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Abstract

The Delaunay triangulation is generated from a points
set and a structuring element of type disc. In the De-
launay triangulation definition, replacing the disc by
a planar-connected region (we call a molecule), which
is a union of a fixed number of discs, allows construc-
tion of what we name the molecular graphs. In a fi-
nite points set, the molecular graphs record the empty
regions which are identical to the molecule, indepen-
dently of translation, rotation and scaling transforms.
The molecular graphs are applied to pattern recogni-
tion problem. Knowing a template (an input pattern
represented by a molecule), the addressed problem is to
identify the existing patterns, whose shapes are simi-
lar to the template, in a given input points set. The
proposed solution is based on a generalization of the α-
shapes ; the disc of radius α in the ordinary α-shape
is replaced, in the generalized version, by a template of
size depending on α.
Keywords : Pattern Recognition, computational ge-
ometry, Delaunay triangulation, molecules.

1 Introduction

In computational geometry, the Delaunay triangulation
and its dual the Voronoi diagram are among the most
studied concepts. They are both extremely versatile
tools for the solution of some fundamental proximity
problems and efficient structures to model, detect and
manipulate geometrical objects issued from different
domains of applications as pattern recognition, com-
puter graphics, and biology. Some complex proximity
problems have been solved with efficient algorithms
based on generalizations of Voronoi diagram and
Delaunay triangulation. Without being exhaustive,
they are extended to other geometric objects besides
points, such as segments, circles and polygons. Also
they are generalized to other distances as the metrics
L1 and L∞ [8], the convex distance functions [4, 5]
and the weighted distances [1, 7]. A complete survey is
presented in [2, 3, 10].

There exists some aspects of the Voronoi diagram

and Delaunay triangulation generalization which are
not yet explored. The Delaunay triangulation of a
points set is determined by computing empty discs, the
non-explored extension consists in replacing the disc by
a more complex geometric object (a planar-connected
region).

An efficient algorithm associated to this new general-
ization will solve some complex proximity problems. An
example of these problems is the computation of empty
regions, from a finite points set, whose the shapes are
identical to the one of a known planar-connected region.
Another example consists in computing the largest
empty region which has a form of a template. These
problems are solved for the region identical to the disc,
and the existing solutions are based on the Delaunay
triangulation. Specifically, the α-shape algorithm [6]
computes the empty discs of radii α, and an algorithm
computing the largest empty disc is presented in [11].

The generalization of the Delaunay triangulation,
that we propose, is called the molecular graphs. They
are generated by a points set and a connected region.
The connected region is called a molecule, and is repre-
sented by a union of discs arranged according to a fixed
configuration. It depends on a unique parameter, which
is a positive real number, and represents the radius
of the molecule. Varying this radius, the molecule is
eroded or dilated. An example is shown in figures 1(a)
and 1(d), where a region shaped as a ”cross” is defined
by eight discs.

Based on a unitary molecule M1 (a molecule of
radius equal to 1), the molecular graphs of a set of
points S are the set of polygons (edges, triangles and
quadrangles) connecting the points of T ⊂ S, such that
there exists an empty molecule Mr of radius r touching
the points of T (Mr ∩ S = ∅ and ∂Mr ∩ S = T ). In the
case where the molecule M1 is a disc, the molecular
graph of S becomes the Delaunay triangulation of
S. Due to the fact that any molecule is a union of
discs and the ordinary Voronoi diagram records every
thing concerning empty discs, any molecular graph
can be computed from the ordinary Voronoi diagram.
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The case of two discs-molecules is detailed in this
article, the extension to any other molecule needs only
some adaptation of the presented computation methods.

Making use of the molecular graphs to pattern
recognition, we develop an approach to compute
specific-patterns from a cloud of points. This means
that we present a method to compute the empty regions
(dot-patterns), embedded in a points set, whose the
shapes are identical to the form of a known template
(specific-pattern to detect). The developed method is
based on a generalization of the α-shape concept. The
ordinary α-shape computes the empty discs of radii
α. And, the proposed extension calculates the empty
molecules Mα, where Mα is the dilation or the erosion
of a template represented by a unitary molecule M1.
This method is detailed in [9].

2 Molecular graphs concept

Let S be a set of n points in R
2, Rp denotes the Voronoi

region of p ∈ S, V is the Voronoi diagram of S and D
is the Delaunay triangulation of S. For each 1 ≤ k ≤ 3,
Dk denotes the set of σT = conv(T ) “convex hull of T”,
such that T is a subset of S, of size |T | = k, and it exists
an open disc b such that b∩S = ∅ and ∂b∩S = T , where
∂b is the circle bounding b. The Delaunay triangulation
of S, can be seen as the set of the triangles in D3, the
edges in D2 and the vertices in D1 (D1 = S).

