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Abstract We consider the problem of triangle guard-
ing (�-guarding) a simple, 2D polygon Q. A polygon
Q is �-guarded if every point q of Q is contained in the
convex hull of some three guards that can all see q. This
rather odd condition approximates a desire, for exam-
ple, to see all sides of q or to locate (via triangulation)
q from at least two angularly well-separated views. If
we restrict the guards to lie in Q and Q has a transpar-
ent boundary then the vertices of the convex hull of Q
(CH (Q)) form the minimum set of �-guards. We ex-
amine two other variations of the problem. In the first,
the guards may be placed within a transparent border
surrounding Q. For this variation, we describe a poly-
nomial time algorithm, related to the classic algorithm
for finding min-link separators, that finds a minimum
set of �-guards. In the second, we consider the case
where Q’s boundary is opaque and show that, as in the
traditional art gallery problem, finding a minimum set
of vertex �-guards is NP-hard.

Transparent Fences

Given simple polygons P and Q with Q contained in P ,
where |Q|+ |P | = n, what is the minimum number and
placement of guards in P needed to �-guard Q, assum-
ing that both Q and P have transparent boundaries?

Our algorithm for this problem is inspired by an algo-
rithm for finding min-link separators between two con-
vex polygons, one contained in the other [1]. The follow-
ing basic lemmas motivate using this approach. Define
legal regions to be regions of the outer polygon P , that
are not contained in the interior of CH (Q) (Figure 1).

Q

P

Figure 1: Legal regions. Q is the innermost polygon
with CH (Q) in dark gray. The dotted lines complete
CH (P ). The legal regions are light gray.
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Lemma 1 Guards in any minimal guarding set are in
legal regions.

Proof. The guards must be in P . Since every point of
Q must be guarded, Q and CH (Q) are in CH (guarding
set). Since the guarding set is minimal, the guards are
in convex position and thus lie outside the interior of
CH (Q).

A legal separator is a polygon that contains CH (Q)
and whose vertices are in legal regions. (Note: A legal
separator separates CH (Q) from CH (P ).) A minimal
legal separator has the fewest number of edges of any
legal separator.

Lemma 2 Polygon K is a minimal legal separator if
and only if its vertices form a minimal �-guarding set.

Proof. (Only if) By definition, K contains Q and thus
its vertices form a �-guarding set.

(If) If K’s vertices form a �-guarding set then they
lie in P and K contains Q. Since K is minimal, it is
convex and thus contains CH (Q).

By Lemma 2, we can find a minimal �-guarding set
by finding a minimal legal separator.

The Q-contact of a tangent � to Q is the vertex of Q
that � is tangent to.

A left tangent to Q is a directed tangent to Q that
has Q to its left, when facing in the tangent’s direction.

Given polygons P and Q with Q ⊆ P and a left tan-
gent � to Q, let R� be the part of P that is on or to
the right of �. If e is an edge of CH (Q), we write Re to
mean R� where � is the left tangent coincident to e.

Lemma 3 (Lemma 2 [1]) For every left tangent � to
Q, R� contains at least one vertex of any separator.

Proof. Suppose separator T has no vertex in R�, then
the Q-contact(s) of � cannot be in a triangle formed by
vertices of T .

The extreme point for � is the point p ∈ R� whose left
tangent to Q has the largest CCW angle with �. See
Figure 2.

The extreme polygon Ta for a given point a �∈ CH (Q)
is obtained as follows: Let v1 be the point a. In general,
to obtain the vertex vi+1, draw a left tangent � to Q from
the point vi. Choose vi+1 to be the extreme point for
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�. Stop when the line from vi+1 to a doesn’t intersect
Q. Let v1, v2, . . . , vk be the vertices constructed by this
process. The extreme polygon Ta is 〈a = v1, v2, . . . , vk〉.
Note that Ta may not be convex (for example, see Fig-
ure 2), however, Ta has at most one more vertex than a
minimal legal separator (Lemma 3 [1]).
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Figure 2: The construction of an extreme polygon
Ta = 〈a = v1, v2, v3, v4, v5〉. The point v3 is chosen
to maximize angle α.

For edge e of CH (Q), let Be be the set of points
p ∈ Re that have a left tangent � to Q such that every
other point of Re on the tangent lies between p and �’s
Q-contact.

Lemma 4 For any edge e of CH (Q), there exists a
minimal legal separator that is an extreme polygon Ta

for some a ∈ Be.

