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Abstract

Given a set of client positions as input, facility loca-
tion attempts to find positions for a set of facilities to
optimize some objective function. In mobile facility lo-
cation, clients undergo continuous motion with bounded
velocity and the problem becomes maintaining the posi-
tion of a mobile facility. This new area within the clas-
sical field of facility location is attractive for the many
new challenges it presents, problems which did not exist
in static facility location. The velocity of the mobile Eu-
clidean centre in two or more dimensions (centre of the
smallest enclosing sphere) is unbounded [BBKS00]. It is
natural to impose some upper bound on the velocity of a
facility. Thus, one must approximate the position of the
centre. The goal is to balance a good approximation fac-
tor while maintaining low velocity. To solve these two
opposing goals, we present the Gaussian centre as an
approximation to the mobile Euclidean centre.

1 Introduction

Facility location has a considerable history as a highly-
active area of research. The literature within the com-
munities of operations research, computational geom-
etry, networks, graph theory, and complexity theory
presents extensive examinations and solutions to the
problems of static facility location. The traditional
problem of locating a facility to optimize some func-
tion of the input set of client positions was first for-
mally defined by Alfred Weber [Web22] early in the
last century. The field has been studied extensively
since the 1960’s, but only within the last few years
have these questions been posed in the mobile setting
[BBKS00, AH01]. Given a set of clients moving con-
tinuously over a temporal dimension, completely new
problems arise. These include bounding velocity, main-
taining continuity, and approximating the location of a
mobile facility. Furthermore, the techniques employed
to solve a particular facility location problem do not nec-
essarily extend to a solution to its mobile counterpart.
The challenges presented by mobile facility location find
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themselves particularly relevant given the applicability
of mobile computing to the wireless telecommunication
industries involving cellular and radio ethernet.

2 Static Facility Location

2.1 Position and Distance

Problems in facility location involve optimizing some
function of the positions of a set of clients. Given a set
of n clients, S = {v1, . . . , vn}, select locations for a set of
k facilities, F = {f1, . . . , fk}, to optimize the objective
function g(S, F ).

Client positions are often represented by points in Eu-
clidean space, R

d. Let pi ∈ R
d be the position of client

vi ∈ S. If |S| is infinite, we require clients to be located
within some bounded region of R

d.
We examine problems under Euclidean distance given

by the �2 norm:

∀u, v ∈ R
d, �2(u, v) = ||u−v||2 =

�
d�

i=1

(ui − vi)2 . (1)

Section 6 discusses the mobile centre problem under �1
and �∞.

2.2 The Euclidean Centre

Locating the centre of a set of points in the plane is a
fundamental problem of facility location. Under �2 we
refer to this centre as the Euclidean centre.

Definition 1 Let S be a set of clients within some
bounded region of R

2. The Euclidean centre of S is the
point η ∈ R

2 that minimizes the maximum �2 distance
to any client in S.

The Euclidean centre η is the unique point x that min-
imizes

g(S, x) = max
vi∈S

�2(pi, x) . (2)

Interpreted geometrically, η is the centre of the smallest
circle that contains S. Under R

d, η is the centre of the
smallest d-sphere that contains S. Megiddo [Meg83]
gives a Θ(n) linear programming solution to the static
Euclidean centre problem in R

2. Agarwal et al. [AST93]
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extend this result to R
d for any fixed d in O(dO(d)n)

time. Every client must be examined, giving a lower
bound of Ω(n · d), or Θ(n).

3 Mobile Facility Location

3.1 Mobile Clients

Until recently, only discrete motion of clients had been
considered. Such problems, termed dynamic facility
location, attempt to optimize the objective function
summed over a finite set of discrete time slots, T =
{t1, . . . , tf} [Wes73, BGKS98].

Bespamyatnikh et al. [BBKS00] first examined clients
moving under continuous motion. Let T = [t0, tf ] be a
time interval. Let S = {v1, . . . , vn} be a set of mobile
clients. Let pi : T → R

2 be a continuous function that
assigns a position in R

2 to client vi ∈ S at every instant
t ∈ T . We represent the position of point vi by pi(t) or
simply by pi if vi is static. We impose a constant upper
bound (usually 1) on the magnitude of the velocity of
points1. If pi(t) is differentiable, then ||p′i(t)||2 ≤ 1.
Otherwise, this condition is generalized as

∀t1, t2 ∈ T, ||pi(t1) − pi(t2)||2 ≤ |t1 − t2| . (3)

3.2 The Mobile Euclidean Centre

The definition of the mobile Euclidean centre is a direct
extension of its static definition.

