
CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

Computing a Geometric Measure of the Similarity Between two Melodies

Greg Aloupis∗ Thomas Fevens† Stefan Langerman‡ Tomomi Matsui§ Antonio Mesa¶

Yurai Nuñez¶ David Rappaport‖ Godfried Toussaint∗

Abstract

Consider two orthogonal closed chains on a cylinder.
The chains are monotone with respect to the angle Θ.
We wish to rigidly move one chain so that the total
area between the two chains is minimized. This is a
geometric measure of similarity between two repeating
melodies proposed by Ó Maid́ın. We present an O(n)
time algorithm to compute this measure if Θ is not al-
lowed to vary, and an O(n2 log n) time algorithm for
unrestricted rigid motions on the surface of the cylin-
der.

1 Introduction

We have all heard numerous melodies, whether they
come from commercial jingles, jazz ballads, operatic
aria, or any of a variety of different sources. How a
human detects similarities in melodies has been studied
extensively [11, 7]. There has also been some effort in
modeling melodies so that similarities can be detected
algorithmically. Some results in this fascinating study
of musical perception and computation can be found in
a collection edited by Hewlett and Selfridge-Field [6].

Similarity measures for melodies find application
in content-based retrieval methods for large music
databases such as query by humming (QBH) [5, 12]
but also in other diverse applications such as helping
prove music copyright infringement [3]. Previous work
on melodic similarity is based on methods like approxi-
mate string-matching algorithms [1, 8], hierarchical cor-
relation functions [9] and two-dimensional augmented
suffix trees [2].

Ó Maid́ın [10] proposed a geometric measure of the
distance between two melodies, Ma and Mb. The

∗School of Computer Science, McGill University.
{athens,godfried}@uni.cs.mcgill.ca

†Department of Computer Science, Concordia University.
fevens@cs.concordia.ca

‡Chargé de Recherches du FNRS, Département
d’Informatique, Université de Bruxelles. Ste-
fan.Langerman@ulb.ac.be

§Department of Mathematical Informatics, Graduate School
of Information Science and Technology, University of Tokyo.
tomomi@misojiro.t.u-tokyo.ac.jp

¶Facultad de Matematica y Computacion, Universidad de la
Habana. tonymesa@matcom.uh.cu , yurainr@yahoo.com

‖School of Computing, Queen’s University.
daver@cs.queensu.ca

melodies are modelled as monotonic pitch-duration rec-
tilinear functions of time as depicted in Figure 1. Ó
Maid́ın measures the distance between the two melodies
by the area between the two polygonal chains. This rec-
tilinear representation of a melody is equivalent to the
triplet melody representation in [9].

In a more general setting such as music retrieval sys-
tems, we may consider matching a short query melody
against a larger stored melody. Furthermore, the query
may be presented in a different key (transposed in the
vertical direction) and in a different tempo (scaled lin-
early in the horizontal direction). Francu and Nevill-
Manning [4] compute the minimum area between two
such chains, taken over all possible transpositions. They
do this for a constant number of pitch values and scal-
ing factors, and each chain is divided into m and n
equal time-steps. They claim (without describing in de-
tail) that their algorithm takes O(nm) time, where n
and m are the number of unit time-steps in each query.
This time bound can be achieved with a brute-force ap-
proach. In this paper we solve a similar problem, in a
more general setting.

In some music domains such as Indian classical music,
Balinese gamelan music and African music, the melodies
are cyclic, i.e. they repeat over and over. In Indian mu-
sic these cyclic melodies are called talas [13]. Two such
monophonic melodies may be represented by orthogo-
nal polygonal chains on the surface of a cylinder, as
shown in Figure 2. This is similar to Thomas Edison’s
cylinder phonographs, where music is represented by in-
dentations around the body of a tin foil cylinder. We
consider the problem of computing the minimum area
between two such chains of size n, over all translations
on the surface of the cylinder.

We present two algorithms to find the minimum area
between two given orthogonal melodies with periods of
2π. The first algorithm will assume that the Θ direction
is fixed. The second algorithm will find the minimum
area when both the z and Θ relative positions may be
varied. We will assume that the vertices defining Ma

and Mb are given in the order in which they appear in
the melodies.

1

15th Canadian Conference on Computational Geometry, 2003

Ma

∆z

Mb

Figure 1: The area between two melodies, Ma and Mb.

z

θ

Mb
Ma

Figure 2: Two orthogonal periodic melodies.

2 Minimization with respect to z direction

In the first algorithm, we will assume that both melodies
are fixed in the Θ direction. Without loss of generality,
we will assume that melody Ma is fixed in both direc-
tions, so all motion is relative to Ma. In Figure 1 we
show the area between two melodies, and a small shift
of Mb in the z direction.

