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Transversals to line segments in R
3
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Abstract

We completely describe the structure of the connected
components of transversals to a collection of n arbitrary
line segments in R

3. We show that n � 3 line segments
in R

3 admit 0, 1, . . . , n or infinitely many line transver-
sals. In the latter case, the transversals form up to n
connected components.

1 Introduction

Understanding the properties of lines in R
3 is funda-

mental in computational geometry and graphics. A
transversal to a set of line segments is a line that inter-
sects all of them; such transversals have been of interest
for years; see for instance [1].

Since a line in R
3 has four degrees of freedom it can in-

tersect at most four lines or line segments in general po-
sition. We address the following basic question. What
is the possible geometry of the set of transversals to a
collection of 4 arbitrary line segments? It is well-known
that 4 lines in R

3 admit at most 2 or infinitely many
transversals [2, p. 164]. We prove that 4 arbitrary line
segments admit up to 4 or infinitely many transversals.
More generally, we determine the number of connected
components of transversals to n line segments.

A line segment is either closed or open and may de-
generate to a point. Two transversals to a collection
of line segments are in the same connected component
if and only if one can be continuously moved into the
other while remaining a transversal to the collection
of line segments. Equivalently, the two points in line
space (e.g., in Plücker space) corresponding to the two
transversals are in the same connected component of the
set of points corresponding to all the transversals to the
collection of line segments.

Our main result is the following theorem.

Theorem 1 A collection of n � 3 arbitrary line
segments in R

3 admits 0, 1, . . . , n or infinitely many
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sue@cs.mcgill.ca. Supported by NSERC and FCAR grants.
1Research initiated at the Second McGill-INRIA Workshop on

Computational Geometry in Computer Graphics, February 7–14,
2003, co-organized by H. Everett, S. Lazard, and S. Whitesides,
and held at the Bellairs Research Institute of McGill.

transversals. In the latter case, the transversals can
form any number, from 1 up to n inclusive, of connected
components.

More precisely we show that, when n � 4, there can
be more than 2 transversals only if the segments are in
some degenerate configuration, namely if the n segments
are members of one ruling of a hyperbolic paraboloid or
a hyperboloid of one sheet, or if they are concurrent, or
if they all lie in a plane with the possible exception of a
group of one or more segments that all meet that plane
at the same point.

Moreover in these degenerate configurations the num-
ber of connected components of transversals is as fol-
lows. If the segments are members of one ruling of a
hyperbolic paraboloid, or if they are concurrent, their
transversals form at most one connected component. If
they are members of one ruling of a hyperboloid of one
sheet, or if they are coplanar, their transversals can have
up to n connected components (see Figures 1 and 6). Fi-
nally, if the segments all lie in a plane with the exception
of a group of one or more segments that all meet that
plane at the same point, their transversals can form up
to n − 1 connected components (see Figures 4 and 5).

A connected component of transversals may be an
isolated line. For example, three segments forming a
triangle and a fourth segment intersecting the interior of
the triangle in one point have exactly three transversals
(Figure 4 shows a similar example with infinitely many
transversals). Also, the four segments in Figure 1 can
be shortened so that the four connected components of
transversals reduce to four isolated transversals.

An O(n log n)-time algorithm for computing the
transversals to n segments directly follows from the
proof of Theorem 1. Indeed, we prove that the prob-
lem reduces to intersecting n intervals on a line or on
a circle, or to computing the transversals to segments
in R

2 [1].

2 Proof of Theorem 1

Every non-degenerate line segment is contained in its
supporting line. We define the supporting line of a
point to be the vertical line through that point. We
prove Theorem 1 by considering the three following
cases which cover all possibilities but are not exclusive.

1. Three supporting lines are pairwise skew.
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Figure 1: Two views of a hyperboloid of one sheet containing four line segments and their four connected components
of transversals (corresponding to the shaded regions). The four segments are symmetric under rotation about the
axis of the hyperboloid.

2. Two supporting lines are coplanar.

3. All the segments are coplanar.

We can assume in what follows that the supporting
lines are pairwise distinct. Indeed, if disjoint segments
have the same supporting line �, then � is the only
transversal to those segments, and so the set of transver-
sals is either empty or consists of �. If non-disjoint seg-
ments have the same supporting line, then any transver-
sal must meet the intersection of the segments. We can
replace these overlapping segments by their common in-
tersection.