Definition 2 Let T = [t0, tf ] be a time interval. Let
S be a set of mobile clients within some bounded region
of R

2. The mobile Euclidean centre of S is a function,
η : T → R

2, such that for every t ∈ T , η(t) is the
Euclidean centre of S(t).

3.3 Velocity of the Euclidean Centre

Bespamyatnikh et al. [BBKS00] show that in R
2 under

�2, for any σ ≥ 0, there exists a configuration of mo-
bile clients such that the Euclidean centre moves with
velocity at least σ. Thus, even when clients are limited
to unit velocity, no bound exists on the velocity of the
Euclidean centre.

It is natural to impose some upper bound on the ve-
locity of facilities. Therefore, we approximate the mo-
bile centre.

3.4 Approximation Metrics

Let η : T → R
2 be the position of the Euclidean centre.

Let a : T → R
2 be the position of the approximated

centre. A good approximation a(t) optimizes two crite-
ria:

1Any constant upper bound on velocity may be used. Since
there is no unit of reference, without loss of generality, we select
1 for simplicity.

1. The maximum distance from a(t) to any client re-
mains close to the maximum distance from η(t) to
any client.

2. The velocity of a(t) has a low upper bound.

The relative difference between the maximum distances
to any client is

λ = max
t

maxi ||pi − a(t)||2
maxj ||pj − η(t)||2 . (4)

The velocity of the approximate centre is bound by b if

∀t1, t2, ||a(t1) − a(t2)||2 ≤ b · |t1 − t2| . (5)

For a given approximation a(t), let vmax be the infimum
over all such b.

3.5 Related Work

Agarwal and Har-Peled [AH01] maintain the approxi-
mate mobile centre in R

2 under �∞ and �2. Their ap-
proximations do not require continuity or bounded ve-
locity in the motion of the approximated centre; rather,
their aim is to minimize the number of events pro-
cessed and the update cost per event using kinetic data
structures. Agarwal et al. [AGG02] maintain the ap-
proximate mobile median in R. Bespamyatnikh et al.
[BBKS00] maintain approximations to the mobile cen-
tre and mobile median in R

2 under �∞ and �2. These
include a point on the convex hull, a bounding box, the
centre of mass, and linear combinations of these. We
discuss these further in Sections 4.1 and 6.

4 The Gaussian Centre

4.1 Motivation

To find the Euclidean centre of a set of clients S, one
needs only to consider the extreme points: those that
define the convex hull of S. Bespamyatnikh et al.
[BBKS00] note that selecting a point on the convex hull
to approximate the Euclidean centre guarantees λ ≤ 2
and vmax ≤ 1. In terms of defining a central point,
this approximation is poor; however, the convex-hull
approximation provides a reference to which we can
compare other approximations. Reducing λ increases
vmax and vice-versa. The challenge lies in understand-
ing the trade-off between the degree of the approxima-
tion, 1 ≤ λ ≤ 2, and the maximum velocity with which
the approximated centre may move, 1 ≤ vmax < ∞.

4.2 Gaussian Centre Definition

We define the Gaussian centre as a weighted centre of
mass of the clients. The weights are defined to change
continuously as clients move along, join, or leave the
convex hull.
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Figure 1: the Gaussian and Euclidean centres, ν and η

Let CS(t) ⊆ S be the convex hull of S at time t. For
each vi ∈ CS(t), let wi(t) = π − θi(t), where θi(t) is the
interior angle formed on the convex hull at vi at time t.
For each vi ∈ S − CS(t), let wi(t) = 0.

Definition 3 The Gaussian centre of S, ν(t), is the
normalized weighted mean of the clients in S:

ν(t) =
1
2π

�
i

wi(t)pi(t) . (6)

For example, let static clients v1, . . . , v6 have posi-
tions (−2,−1), (−1,−1), (2,−1), (2, 1), (0, 1), (1, 0), re-
spectively. See Figure 1. Since wi = π− θi, clients have
weights 3π/4, 0, π/2, π/2, π/4, 0, respectively. The
Gaussian centre of S, ν, lies in position (1/4,−1/4).
The Euclidean centre of S, η, is at the origin.

The Gaussian diagram provides an equivalent defini-
tion for client weights. In two dimensions, the Gaussian
diagram GS of the convex hull CS divides the unit circle
into sectors such that the weight of each client in CS is
given by the length of its corresponding arc in GS . The
weight of a client vi on the convex hull corresponds to
the angular difference between the normals of the edges
adjacent to vi.

The Gaussian centre has several desirable properties.
First, only those clients on the convex hull can deter-
mine the location of the centre. Intuitively, the more
significant a client’s presence on the convex hull is, the
greater the weight assigned to it. When clients move,
their weights change continuously, including clients that
move from the interior onto the convex hull or vice-
versa. This continuous change in weights ensures the
Gaussian centre always moves continuously.

