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Abstract

Given a set S of n ≥ 3 points in the plane (not all
on a line) it is well known that it is always possible
to polygonize S, i.e., construct a simple polygon P
such that the vertices of P are precisely the given
points in S. In 1994 Grünbaum showed that an anal-
ogous theorem holds in 3-dimensional space. More
precisely, if S is a set of n points in space (not all
of which are coplanar) then it is always possible to
polyhedronize S, i.e., construct a simple (sphere-like)
polyhedron P such that the vertices of P are precisely
the given points in S. Grünbaum’s constructive proof
may yield Schönhardt polyhedra that cannot be trian-
gulated. In this paper several alternative algorithms
are proposed for constructing polyhedra induced by
a set of points in space, which may always be trian-
gulated, and which enjoy several other useful proper-
ties as well. Such properties include polyhedra that
are star-shaped, have Hamiltonian skeletons, and ad-
mit efficient point location queries. Furthermore, we
show that polyhedronizations with a variety of these
properties can be computed in O(n log n) time.

1 Introduction

In 1964 Hugo Steinhaus posed the following prob-
lem [11]. Consider a set S of n ≥ 3 points in the plane
such that no three of them lie on the same straight
line. Is it always possible to find a closed polygon
with n non-intersecting sides whose vertices are these
n points? Then he proceeded to give a clever proof by
induction that this is true. Since then several mathe-
maticians have provided alternate proofs (see for ex-
ample Gemignani [3], Quintas and Supnick [8] and
Grünbaum [6]). This is now a well known result in
computational geometry. Gemignani’s proof yields
immediately an algorithm that runs in O(n log n)
time, which is optimal since Shamos [10] proved an
Ω(n log n) lower bound on this problem. In fact this
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problem has often been tackled in computational ge-
ometry as a stepping stone to solving other problems.
For example, in 1972 Ron Graham [5] proposed a sim-
ple optimal O(n log n) time algorithm for computing
the convex hull of S by first computing a star-shaped
polygonization of S. Grünbaum’s constructive proof
yields a monotone polygonization. Abellanas et al.
show that an onion polygonization is always possi-
ble [1].

The planar polygonization problem can be gener-
alized in at least two ways to 3-dimensional space.
We can ask for a closed polygonal chain that is “sim-
ple” in the sense that it is not knotted. We call this
the 3D-polygonization problem. This problem can
be solved using the planar polygonization procedures
by suitably projecting the points of S onto a plane
and then “lifting” the planar polygonization obtained
back into space. In the more interesting generaliza-
tion we can ask for a simple polyhedron the vertices
of which are the given point set. We call this prob-
lem the polyhedronization problem. Surprisingly this
problem has received little attention.

In this paper we study various methods for gener-
ating polyhedronizations that have a variety of desir-
able properties: monotonicity, star-shapedness, ad-
mitting a tetrahedralization, possibly with nice dual
structure, possessing a good 1-skeleton from the view-
point of graph theory and affording fast point lo-
cation queries. The 3D-polygonization problem is
solved along the way in that a polyhedronization with
the property that it admits a Hamiltonian 1-skeleton
yields a 3D-polygonization when one of its Hamil-
tonian cycles is reported. Before presenting the 3D
results we introduce a new polygonization method
that combines the desirable properties of both the
monotonic and star-shaped polygonizations, yield-
ing in O(n log n) time, polygonizations that are: (1)
monotonic, (2) serpentine and (3) triangulated in a
serpentine manner at no extra cost. The method is
also interesting because, surprisingly, it does not ex-
tend to 3D.
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2 Serpentine Polygonizations

The main idea of the planar polygonization algorithm
is quite simple and consists of sorting all the points
along some direction such as the x-axis, connecting
the first three points to form a triangle, and subse-
quently processing one point at a time in the sorted
list, creating a new triangle that is “glued” on to a
suitable visible edge of the existing polygonization.
We describe next the algorithm more formally.

Initialization
(1) Sort lexicographically the points along their +x

and +y coordinates to obtain the list p1, p2, . . . , pn.
(2) If p1, p2, and p3 are not collinear, connect them

to form triangle T3, which would also be the initial
polygon Q3 and define an initial value � to be � = 4.

Otherwise let pj be the first point non-collinear
with its preceding points in the list, p1, . . . , pj−1.
Discard temporarily the points p2, . . . , pj−2, consider
Tj = Qj = p1pj−1pj as the initial triangle and poly-
gon, and let � = j + 1.