2.1 The molecule notion

A molecule is a connected region having a fixed shape
and defined by a union of open discs (the number of the
discs is fixed).

The simplest molecule is the disc. The molecule
shown in figure 1(b) is the union of two discs of dif-
ferent radii; a disc of radius r and one of radius λr,
where λ, 0 < λ ≤ 1, is a constant. These molecules are
Mr = b(x1, r) ∪ b(x2, λr), where x1 is the center of the
first disc and x2 is the center of the second disc which
belongs to the boundary of the first one (x2 ∈ ∂b(x1, r)).
Varying r (the radius of the molecule), the molecule is
dilated or eroded. Varying the centers x1 and x2, the
molecule Mr is translated and rotated.

Combining the molecule of type figure 1(c), one can
build molecules having complex shapes, most shape
can be represented by a molecule. For example, the
molecule of figure 1(d) has the shape of a “cross”, it
is defined as follows : Mr = ∪8

i=1b(xi, r), the centers
x1, x2, x3 and x4 are on the same straight line, the
points x5, x6, x7 and x8 are on a second straight
line perpendicular to the first one. Also, we have
x2x3=x6x7=2r and xixi+1 = r, where i = 1, 3, 5, 7.
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Figure 1: (a) A disc is replaced by a connected region,
which is represented by a molecule. (b-d) Some exam-
ples of molecules. (e) The hulls σT of the points of T
(solid discs) are the edge, triangle and quadrangle. Bro-
ken discs are those of the molecule.

2.2 Molecular graphs definition

Through this article, we assume that the points of S
are in general-position. This means that no five points
lie on a common boundary of a molecule.

Definition 3.1.(i) We say that a molecule M is empty
iff M ∩ S = ∅. (ii) Two points p ∈ S ∩ ∂M and
q ∈ S ∩ ∂M are neighbors on ∂M iff �pq ∩ S = {p, q}.
Where M is an empty molecule and �pq is an arc of ∂M
connecting p to q 1. (iii) Let M be an empty molecule
and T = S ∩ ∂M , the hull of T , we note σT , is the
polygon of edges [pq] such that the points p ∈ T and
q ∈ T are neighbors on ∂M .

Three types of hulls are considered : the edges,
triangles and quadrangles. An example is illustrated
by figure 1(e). Consider Mm

1 a unitary molecule
consisting in m discs, the molecular graphs are defined
as following :

Definition 3.2.The molecular graphs of S based on
Mm

1 , m > 1, is the sequence of the graphs MGm
k,� de-

fined as following :

(i) MG1
2,1 = D2 and MG1

3,1 = D3.

(ii) MGm
k,� = {σT ∈ MGm−1

k,� | |T | = k, there exists r >

1�pq is one of the two possible arcs
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0 such that Mm
r ∩ S = ∅ and ∂Mm

r ∩ S = T}, for
� = 1, · · · ,m − 1 and k = 2, · · · , L.

(iii) MGm
k,m = {σT /∈ ∪m−1

�=1 MGm−1
k,� | |T | =

k, there exists r > 0 such that Mm
r ∩ S =

∅ and ∂Mm
r ∩ S = T}, for k = 2, 3, 4.

where

L =
�

3 if m = 2
4 else

The number of the molecular graphs based on a
molecule consisting in m discs is 3m − 1.

Example. To understand the recurrence relationships
of the previous definition, let us develop it for the case
where a molecule consisting in three discs is considered
(m = 3) ; the molecule is M3

r = b(x1, r) ∪ b(x2, r) ∪
b(x3, r) such that the centers x1, x2 and x3 are aligned,
and verify x1x2 = x2x3 (see figure 2(a)). The formulas
of item (ii) and (iii) become respectively :

MG3
k,� = {σT ∈ MG2

k,�| |T | = k, there exists r >
0 such that
M3

r ∩ S = ∅ and ∂M3
r ∩ S = T}, for

� = 1, 2 and k = 2, 3, 4.

MG3
k,3 = {σT /∈ MG2

k,1 ∪ MG2
k,2| |T | =

k, there exists r > 0 such that M3
r ∩ S = ∅ and ∂M3

r ∩
S = T}, for k = 2, 3, 4.

The graphs MG3
k,� depend on the graphs MG2

k,�,
which are constructed as following: from the molecule
M3

r is removed a disc to construct a molecule M2
r (see

figure 2(b)). Thus the graphs MG2
k,� are as follows :

MG2
k,1 = {σT ∈ Dk| |T | = k, there exists r >

0 such that M2
r ∩ S = ∅ and ∂M2

r ∩ S = T}, for
k = 2, 3.