Proof. (sketch) Suppose T = 〈w1, w2, . . . , wk∗〉 is a min-
imal legal separator that is not extreme. We first trans-
form T into a minimal legal separator T ′ that has a
vertex in Be. We know (Lemma 3) that T must contain
a vertex in Re, which we assume without loss of gener-
ality is w1. Let � be the left tangent from w1 to Q. Let
a be the point in Be with left tangent �. We claim that
T ′ = 〈a,w2, . . . , wk∗〉 is a minimal legal separator. To
see this, first note that T is convex, otherwise CH (T ) is
a smaller legal separator. The vertex a lies in the inter-
section of halfplanes formed by (lines coincident with)
the two edges of T adjacent to w1 because Q, and hence
�’s Q-contact, is in T . Thus T ⊆ T ′ and T ′ is a minimal
legal separator.

Let Ta = 〈a = v1, v2, . . . , vk〉. Consider the sequence
of polygons A1 = T ′, A2, . . . , Ak∗ where each Ai (for
i > 1) is the same as Ai−1 except that vertex i in Ai

is the ith vertex in Ta. We claim that, for all i, Ai is
a minimal legal separator. Since |Ai| = |T |, it suffices
to show CH (Q) ⊆ Ai. The proof is by induction on i,
where we have just established the base case CH (Q) ⊆
T ⊆ T ′ = A1. Assume CH (Q) ⊆ Ai−1 and thus Ai−1 is

a minimal legal separator and hence convex. To show
CH (Q) ⊆ Ai, consider the left tangent � from vi−1. By
Lemma 3 and the fact that Ai−1 is convex, wi must lie
on or to the right of �. Since vi lies on or to the right of �
as well, it suffices to show that viwi+1 doesn’t intersect
CH (Q). Since vi is the extreme point for � and wi ∈ R�,
vi lies on or to the right of the left tangent t from wi

to Q. Since Ai−1 is convex and contains Q, vi+1 lies on
or to the right of t. Thus viwi+1 doesn’t intersect Q.
When i = k∗, wi+1 = a and the same argument shows
that vk∗a doesn’t intersect Q, establishing k = k∗.

Finding a Minimal Extreme Polygon Lemma 4 im-
plies that a minimal extreme polygon Ta over all a ∈ Be

is a minimal legal separator, and thus (Lemma 2) its
vertices form a minimal �-guarding set. We search Be

(for a single, arbitrary edge e) for a point a that forms
a minimal extreme polygon Ta in a manner similar to
Aggarwal et al. [1].

At a high level, we partition Be, which is part of the
boundary of P , into a finite number of contiguous pieces
so that the locations of the vertices v2, v3, . . . , vk are
related by simple functions to the position of a, as a
varies within a single piece. We can then search for the
smallest extreme polygon for each piece, and take the
minimum over all pieces.

To define the pieces of Be, we look for breakpoints
b ∈ Be such that Tb has at least one vertex that is on
a different edge of P or has a different Q-contact than
the corresponding vertex of Ta, where a ∈ Be imme-
diately precedes b1. To find these points, we create a
search structure that given any left tangent � reports
�’s extreme point and how far we can rotate � before its
extreme point changes.

To build this structure, imagine rotating a left tan-
gent � around Q. Let S� be the set of vertices to �’s right
unioned with the set of intersections between � and the
boundary of P . The extreme point for � is the point
in S� whose left tangent forms the largest CCW angle
with �. A vertex p ∈ P has a fixed left tangent (as �
rotates) and is in S� for � (angularly) between the left
tangent to p from Q and the left tangent from p to Q.2

The intersection of � and an edge pq of P is in S� for �
between the left tangents to p and q.3 By ordering the
angular ranges during which these vertices and edge in-
tersections are in S�, and tracking the maximum CCW
angle between � and the left tangents from these points
as � rotates, we obtain our search structure in O(n lg n)
time.

1The angle of left tangents from points in Be determines their
order.

2A left tangent � is to a point p if �’s Q-contact precedes p on
� in �’s direction.

3The intersection with pq for � between left tangents from p
and q is never extreme.
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Figure 3: Three views of one clause junction. Guards b, c, e, g, j, i, j, x, and y are on convex vertices (property (1)).
Guards a and k are are required by property (2) since no vertices outside the clause junction are colinear with ab
or t3k. Together with x and y, these guards �-guard most of the clause junction (shown in light gray). The entire
clause junction can be guarded if and only if there is a guard on either fi or ti for each literal (forming the medium
gray triangles) and at least one of the true vertices has a guard (for example, t1, forming the dark gray triangle).

Using this structure, we can compute the next break-
point in O(k log n) time. Solving a simple, rational func-
tion of a at each breakpoint enables us to find the min-
imal extreme polygon Ta within each contiguous piece
of Be (bounded by breakpoints) in constant time per
piece. Notice that if any vertex vi of Ta (except vk)
is an extreme vertex not on the left tangent from vi−1,
then vk is not sensitive to changes in a until a crosses
the next breakpoint.