Iteration
for i = � to i = n do:
Connect point pi to a visible edge incident to pi−1

of triangle Ti−1 in the polygon constructed thus far,
denote this new triangle by Ti and the updated poly-
gon by Qi.

end for
Finalization
If � > 3, split the triangle p1pjpj−1 into triangles

T3 = p1pjp2, T4 = p2pjp3, . . . , Tj = pj−2pjpj−1.
The finalization step of the algorithm is only nec-

essary when p1, p2 and p3 are collinear, and its only
meaning is to split the initial triangle into a path of
sub-triangles. As the complexity of the algorithm is
dominated by the sorting step, we have obtained the
following result:

Theorem 2.1 A planar set of points S admits a ser-
pentine polygonization and a triangulated serpentine
polygonization can be obtained in O(n log n) time.

At first glance it may appear that this algorithm ex-
tends to three dimensions by “gluing” a new tetra-
hedron to one of the three faces incident on the last
vertex of the polyhedron constructed thus far. Unfor-
tunately, it may happen that none of the three faces is
completely visible from the new point to be inserted,
and therefore the method fails. An example of a set
of points for which this procedure fails is shown in
Figure 1.
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Figure 1: Illustrating the polyhedron constructed
from the first three tetrahedra and the line on which
the seventh point lies.

First consider the six points ordered by non-
decreasing x-coordinate: P1 = (0, 0, 0), P2 = (0, 1, 0),
P3 = (0,−3, 1), P4 = (1, 0, 0), P5 = (2,−5/2,−3)
and P6 = (3,−4, 1). The first, second, and third
tetrahedra glued in the construction are given, re-
spectively, by P1P2P3P4, P1P2P4P5, P1P4P5P6.

When viewed from the top (+z direction) the pro-
jection of P5 on the xy plane lies in the interior of
the projection of the triangle P1P6P4. Therefore
the outer normals of faces P4P5P6 and P1P5P6 are
pointing in the negative z direction. Furthermore,
any point P7 above the planes P1P4P6, P1P5P6 and
P4P5P6 cannot see faces P4P5P6 and P1P5P6. Fi-
nally, if P7 is high enough it will not see face P1P4P6

either, and if P7 lies on a nearly vertical line slightly
slanted towards the positive x axis, its x-coordinate
can be made to be larger than that of P6, as required.

3 Polyhedronization of Point Sets in Space

In this section we outline a proof that every set of n ≥
4 points in three dimensional space, not all of which
are coplanar, admits a polyhedronization that can be
tetrahedralized. We describe several different types
of polyhedronizations and analyze their properties as
well as algorithms for their computation. Additional
types of polyhedronizations are described in the full
paper.
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Monotonic Polyhedronizations

In 1994 Grünbaum [6] gave a constructive proof that
a set of points S, not all of which are coplanar, can
always be polyhedronized. However, he was not con-
cerned with either its properties or its computational
complexity. As it turns out his idea leads to a mono-
tonic polyhedronization, as defined below. In the fol-
lowing we present a minor simplification of his ap-
proach and show that it can be efficiently computed.

Definition 3.1 A polyhedron is xy-monotonic pro-
vided that its intersection with every line parallel to
the z-axis is either empty or a connected set.

Theorem 3.1 A set of points S in space, not all
coplanar, admits a monotonic polyhedronization that
can be obtained in O(n log n) time.

Proof: First rotate S so that it has a regular pro-
jection on the xy-plane (no two points lie on a ver-
tical line). Next compute the convex hull CH(S) of
S. If no points of S lie inside this convex hull we
are done because the polyhedron CH(S) is mono-
tonic. Otherwise, let CHL(S) and CHU (S) be the
lower and upper convex hull of S, respectively. Let
B be the shadow boundary of the convex hull of S,
in other words the set of edges common to CHL(S)
and CHU (S). Let SU be the subset of points in S
which are not vertices of CHL(S). Triangulate the
projection of the set SU ∪ B on the xy-plane in such
a way that no edge in this triangulation connects two
vertices of B. Lift each triangle of the triangulation
to the points that projected onto its vertices. By glu-
ing along B this terrain with CHL(S) we obtain the
desired monotonic polyhedron.

Computing a regular projection of n points can
be done in O(n log n) time with the algorithm of
Gómez et al. [4]. Computing the convex hull and
constructing a triangulation of the projected points
can also be done in time O(n log n) [7], which is the
overall running time since O(n) time is sufficient for
the lifting step.

A drawback of Grünbaum’s construction is that the
resulting polyhedronization may not admit a tetrahe-
dralization, as is demonstrated in the following. Al-
though a polygon in the plane can always be trian-
gulated, it is well known that the analogous theorem
in 3D does not hold. In 1928 Schönhardt [9], (see
also [2]) constructed a polyhedron with six vertices
that does not admit even a single internal diagonal.

(a) (b)
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Figure 2: Constructing a polyhedral terrain that can-
not be tetrahedralized.