MG2
k,2 = {σT /∈ D2 ∪ D3| |T | = k, there exists r >

0 such that M2
r ∩ S = ∅ and ∂M2

r ∩ S = T}, for
k = 2, 3, 4.

In the notation MGm
k,�, m is the number of the

discs constituting the molecule Mm
r . The integer k

indicates the number of the vertices of the polygons
σT . The integer � means that each σT of MGm

k,�,
belongs to MG�

k,�. Two examples of the polygons σT

are illustrated by figure 2(c). The segment s is common
to MG3

2,1, MG2
2,1 and MG1

2,1 = D2. The triangle TR

is not in D3 but it belongs to MG3
2,2 and MG2

2,2. If
one removes successively a disc from a molecule Mm

r ,
such that one obtains molecules Mm−1

r , Mm−2
r ,..., M1

r .
Then, from the relationship of definition 3.2-item (ii),
one deduces an hierarchical relationship between the
graphs MGm

k,�:

MGm
k,� ⊂ MGm−1

k,� ⊂ MGm−2
k,� ⊂ · · · ⊂ MG�

k,�

s
TR

(a) (b)

(c)

Figure 2: (a) A molecule M3
r , (b) a molecule M2

r . (c)
The segment s is in MG3

2,1 ⊂ MG2
2,1 ⊂ MG1

2,1 = D2.
The triangle TR is in MG3

3,2 ⊂ MG2
3,2

for � = 1, · · · , m − 1, and k = 2, · · · , L

The computation of the molecular graphs is detailed
in [9].
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Figure 3: Example of the graphs MGk,�. (a) A set of
points, (b) MG2,2, (c) MG3,2, (d) MG4,2. The graph
MG3,1 is the Delaunay triangulation of the points set.

3 Conclusion

The molecular graphs are a generalization of the De-
launay triangulation. Given a points set, they allow
computing empty planar regions which are similar to a
given template. The molecular graphs can be computed
from the ordinary Voronoi diagram. This is due to the
fact that a molecule is a union of discs. As application
of the molecular graphs, a generalization of the α-shape
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Triangles of MG3,2 Continuation Continuation Continuation Continuation Continuation
0 5 4 0 6 4 0 6 1 0 8 1 27 35 28 20 21 24
1 2 18 1 26 18 2 3 6 2 4 5 29 30 33 20 22 23
2 6 5 2 26 3 2 3 23 2 18 23 29 31 32 20 22 23
3 4 6 18 26 3 3 4 17 3 7 23 29 33 32 20 24 23
3 17 10 3 23 10 4 7 17 7 9 4 25 35 28 21 22 24
5 14 4 7 14 4 9 14 4 5 7 9 27 32 31 18 26 19
5 14 9 7 9 5 7 17 23 9 14 13 27 33 31 18 24 19
9 15 13 9 15 10 9 17 10 10 11 22 27 33 28 18 24 22
10 11 27 10 25 27 10 23 25 11 25 22 21 22 35 18 23 22
11 12 15 11 12 25 11 12 32 11 27 32 21 25 28 30 31 33
11 13 14 11 15 14 11 25 35 11 27 35 22 25 35 16 34 31
12 13 15 12 27 25 12 32 13 12 16 34 22 23 25 16 32 31
12 32 34 16 32 13 - - - -

Table 1: The triangles of the graph MG3,2, depicted by figures 3(c).

Quadrangles of MG4,2 Continuation Continuation
0 5 4 6 0 6 1 8 1 2 18 26
2 3 4 6 2 4 6 5 2 3 18 23
2 26 3 18 2 18 1 26 3 7 17 23
3 4 7 17 3 17 10 23 5 7 9 14
9 14 13 15 9 15 10 17 10 23 22 25
10 11 25 22 10 11 25 27 11 12 13 15
11 12 25 27 11 12 27 32 11 13 14 15
11 25 27 35 12 16 32 34 12 32 13 16
16 32 31 34 18 23 22 24 18 24 19 26
20 21 22 24 20 22 23 24 21 22 25 35
21 25 28 35 27 32 31 33 27 33 28 35
29 31 32 33 29 30 31 33 -

Table 2: The polygons of the graphs MG4,2, depicted
by figure 3(d).

concept is used to compute empty regions (molecules of
size α) similar to a given template.

In ongoing works, we will focus our interest on com-
putation of molecular graphs for higher dimensions data
and particularly 3D data. We will also develop the
molecular Voronoi diagram.
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