Since there are O(n) breakpoints, we can find the
minimal extreme polygon in O(nk log n) time.

Simple Opaque Polygons

The difficulty of finding minimal �-guarding sets
changes dramatically when the polygon’s boundary is
opaque. We show:

Theorem 1 Deciding if k vertex guards can �-guard a
simple polygon Q with an opaque boundary is NP-hard.

Even without restricting guards to vertices, we know:
(1) a guard is needed at every convex vertex of Q, and
(2) every edge of Q must lie between two guards that
are colinear to it.

Our proof is a reduction from 3SAT based on a simi-
lar reduction to traditional vertex guarding of a simple
polygon [2, 3].

Literal Pattern For each occurrence of a literal in the
3SAT instance Φ, we create a literal pattern (Figure 4).
Vertex a is the lower left vertex of the clause junction,
described below, and is colinear to the edge t′g. The
clause junction requires a guard at a, and vertex g re-
quires a guard by property (1). To �-guard the edge

gf , a guard is needed at either f or t. A guard at f cor-
responds to the literal having a value of false; a guard
at t corresponds to the literal having a value of true.
Guards at convex vertex h and the two convex vertices
x and y (common to all literal patterns) �-guard the
spike fht.

t′
g

f

h

t
a

x

y

Figure 4: Literal Pattern.

Clause Junction The clause junction, see Figure 3, is
constructed so that edge t3k is �-guarded if and only if
at least one of the literals is true. Each clause junction
includes a literal pattern for each literal in the clause.
The vertices corresponding to a value of true for each
literal are colinear to the lower right edge t3k of the
clause junction. The only other vertex colinear to this
edge is its right end point k. To �-guard this edge, a
guard must be placed on k and on at least one of the
true vertices. The clause junction can be guarded with
12 guards (+2 guards at x and y) if and only if each
literal has exactly one truth setting (one guard on its f
or t vertex) and at least one literal is true.
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Variable Pattern The 3SAT instance Φ is only sat-
isfied if the assignment to literals is consistent. To en-
sure consistency we introduce a variable pattern for each
variable (Figure 5). Each variable pattern has two wells,
one for true and one for false. We call the upper right
vertex of a well a variable consistency vertex. Within
each well are variable pockets, described below, one for
each occurrence of the variable in Φ. If all occurrences
are assigned the same truth value, only one additional
guard is needed (for that variable) to guard all the pock-
ets corresponding to the other truth value. A nook (at
v1) with edges colinear to the variable consistency ver-
tices and q1, ensures that at least one of these vertices
has a guard. A nook (at v2) between the two wells en-
sures the space between them is always guarded. The
sides of the wells are colinear to the convex vertices q1

and q2 external to the variable pattern. Excluding the
pocket guards, seven guards are needed to guard each
variable pattern.

q1 q1 q1
q2

q2

z

q1

v1v2

Figure 5: A variable pattern. Guards must always be
placed at the circled vertices. A guard must be placed at
one of the two variable consistency vertices in squares.

Variable Pocket There are two variable pockets for
each occurrence of the variable in Φ: one in the vari-
able’s true well and the other in its false well. The vari-
able pocket is constructed so part of it can be �-guarded
only if the corresponding t/f vertex in the clause junc-
tion has a guard, or the corresponding variable con-
sistency vertex has a guard, or an additional guard is
added inside the pocket (see Figure 6). Each variable
pocket has four convex vertices. The two vertices l and
o at the top of each pocket also require guards to guard
the top edges (lm1 and om2) of the pocket. If the vari-
able is true or false, a guard is placed at the variable con-
sistency vertex corresponding to this value. This guard
(already counted in the variable pattern) completes the
triangle guarding of all the pockets in its well. By con-
struction, the unguarded section of each pocket in the
other well can be �-guarded by the six guards in the

pocket and the assigned t/f guard of the corresponding
literal pattern. Thus all pockets are guarded without
additional guards.

Figure 7 shows the entire construction for an example
of two clauses and three variables. By this construction,
we have shown:

Lemma 5 A given 3SAT instance Φ is satisfiable if and
only if the corresponding polygon Q can be �-guarded
by 48×(Number of Clauses) + 7×(Number of Variables)
+ 5 vertex guards.
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Figure 6: A variable pocket.
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Figure 7: An example for Φ = (u1 ∨ u2 ∨ u3)(u1 ∨ u2 ∨ u3). Not all the guards are shown.
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