4.3 Approximation Factor

The Gaussian centre approximates the Euclidean centre
to a factor of λ ≈ 1.1153. This maximum is achieved by
an arc opposite a lone vertex as displayed in Figure 2
when θ1 = θ2 ≈ 0.81047. The exact values are given by
the solution to

cos θ1 + (θ1 − π) sin θ1 + 1 = 0 . (7)

The complete proof will be available in the full paper.
Below is a sketch of the proof.

Let m be the furthest client from ν.

θ1

θ2

η

a

b

cd

A

Figure 2: maximizing λ

Definition 4 The motion of client a is lengthening if
it causes an increase in �2(m, ν).

When a 	= m, the projection of a lengthening velocity
of a onto mν points away from m.

Definition 5 A maximizing configuration is a set of
clients S whose positions maximize λ.

Since λ is a ratio, λ is independent of scaling. Without
loss of generality, we assume maxj �2(pj , η) = 1. There-
fore, all clients lie within or on the unit circle centred
at η.

Lemma 1 In any maximizing configuration, all clients
in S lie on the unit circle centred at η.

Proof sketch. By contradiction. Assume S is a max-
imizing configuration such that some client a on the
convex hull lies inside the unit circle. Let b and c be a’s
neighbours on the hull. Let β/2π be the weight of a.
See Figure 3a. When a moves with unit velocity toward
b, ν moves with velocity 1

2π (− sin β cos β + β,− sin2 β)
relative to ab. When the velocity of a is perpendicular
to ab, away from the interior of S, ν moves with
velocity 1

2π (− sin2 β, sin β cos β + β). These are linearly
independent for β 	= 0. If the motion of a is reversed,
the resulting motion of ν is reversed. When a 	= m, at
least one of these four motions must be lengthening. If
a = m, then moving m away from ν is a lengthening
motion. Thus, S was not a maximizing configuration.
Contradiction. Therefore, in any maximizing configu-
ration, all clients must lie on the unit circle. �

Let l be the line through ν perpendicular to νm.
Lemmas 2 and 3 address points on either side of l, first
those opposite m, then those on the same side as m.

Lemma 2 In any maximizing configuration, all chords
on the convex hull of S must have normals whose pro-
jections onto νm point toward m.

Proof sketch. By contradiction. Assume S is a maximiz-
ing configuration of points such that two neighbouring
points, b and c, lie on the convex hull and the projec-
tion of the normal of bc onto νm point away from m.
By Lemma 1, b and c must lie on the unit circle. Add a
point a at the midpoint of bc. See Figure 3b. When a
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Figure 3: Lemmas 1, 2, and 3

moves along the normal to bc away from η, the weight
of b and c decreases by some amount ε and the weight
of a increases from 0 to ε. The normal of bc projected
onto νm points away from m. Thus, the motion of a
is lengthening. Therefore, S was not a maximizing con-
figuration. Contradiction. Therefore, all chords on the
convex hull of S must have normals whose projections
onto νm point toward m. �

Corollary 1 In any maximizing configuration, any
points opposite l from m lie on a single continuous arc
on the unit circle.

Proof sketch. By Lemma 2, otherwise any gap would
form a chord whose normal points away from m. �

Lemma 3 In any maximizing configuration, only a sin-
gle point may lie on the same side of l as m.

Proof sketch. By contradiction. Assume S is a max-
imizing configuration such that two or more points lie
on the convex hull on the same side of l as m. Let a
and b be any two such neighbouring points such that
b 	= m. By Lemma 1, a and b lie on the unit circle.
See Figure 3c. Let c be b’s neighbour opposite a. Let
κ be the bisector of ∠abc. When b moves along κ, ν
moves in the same direction. By Lemma 2, chords ab
and bc must have normals whose projections onto mν
point toward m. The orientation of κ lies between the
reflections of these two normals. The projection of κ
onto mν must point away from m. Thus, the motion
of a is lengthening, meaning S was not maximized. We
derive a contradiction. Therefore, in any maximizing
configuration, the only point that may lie on the same
side of l as m is m itself. �

By Lemmas 1, 2, and 3, a maximizing configura-
tion consists of a continuous arc opposite at most one
point. See Figure 2.

5 Rotated Bounding-Box Centre

5.1 Bounding Box Centres

The Gaussian centre assigns weights to extreme points.
The simplest measure of extreme points is the bounding
box, defined relative to some axis of orientation. The
centre of the bounding box approximates the Euclidean

bπ/4

b0

S

Figure 4: a continuously-rotated bounding box

centre with λ = (1 +
√

2)/2 and vmax =
√

2 [BBKS00].
To improve the approximation, one could average the
centres of several bounding boxes, each rotated by some
angle φ ∈ [0, π/2).