To see how the area between the two melodies changes
as Mb moves in the z direction, consider a set of lines
defined by all vertical segments of the melodies as shown
in Figure 3. This set of lines partitions the area between
the melodies into quadrangles Ci, i = 1, . . . , k, each de-
fined by two vertical lines and two horizontal segments,
one from each melody. Note that k is at most n. The
area between Ma and Mb is the sum of the areas of all
Ci. If Mb starts completely below Ma and moves in
the positive z direction, then for any given Ci the lower
horizontal segment (from Mb) will approach the upper
fixed horizontal segment while the area of Ci decreases
linearly. This happens until the horizontal segments are
coincident (and the area of Ci is zero). Then the upper
horizontal segment (now from Mb) will move away from
the lower fixed horizontal segment while the area of Ci

increases linearly.
We will consider the vertical position of Mb to be the

z-coordinate of its first edge. When this edge overlaps
the first edge of Ma, we have z = 0. Let Ai(z) denote
the area of Ci as a function of z. At zi, Ai(zi) = 0.
These k positions of Mb where an Ai(z) is zero will be
called z-events. The slope of Ai(z) is determined by the

length of the horizontal segments of Ci. The total area
between Ma and Mb is given by A(z) =

�k
i=1 Ai(z).

Note that since A(z) is the sum of piecewise-linear con-
vex functions, it too is piecewise-linear and convex. Fur-
thermore its minimum must occur at a z-event.

Theorem 1 A minimum for A(z) can be computed in
O(n) time.

Proof. The function A(z) is given by A(z) =
�

wi|zbi−
zai| , where zbi is the vertical coordinate of Mb in Ci, zai

corresponds to Ma, and wi is the weight (width) of Ci,
as shown in Figure 3. Let αi denote the vertical offset of
each horizontal segment in Mb from zb1. Thus we have
zbi = zb1+αi, and A(z) =

�
wi|zb1−(zai−αi)|. Finally,

notice that the term zai − αi is equal to zi. Thus we
obtain A(z) =

�
wi|zi − zb1| . This is a weighted sum

of distances from zb1 to all the z-events. The minimum
is the weighted univariate median of all zi and can be
found in O(n) time [14]. This median is the vertical
coordinate that zb1 must have so that A(z) is minimized.
Once this is done, it is straightforward to compute the
sum of areas in linear time.

3 Minimization with respect to z and Θ directions

If no vertical segments among Ma and Mb share the
same Θ coordinate, then Mb may be shifted in at least
one of the two directions ±Θ so that the sum of areas
does not increase. This means that in order to find
the global minimum, the only Θ coordinates that need
to be considered are those where two vertical segments
coincide. Thus our first algorithm may be applied O(n2)
times to find the global minimum in a total of O(n3)
time. We now propose a different approach to improve
this time complexity.

As described in the previous section, for a given Θ,
the area minimization resembles the computation of a
weighted univariate median. When we shift Mb by ∆Θ,
we are essentially changing the input weights to this
median. Some Ci grow in width, some become narrower,
and some stay the same width. As we keep shifting,
at Θ coordinates where vertical segments coincide, we
have the destruction of a Ci and creation of another
Ci. An important observation is that the rate at which

2

CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

z

C4

α4

w4

zb4

za4

Ma

Mb

z = 0
z4

za4 − α4

Figure 3: Contribution of C4 to area calculation.

the changing Ci grow or shrink is unique at any given
instant.

Let us store the z-events and their weights in the
leaves of a balanced binary search tree. Each leaf rep-
resents one Ci. The leaves are ordered by the value zi.
Each leaf also has a label to distinguish between Ci that
are growing, shrinking, or unaffected when Mb is shifted
in the positive Θ direction. At every node with subtree
T we store:

• GT : The number of leaves in T that represent grow-
ing Ci.

• W+
T =

�
wi : The sum of weights over growing Ci

leaves.

• ST : The number of leaves in T that represent
shrinking Ci.

• W−
T =

�
wi : The sum of weights over shrinking

Ci leaves.

• W 0
T =
�

wi : The sum of weights over unaffected
Ci leaves.

This allows us to calculate the weighted median of
all zi, by traversing the tree from root to leaf, always
choosing the path that balances the total weight on both
sides of the path. The time for this is O(log n).

Suppose that we shift Mb by some offset ∆Θ, which
is small enough such that no vertical segments overlap
during the shift. Each wi that contributes to W+ must
be increased by ∆Θ, and each wi that contributes to
W− must decrease by this amount. Instead of actu-
ally updating all our inputs, we just maintain a global
variable representing the total offset in the Θ direction.

The total weight of a subtree T is now given by W+
T +

GT ∆Θ + W−
T − ST ∆Θ + W 0

T .
When we shift to a position where two vertical seg-

ments share the same Θ coordinate, we potentially elim-
inate some Ci, create a new Ci, or change type of Ci.
The number of such changes is constant for each pair
of collinear vertical segments. The weight given to a

created leaf must equal −∆Θ. Each of these changes
involves O(log n) work to update the information stored
in the ancestors of a newly inserted/deleted/altered leaf.
There are O(n2) such instances where this must be done
and where the median must be recomputed, so the to-
tal time to compute all candidate positions of Mb is
O(n2 log n).

