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Sufficiently Fat Polyhedra are Not 2-Castable∗
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Abstract

In this note we consider the problem of manufacturing
a convex polyhedral object via casting. We consider
a generalization of the sand casting process where the
object is manufactured by gluing together two identi-
cal facets of parts cast with a single piece mold. In
this model we show that the class of convex polyhedra
which can be enclosed between two concentric spheres
with the ratio of their radii less than 1.07 cannot be
manufactured using only two cast parts.

1 Introduction

Casting is a common manufacturing process where some
molten substance is poured or injected into a cavity
(called a mold), and then allowed to solidify. In many
applications (see e.g. [2, 3]) it is desirable to remove the
cast object from the mold without destroying the mold
(or, obviously the recently manufactured object). In
general this requires the mold to be partitioned into sev-
eral parts, which are then translated away from the cast
object. In the simplest case (prevalent in sand casting),
a mold for polyhedron P is partitioned into two parts
using a plane. If a successful partition (i.e. both parts
can be removed by translations without collisions), we
say that P is 2-castable.

Guided by intuition about smooth objects, one might
suspect that all convex polyhedra are 2-castable. This
turns out not to be the case. Bose, Bremner and van
Kreveld [1] gave an example of a 12 vertex convex poly-
hedron that is not 2-castable. Unfortunately the proof
of non-castability relies on a computer based exhaustive
search. Majhi, Gupta and Janardan [5] gave a simpler
example with only 6 vertices; here the proof of non-
castability is left as an exercise. In neither case can one
draw any general conclusions (beyond the tautological)
about what sort of convex polyhedra are 2-castable.

In the present note we provide a general class of con-
vex polyhedra that are not 2-castable. In particular, we
establish that if the polyhedron has vertices and facets
in general position and is a sufficiently close approxima-
tion of a sphere, then it is not 2-castable.
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2 Background

We will actually consider a slightly more general defi-
nition of 2-castability. We start with the definition of
a castable polyhedron. Consider a 3-dimensional half-
space H. Let P be a polyhedron that lies in H, while
one of its facets F lies on the boundary of H. The set
M = H \ P is called a mold for P . We say that P is
castable with respect to a facet F (or equivalently with
respect to a mold M), if we can pull P out of M by
moving it along some vector d without collisions (e.g.
interior intersections). If there exists such a facet of
P , then P is called castable. A polyhedron P that can
can be divided into k castable parts is called k-castable.
Note that for k = 2 it is often required by manufac-
turing processes that the two halves are castable with
respect to the same mutual facet. This constraint is re-
laxed here, however we do require that the halves are
separated by a plane (i.e. have a mutual facet).

Definition 1 A convex polyhedron P is called (Ri, Ro)-
fat if there are two concentric spheres Di and Do of
radii Ri and Ro, such that Di ⊂ P ⊂ Do.

Definition 2 A convex polyhedron is said to be in gen-
eral position if

• there are at most 2 facets parallel to a line

• if three of its edges lie in a plane then they belong
to the same facet

Let P be a general position (Ri, Ro)-fat polyhedron.
By scaling P we can assume Ri = 1 and Ro = R > 1.
For the rest of the paper we use fat to mean (1, R)-fat.
Let O denote the center of concentric spheres from Def-
inition 1. The following lemma gives bounds for various
elements of a fat polyhedron.

Lemma 1 Let P be a fat polyhedron. Every edge of
P has length at most l∗ = 2

√
R2 − 1, every facet has

area at most S∗ = π(R2 − 1) and its volume is bounded
4
3π < V (P ) < 4

3πR3.

Proof. Let AB be an edge of P and O′ be the projection
of O to AB. Since |OA| ≤ R and |OO′| ≥ 1, we have
|AO′| ≤ √

R2 − 1, so |AB| ≤ |AO′|+|O′B| < 2
√

R2 − 1.
Every facet F of P defines a slice C of the outer ball

(enclosed by the outer sphere Do), indeed F is contained
within the disk C. By the previous consideration, the
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radius of C is at most l∗/2. Therefore, we have the
bound S(F ) ≤ π(R2 − 1).

Since Di ⊂ P ⊂ Do, we have the bounds on the
volume of P given by the lemma. �

The following observation is simple but important for
the rest of the paper. If we restrict class of polyhedra
to (1, R)-fat and choose R sufficiently close to 1 then
l∗ can be made arbitrary small. That is, l∗ → +0 as
R → 1 + 0. The following lemma gives an upper bound
to the volume of a castable polyhedron.

Lemma 2 Suppose that P is castable through a facet
F of area S. Let H be the plane containing F and h
be the maximum distance from a point P to H. Then
V (P ) ≤ Sh.

Proof. Let v be the inner normal unit vector to F and
F (t) be the area of P ∩ H + tv, for t ≥ 0. Since P is
castable through F , the area F (t) is at most S. Thus
V (P ) =

� h
0 F (t) ≤ Sh. �

Let us call h the thickness of P with respect to F . Note
that thickness is bounded by the diameter of P , thus it
cannot exceed 2R.

3 The proof of non-castability

We use the following method to prove that P is not
2-castable. We will consecutively assume that certain
polyhedra are castable under some restrictions and then
argue that this implies certain lower bounds on R. As-
sume that all the possible situations are covered and let
R > R∗ be the loosest bound on R. Then P is not 2-
castable provided R < R∗. In the following, let S(F )
denote the area of polygon F .

(I) First assume that P is 1-castable through some facet
F . Using Lemma 2 and Lemma 1, we derive the
following inequality.

π(R2 − 1)2R ≥ S(F )h ≥ V (P ) >
4
3
π

This inequality implies the bound R > 1.240.

