertices such that

∠v1 = 0 ≤ ∠v2 ≤ ∠v3 ≤ ... < ∠vn−1

Vertex Cluster: Based on the angular ordering of the
customer vertices we define vertex cluster V (i, j), i ≤
j, i �= n as the set of vertices encountered when the ray
originating at vn and passing through vi is swept in the
counterclockwise direction up to and including vj (see
Figure 2). A vertex cluster V (i, j) is called feasible if
the total weight in the cluster is no more than half the
total weight W of all customer vertices, i.e. if

�
vk∈V (i,j)

wk ≤ W
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Figure 1: Labeling Vertices by Angular Order
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Figure 2: Illustrating Vertex Cluster V(i,j)
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Let MST (i, j) denote the minimum spanning tree of
the feasible cluster V (i, j). We need to identify fea-
sible subtrees rooted at the planned median vn. Let
v′ be the vertex in V (i, j) closest to vn. Then T (i, j),
the feasible subtree of vn induced by V (i, j) is given
by adding segment (vn, v′) to MST (i, j), i.e., T (i, j) =
MST (i, j) ∪ {(vn, v′)} (Figure 3).

Consider the angular range ∠T (i, j) formed by the
rays originating at vi and bounding the feasible subtree
T (i, j). The angular range can be written in vector form
as:

∠T (i, j) =
� ∠vi

∠vj

�
(1)
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Figure 3: Constructing a Feasible Subtree
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Consider all feasible subtrees rooted at vn. We
renumber these subtrees as T

′
1, T

′
2, T

′
3, ... T

′
m such

that
∠T

′
1 ≤lex ∠T

′
2 ≤lex ∠T

′
3 ≤lex ... ≤lex

Tm
′

where ≤lex denotes “lexicographically less than or equal
to” and m is the total number of feasible subtrees
rooted at vn.

Theorem 1: A non-crossing solution for Euclidean
MCMST problem can be found in polynomial time.

Proof: Define a 0/1 matrix A = (aij) of dimension
(n − 1) by m as follows. Row i, 1 ≤ i ≤ n, represents
vertex vi and column j, 1 ≤ j ≤ m, represents feasible
subtree T

′
j rooted at vn. The elements aij ’s of matrix

A are defined as:

aij =
�

1 if vertex i is in subtree T
′
j

0 otherwise

�
(2)

Observe that the 0/1 matrix constructed in this way
has “circular 1s” property. In other words, in every
rows all ones occur in consecutive column, with the first
and the last columns being considered consecutive. We
introduce variables x1, x2, x3, ... xj , ... xm such that

xj =
�

1 if feasible subtree T
′
j is selected

0 otherwise

�
(3)

Consider two vectors

X = {x1, x2, ... xj , ... xm}
C = {w(T

′
1), w(T

′
2), w(T

′
3), ... w(T

′
m)}

Then the problem of finding non-crossing solution can

be written as the following covering problem.

Min
m�

j=1

CX (4)

subject to AX = 1

where matrix A has circular 1s property.

When matrix A has circular 1s property, the above
covering problem can be solved in
O(n log m log n(n + m log m)) by using the algorithms
developed by Orlin et. al. [2,12]. This implies that
a non-crossing solution for the Euclidean MCMST
problem can be solved in polynomial time. �

4 Discussion

We presented a polynomial time algorithm for solving
the median constrained minimum spanning tree prob-
lem when the edges of the tree are not allowed to cross.
The algorithm is obtained by reducing the problem to
the cyclic integer programming problem. These algo-
rithms are difficult for practical implementation and it
would be interesting to develop an easily implementable
algorithm. When the edges are allowed to intersect the
median constrained minimum spanning tree problem is
NP-Hard. It would therefore be interesting to develop
an approximation algorithm for the general version of
the problem.
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