2.1 Three supporting lines are skew

Three pairwise skew lines lie on a unique doubly-ruled
hyperboloid, namely, a hyperbolic paraboloid or a hy-
perboloid of one sheet (see the discussion in [3, §3]).
Furthermore, they are members of one ruling, say the
“first” ruling, and their transversals are the lines in the
“second” ruling that are not parallel to any of the three
given skew lines.

Consider first the case where there exists a fourth
segment whose supporting line � does not lie in the first
ruling. Either � is not contained in the hyperboloid or it
lies in the second ruling. In both cases, there are at most
two transversals to the four supporting lines, which are
lines of the second ruling that meet or coincide with �
(see Figure 2) [2, p. 164]. Thus there are at most two
transversals to the n line segments.

Now suppose that all the n � 3 supporting lines of
the segments si lie in the first ruling of a hyperbolic
paraboloid. The lines in the second ruling can be pa-
rameterized by their intersection points with any line r
of the first ruling. Thus the set of lines in the second
ruling that meet a segment si corresponds to an inter-
val on line r. Hence the set of transversals to the n
segments corresponds to the intersection of n intervals

�2

�3
�1

�

r1 r2

Q

Figure 2: Line � intersects in two points the hyperbolic
paraboloid spanned by the lines �1, �2 and �3. The two
lines r1 and r2 meet the four lines �1, �2, �3, and �.

on r, that is, to one interval on this line, and so the
transversals form one connected component.

Consider finally the case where the n � 3 support-
ing lines lie in the first ruling of a hyperboloid of one
sheet (see Figure 1). The lines in the second ruling can
be parameterized by points on a circle, for instance, by
their intersection points with a circle lying on the hyper-
boloid of one sheet. Thus the set of transversals to the n
segments corresponds to the intersection of n intervals
on this circle. This intersection can have any number of
connected components between 0 and n and any of these
connected components may consist of an isolated point
on the circle. The set of transversals can thus have any
number of connected components between 0 and n and
any of these connected components may consist of an
isolated transversal. Figure 1 shows two views of a con-
figuration with n = 4 line segments having 4 connected
components of transversals.

In this section we have proved that if the supporting
lines of n � 3 line segments lie in one ruling of a hy-
perboloid of one sheet, the segments admit 0, 1, . . . , n
or infinitely many transversals which form up to n con-
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nected components. If supporting lines lie in one ruling
of a hyperbolic paraboloid, the segments admit at most
1 connected component of transversals. Otherwise the
segments admit up to 2 transversals.

2.2 Two supporting lines are coplanar

Let �1 and �2 be two (distinct) coplanar supporting lines
in a plane H. First consider the case where �1 and �2 are
parallel. Then the transversals to the n segments all lie
in H. If some segment does not intersect H then there
are no transversals; otherwise, we can replace each seg-
ment by its intersection with H to obtain a set of copla-
nar segments, a configuration treated in Section 2.3.

Now suppose that �1 and �2 intersect at point p. Con-
sider all the supporting lines not in H. If no such line
exists then all segments are coplanar; see Section 2.3. If
such lines exist and any of them is parallel to H then all
transversals to the n segments lie in the plane containing
p and that line. We can again replace each segment by
its intersection with that plane to obtain a set of copla-
nar segments, a configuration treated in Section 2.3.

We can now assume that there exists a supporting
line not in H. Suppose that all the supporting lines
not in H go through p. If all the segments lying in
these supporting lines contain p then we may replace
all these segments by the point p without changing the
set of transversals to the n segments. Then all resulting
segments are coplanar, a configuration treated in Sec-
tion 2.3. Now if some segment s does not contain p
then the only possible transversal to the n segments is
the line containing s and p.

We can now assume that there exists a supporting
line �3 intersecting H in exactly one point q distinct
from p (see Figure 3). Let K be the plane containing p
and �3. Any transversal to the lines �1, �2 and �3 lies in
K and goes through p, or lies in H and goes through q.

�1

�2

�3

p

q

H

K

Figure 3: Lines �1 and �2 intersect at point p, and line
�3 intersects plane H in a point q distinct from p.

If there exists a segment s that lies neither in H nor
in K and goes through neither p nor q, then there are
at most two transversals to the n segments, namely, at
most one line in K through p and s and at most one

line in H through q and s.
We can thus assume that all segments lie in H or K

or go through p or q. If there exists a segment s that
goes through neither p nor q, it lies in H or K. If it lies
in H then all the transversals to the n segments lie in H
(see Figure 4). Indeed, no line in K through p intersects
s except possibly the line pq which also lies in H. We
can again replace each segment by its intersection with
H to obtain a set of coplanar segments; see Section 2.3.
The case where s lies in K is similar.