At every Θ coordinate where we recalculate the me-
dian, we also need to calculate the integral of area be-
tween the two melodies. For a given median z∗, the area
summation for those Ci for which z∗ > zi has the form�

wi(z∗ − zi).

This may be calculated in O(log n) time if we know
the value of this summation for every subtree. In order
to do this, we store some additional information at ev-
ery node in our tree. Specifically, if we just consider the
contribution to this sum from leaves representing grow-
ing Ci, we have

�
(wi + ∆Θ)(z∗ − zi). For a subtree

T , this becomes z∗W+
T +GT z∗∆Θ−�wizi −∆Θ

�
zi.

We see that the additional information that we must
store is

�
wizi and

�
zi. To handle shrinking weights,

we must also store these two summations taken over the
shrinking Ci belonging to T . For unaffected weights, we
just need

�
zi. All of these stored values may be up-

dated in O(log n) time when inserting/deleting leaves in
the tree. We must also perform a similar O(log n) time
calculation of

�
wi(zi−z∗), for all z-events greater than

z∗.

Since at every critical Θ position we can calculate the
median and integral of area in O(log n) time, we obtain
the following theorem:

Theorem 2 Given two orthogonal periodic melodies
of size n, a relative placement such that the area be-
tween the melodies is minimized can be computed in
O(n2 log n) time.

3

15th Canadian Conference on Computational Geometry, 2003

4 Remarks

A special case of the general problem is to match two
melodies while varying only Θ. A direct application of
our technique to this seemingly simpler problem yields
the same time complexity. Extensions may involve
more complicated representations such as piecewise-
linear pitch, the use of integer weights/heights, or the
consideration of scaling.

Acknowledgements

We wish to thank all participants of the Second Cuban
Workshop on Algorithms and Data Structures, held at
the University of Havana, April 13–19, 2003.

References

[1] David Bainbridge, Craig G. Nevill-Manning, Ian H.
Witten, Lloyd A. Smith, and Rodger J. McNab.
Towards a digital library of popular music. In Pro-
ceedings of the Fourth ACM International Confer-
ence on Digital Libraries, 1999.

[2] Arbee L.P. Chen, Maggie Chang, Jesse Chen, Jia-
Lien Hsu, Chih-How Hsu, and Spot Y. S. Hua.
Query by music segments: An efficient approach for
song retrieval. In Proc. IEEE International Con-
ference on Multimedia and EXPO (II), pages 873–
876, 2000.

[3] Charles Cronin. Concepts of melodic similarity
in music-copyright infringement suits. In W.B.
Hewlett and E. Selfridge-Field, editors, Melodic
Similarity: Concepts, procedures and applications.
MIT Press, Cambridge, Massachusetts, 1998.

[4] Cristian Francu and Craig G. Nevill-Manning. Dis-
tance metrics and indexing strategies for a digital
library of popular music. In Proc. IEEE Interna-
tional Conference on Multimedia and EXPO (II),
2000.

[5] Asif Ghias, Jonathan Logan, David Chamberlin,
and Brian C. Smith. Query by humming: Musical
information retrieval in an audio database. In ACM
Multimedia, pages 231–236, 1995.

[6] Walter B. Hewlett and Eleanor Selfridge-Field, ed-
itors. Melodic Similarity: Concepts, procedures
and applications. MIT Press, Cambridge, Mas-
sachusetts, 1998.

[7] Ludger Hofmann-Engl. Melodic similarity - a con-
ceptual framework. In Proc. 2nd International
Conference on Understanding and Creating Music,
Naples, 2002.

[8] Kjell Lemström. String Matching Techniques for
Music Retrieval. PhD thesis, University of Helsinki,
Faculty of Science, Department of Computer Sci-
ence, 2000.

[9] Lie Lu, Hong You, and Hong-Jiang Zhang. A new
approach to query by humming in music retrieval.
In ICME2001, pages 22–25, Tokyo, 2001.

[10] Donncha S. Ó Maid́ın. A geometrical algorithm
for melodic difference. Computing in Musicology,
11:65–72, 1998.

[11] Isabel C. Martinez. Contextual factors in the per-
ceptual similarity of melodies. The Online Con-
temporary Music Journal, 7, 2001.

[12] Jong-Sik Mo, Chang Ho Han, and Yoo-Sung Kim.
A melody-based similarity computation algorithm
for musical information. In 1999 Workshop on
Knowledge and Data Engineering Exchange, page
114, 1999.

[13] Robert Morris. Sets, scales, and rhythmic cycles:
a classification of talas in Indian music. In 21st
Annual Meeting of the Society for Music Theory,
Chapel Hill, NC, December 1998.

[14] Angelika Reiser. A linear selection algorithm for
sets of elements with weights. Information Pro-
cessing Letters, 7:159–162, 1978.

4