(II) Suppose that P is 2-castable. Let P be sliced
by a plane. Denote the larger part by P1, the
smaller by P2 and their mutual facet by C, so that
V (P1) ≥ V (P )/2 ≥ V (P2). To simplify the presen-
tation here, without loss of generality assume that
O = (0, 0, 0), C is horizontal, P1 lies above C and
P2 below. Let the plane containing C be given by
the equation z = z0. Each of P1 and P2 has to be
1-castable.

(IIa) Assume that P1 is castable through a facet F �=
C. As before, we have

π(R2 − 1)2R ≥ S(F )h ≥ V (P1) ≥ V (P )
2

>
2
3
π

In this case, R > 1.137.

(IIb) Assume that P1 is castable through C, and P2

is castable through a facet F �= C. First consider
the case, where z0 ≥ 0. Using Lemma 2 for P2 we
derive

π(R2 − 1)2R > S(F )h > V (Di)/2 = 2π/3 (1)

since P2 contain the lower part of the inner sphere.
Solving (1) numerically we obtain R > 1.137.

Now consider the case of z0 < 0. Since P1 contain
the disk Di∩{z = 0}, we require that the diameter
of the slice C is at least 1, and hence

�
R2 − z2

0 > 1 (2)

Using Lemma 2 for P2 gives

2π(R2 − 1)
�

R2 − z2
0 ≥ S(F )h ≥ V (P2)

> π

� z0

−1
1 − t2dt = π(2/3 + z0 − z3

0) (3)

since the diameter of P2 is at most 2
�

R2 − z2
0 . The

numerical solution of the system of (2) and (3) gives
R > 1.072.

Summarize the argument so far with the following
lemma.

Lemma 3 If P is 2-castable then either both P1 and P2

are castable through the common facet C or R > 1.072.

Assume that both P1 and P2 are castable through C.
For each edge e of C consider its incident facets F1 in
P1 and F2 in P2 other than C. We mark e, F1 and F2

if these facets constitute a facet of P .

Lemma 4 There are at most 2 unmarked edges.

Proof. Each unmarked edge corresponds to an edge of
P that lies in C. The lemma follows from the general
position assumption. �

Consider the set of feasible casting directions d =
(dx, dy, dz) for a polytope P . Without loss of generality
assume that dz = −1 for P1 and dz = 1 for P2.

It is known [4] that each facet F of P1 (P2) implies
a linear constraint on d, namely (µ, d) ≤ 0, where µ is
the outward normal to F with respect to P1 (P2). We
restrict ourselves to the facets of P1 (P2) which are in-
cident with marked edges of C. Let LP1 (LP2) be the
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Figure 1: The facet C, bold edges are unmarked and
form the chain

corresponding 2-dimensional linear programs. Castabil-
ity of P1 (P2) implies feasibility of LP1 (LP2). Note that
if a facet F1 of P1 contributes to LP1 then the incident
facet F2 of P2 contributes to LP2. The corresponding
inequalities are:

l1(d) = µxdx + µydy − µz ≤ 0 (4)
l2(d) = µxdx + µydy + µz ≤ 0 (5)

Let us define feas(LPi) to be the feasible region of
a program LPi, i.e. the intersection of the constraints
li(d) ≤ 0 for each µ. We study these programs in more
detail. First note that feasible regions of these programs
have to have inner points. For otherwise some there are
either:

• Two constraints of the form (µ, d) ≤ 0 and
(−µ, d) ≤ 0 (their bounding lines coincide). Then
the corresponding facets are parallel.

• Three constraints, such that their bounding lines
on the plane dz = ±1 intersect in a point. This
means that the corresponding facets are parallel to
a line.

Let d and e be inner points in feas(LP1) and feas(LP2)
respectively. Then for every l1 ∈ LP1, we have l1(d) <
0. So l2(−d) = −l1(d) > 0 and −d satisfies no con-
straints of LP2. Consider the ray r = (−d)+λ(e−(−d))
starting at −d towards e. The segment between −d and
e of this ray has to intersect every bounding line in LP2,
since one of its endpoints satisfies all the constraints
while the other satisfies none of them. Therefore the
remainder of r (beyond e, λ ≥ 1) can not intersect any
any of the bounding lines of LP2. We conclude that
feas(LP2) is unbounded with respect to r. Similarly we
can prove, that feas(LP1) is also unbounded. Suppose
that feas(LP1) is unbounded along a ray r′ = p + λv,
λ ≥ 0.

Consider the plane containing the convex polygon C
illustrated in Figure 1. Suppose there exists a marked
edge e with the outward normal n, such that (n, v) > 0.
Let µ be the outward normal of the corresponding facet
of P , whose projection to {z = 0} is n. Then

µx(px + λvx) + µy(py + λvy) + µz

= λ(n, v) + µxpx + µypy + µz ≤ 0

for every λ ≥ 0, which is a contradiction. So all marked
edges have outward normals n such that (n, v) ≤ 0.
Consider the edges of C with the outward normal n,
such that (n, v) > 0. All such edges are unmarked and
form a chain since C is convex. Define the segments
QS and RT to be the segments parallel to the vector
v and touching the interior circle at the points Q and
R and the points S and T lie on the exterior circle (see
Figure 1). The first and last edge of C, that intersect the
interior of QRTS have to belong to this chain. So the
chain connects QS and RT , hence its length is at least
2. But we know that there are at most two unmarked
edges, thus we one of them has to be longer then 1. This
means that l∗ = 2

√
R2 − 1 > 1, an thus R >

�
5/4 >

1.118. Bringing all of the bounds on R together, we
conclude with

Theorem 1 If P is a (Ri, Ro)-fat polyhedron in general
position and Ro/Ri < 1.072, then P is not 2-castable.
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