H

s1

p �

q
�
��

s2

s

s3

Figure 4: Four segments having three connected com-
ponents of transversals.

We can now assume that all segments go through p
or q (or both). Let np be the number of segments not
containing p, and nq be the number of segments not
containing q. Note that np + nq � n.

Amongst the lines in H through q, the transversals to
the n segments are the transversals to the nq segments
not containing q. We can replace these nq segments by
their intersections with H to obtain a set of nq coplanar
segments in H. The transversals to these segments in
H through q can form up to nq connected components.
Indeed, the lines in H through q can be parameterized
by a point on a circle, for instance, by their polar angle
in R/πZ. Thus the set of lines in H through q and
through a segment in H corresponds to an interval of
R/πZ. Hence the set of transversals to the nq segments
corresponds to the intersection of nq intervals in R/πZ

which can have up to nq connected components.
Similarly, the lines in K through p that are transver-

sals to the n segments can form up to np connected com-
ponents. Note furthermore that the line pq is a transver-
sal to all segments and that the connected component of
transversals that contains the line pq is counted twice.
Hence there are at most np + nq − 1 � n− 1 connected
components of transversals to the n segments.

To see that the bound of n − 1 connected compo-
nents is reached, first consider n/2 lines in H through
p, but not through q. Their transversals through q are
all the lines in H though q, except for the lines that
are parallel to any of the n/2 given lines. This gives
n/2 connected components. Shrinking the n/2 lines to
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Figure 5: Four segments having three connected com-
ponents of transversals.

sufficiently long segments still gives n/2 connected com-
ponents of transversals in H through q. The same con-
struction in plane K gives n/2 connected components of
transversals in K through p. This gives n−1 connected
components of transversals to the n segments since the
component containing line pq is counted twice. Figure 5
shows an example of 4 segments having 3 connected
components of transversals.

In this section we have proved that n � 3 segments
having at least two coplanar supporting lines either can
be reduced to n coplanar segments or may have up to
n − 1 connected components of transversals.

2.3 All the line segments are coplanar

We prove here that n � 3 coplanar line segments in R
3

admit up to n connected components of transversals.
Let H be the plane containing all the n segments.

There exists a transversal not in H if and only if all
segments are concurrent at a point p. In this case, the
transversals consist of the lines through p together with
the transversals lying in H. To see that they form only
one connected component, notice that any transversal in
H can be translated to p while remaining a transversal
throughout the translation. We thus can assume in the
following that all transversals lie in H, and we consider
the problem in R

2.
We consider the usual geometric transform (see e.g.

[1]) where a line in R
2 with equation y = ax + b is

mapped to the point (a, b) in the dual space. The
transversals to a segment are transformed to a double
wedge; the double wedge degenerates to a line when the
segment is a point. The apex of the double wedge is the
dual of the line containing the segment.

A transversal to the n segments is represented in the
dual by a point in the intersection of all the double
wedges. There are at most n+1 connected components
of such points [1]. Indeed, each double wedge consists of

two wedges separated by the vertical line through the
apex. The intersection of all the double wedges thus
consists of at most n + 1 convex regions whose interiors
are separated by at most n vertical lines.

Notice that if there are exactly n + 1 convex regions
then two of these regions are connected at infinity by
the dual of some vertical line, in which case the seg-
ments have a vertical transversal. Thus the number of
connected components of transversals is at most n.

To see that this bound is sharp consider the configu-
ration in Figure 6 of 4 segments having 4 components
of transversals. Three of the components consist of iso-
lated lines and one consists of a connected set of lines
through p (shaded in the figure). Observe that the line
segment ab meets the three isolated lines. Thus the
set of transversals to the four initial segments and seg-
ment ab consists of the 3 previously mentioned isolated
transversals, the line pb which is isolated, and a con-
nected set of lines through p. This may be repeated
for any number of additional segments, giving config-
urations of n coplanar line segments with n connected
components of transversals.
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Figure 6: Four coplanar segments having four connected
components of transversals.

Acknowledgments

We would like to thank the other participants of the
workshop for useful discussions.

References

[1] H. Edelsbrunner, H. A. Maurer, F. P. Preparata,
A. L. Rosenberg, E. Welzl and D. Wood. Stabbing
line segments, BIT 22 (1982), 274-281.

[2] D. Hilbert and S. Cohn-Vossen. Geometry and the
Imagination. Chelsea Publishing Company, New
York, 1952.

[3] H. Pottman and J. Wallner. Computational Line
Geometry. Springer-Verlag, Berlin, 2001.

4