Schönhardt’s six-vertex polyhedron is constructed
by starting with a triangular prism (refer to Fig. 2
(a)) and “twisting” the top face in the direction
shown by some small amount. The three side faces
cannot remain planar and so “buckle” inwards along
the diagonals to produce non-coplanar triangular
faces. No two non-adjacent vertices of this polyhe-
dron are internally visible from each other.

To create a terrain polyhedron that cannot be
tetrahedralized, simply construct Schönhardt’s six-
vertex polyhedron with the base triangle larger than
the top triangle (see top view in Fig. 2(b)). If
the vertices of the resulting Schönhardt terrain are
the input to Grünbaum’s construction, and the pro-
jected points are triangulated as in Fig. 2(b), the
Schönhardt terrain will be reconstructed.

Although our simplification of Grünbaum’s con-
struction, described in the preceding, will result in
a convex polyhedronization, which is therefore tetra-
hedralizable, one can obtain a set of nine points (by
adding an even larger triangle below Schönhardt’s ex-
ample) for which our simplification also yields a poly-
hedronization that cannot be tetrahedralized.

In the long version of the paper we present an alter-
nate polyhedronization algorithm, more complicated
than Grünbaum’s, that always admits a tetrahedral-
ization. It is based on the following lemmas, where
for simplicity of explanation we assume that no three
points of S lie on a vertical plane.

Lemma 3.2 Given a monotonic tetrahedralized
polyhedron, and points that lie above or below the
polyhedron such that a vertical line through each
of them intersects the boundary of the polyhedron
twice, it is possible to enlarge the polyhedron and its
tetrahedralization to encompass these points, while
remaining monotonic and tetrahedralized.
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Lemma 3.3 Let P be a triangulated convex polygon
with vertex set V lying in the xy-plane, and let S be
a point set in 3-space such that every point in S has
positive z coordinate and projects vertically inside P
(strictly). Then it is possible to construct a tetrahe-
dralized monotonic polyhedron with vertex set V ∪ S
such that its lower terrain is P .

Theorem 3.4 A set of points S in space admits a
tetrahedralizable monotonic polyhedronization.

Star-shaped Polyhedronizations

In this section we show that if we assume that S is
in general position in the sense that no four points
are coplanar, then it is possible to polyhedronize S
in several easy ways that yield nice properties.

Hinge Polyhedronizations

We give the name hinge polyhedronization to the fol-
lowing construction. Start with any pair of points
x, y ∈ S for which xy is an edge of the convex hull
CH(S), consider a plane H that supports S at xy,
and let H∗ be a halfplane in H bounded by the line
r = xy. Sort all the remaining points in the order
they are encountered when H∗ is rotated around r.
Connect all these points in sorted order obtaining an
open polygonal chain, and finally connect every ver-
tex of this chain to both x and y.

Theorem 3.5 A hinge polyhedronization can be con-
structed in O(n log n) time and has the following
properties:

1. star-shaped (fan, edge-visible);
2. serpentine;
3. Hamiltonian 1-skeleton;
4. affords easy O(log n) point-location queries.

Orange Polyhedronizations

An orange polyhedronization, is a slight modification
of a hinge polyhedronization. Start with any pair of
points x, y ∈ S for which xy is not an edge of the
convex hull CH(S) (we leave out the trivial case of
four points in convex position), consider a plane H
through xy, and let H∗ be a halfplane in H bounded
by the line r = xy. Sort all the remaining points
in the cyclic order they are encountered when H∗ is
rotated around r. Connect all these points in sorted
order obtaining a closed polygonal chain, and connect
every vertex of this chain to both x and y.

Theorem 3.6 An orange polyhedronization can be
constructed in O(n log n) time and has the following
properties:

1. star-shaped (from a diagonal);
2. admits a tetrahedralization whose dual is a cycle;
3. Hamiltonian 1-skeleton;
4. has an Eulerian 1-skeleton for even n;
5. affords easy O(log n) point-location queries.

References

[1] M. Abellanas, J. Garcia, G. Hernandez, F. Hur-
tado, and O. Serra. Onion polygonizations. In
Proc. 4th Canadian Conference on Computa-
tional Geometry, pages 127–131, St. Johns, New-
foundland, August 10–14 1992.

[2] F. Bagemihl. On indecomposable polyhedra.
American Mathematical Monthly, pages 411–
413, September 1948.

[3] M. Gemignani. On finite subsets of the plane
and simple closed polygonal paths. Mathematics
Magazine, pages 38–41, Jan.-Feb. 1966.

[4] F. Gomez, S. Ramaswami, and G. T. Toussaint.
On computing general position views of data in
three dimensions. J. Visual Communication and
Image Representation, 12:387–400, 2001.

[5] R. L. Graham. An efficient algorithm for de-
termining the convex hull of a finite planar set.
Information Processing Letters, 1:132–133, 1972.
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