Let S be a set of mobile clients within some bounded
region of R

2. For a given angle φ ∈ [0, π/2), let bφ(t)
be the bounding box of S at time t such that for each
edge {e1, . . . , e4} of bφ(t), the angle formed between ei

and the x-axis is φ mod π
2 . Let c(bφ(t)) be the centre

of bounding box bφ(t). When φ = 0, b0(t) is equivalent
to the mobile �∞ centre. Similarly, when φ = π/4,
bπ/4(t) is equivalent to the mobile �1 centre. As the
number of bounding boxes approaches infinity, over all
φ ∈ [0, π/2), we get the rotated bounding-box centre:

Definition 6 Let S be a set of mobile clients within
some bounded region of R

2. The rotated bounding-box
centre of S is

2
π

� π/2

0
c(bφ(t)) dφ . (8)

Note, this definition could also be defined over the do-
mains [0, π] or [0, 2π]. The domain [0, π/2] is sufficient
since any two bounding boxes bφ1(t) and bφ2(t) are equal
if φ1 = φ2 mod π/2.

5.2 Velocity of Bounding-Box Centre

For any given bounding box, bφ(t), the magnitude of
the velocity of its centre is bounded by

√
2. This max-

imum is achieved along the diagonal. See Figure 5a.
For a fixed direction of motion, say the x-axis, bound-
ing box bφ−π/4(t) contributes

√
2 cos φ. See Figure 5b.

Thus, the maximum velocity of the rotated bounding-
box centre is

2
π

� π/4

−π/4

√
2 cos φ dφ =

4
π

≈ 1.2732 . (9)

Interestingly, for any set of mobile clients, the Gaus-
sian centre is equal to the rotated bounding-box centre.
The proof will be available in the full paper. This equiv-
alence allows us to bound the velocity of the Gaussian
centre.
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Figure 5: maximum velocity of a bounding box centre

Table 1: Approximations to the Euclidean Centre
Approximation λ vmax

Euclidean centre 1 ∞
point on convex hull 2 1
centre of mass 2 1
bounding box 1+

√
2

2 ≈ 1.2071
√

2 ≈ 1.4142
Gaussian centre ≈ 1.1153 4

π ≈ 1.2732

6 Other Approximations

How does the Gaussian centre compare to other approx-
imations for the Euclidean centre? Bespamyatnikh et al.
[BBKS00] examine a point on the convex hull, the cen-
tre of mass, and the bounding box. Furthermore, they
explore a mixed strategy consisting of a linear combina-
tion of the bounding box and the centre of mass. See
Table 1 for λ and vmax values.

Our discussion has focused on the �2 distance metric.
Under �1 the velocity of the centre is bounded by

√
2 and

under �∞ it is bounded by 1. Unlike �2, where the ve-
locity of the centre is unbounded, approximation is not
required since the exact centre can be followed. Fur-
thermore, under �2, the position of the centre is unique
whereas under �1 and �∞, even simple examples give
rise to multiple centre points.

7 Future Work: 3 Dimensions

The Gaussian centre definition has a natural extension
into three dimensions.

Let S = {v1, . . . , vn} be a set of clients. Let pi ∈
R

3 be the position of client vi. Let CS ⊆ S be the
three-dimensional convex hull of S. Let Fi be the set
of faces that meet at vertex vi ∈ CS . Let θi,j be the
interior plane angle on face fj at vertex vi. Let wi =
2π −�fj∈Fi

θi,j be the weight of client pi. For each
vi ∈ S − CS , let wi = 0.

The sum of the plane angles at a vertex v ranges from
0 to 2π. By Euler’s theorem, the sum of all weights for
any arrangement of points is 4π.

Definition 7 In three dimensions, the Gaussian centre
of S, ν, is the normalized weighted mean of the clients
of S:

ν(t) =
1
4π

�
i

pi(t)wi(t) . (10)

When vertices are coplanar, a client set S in three
dimensions reduces to the two-dimensional case. This
is reflected by the fact that such an instance induces
two symmetric faces. The Gaussian centre is given by

ν =
1
4π

�
i

(2π − 2θi) =
1
2π

�
i

(π − θi) . (11)

As was the case in two dimensions, the Gaussian dia-
gram provides an interesting alternative interpretation
of vertex weights. In three dimensions, the Gaussian
diagram GS of a polyhedron CS divides the unit sphere
into spherical sectors such that the weight of each client
in CS is given by the surface area of its corresponding
spherical polygon in GS .
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