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On the Complexity of Halfspace Volume Queries

Erik D. Demaine∗ Jeff Erickson† Stefan Langerman‡

Abstract

Given a polyhedron P in Rd with n vertices, a halfspace
volume query asks for the volume of P ∩ H for a given
halfspace H. We show that, for d ≥ 3, such queries
can require Ω(n) operations even if the polyhedron P is
convex and can be preprocessed arbitrarily.

1 Introduction

A typical range query problem can be formulated as fol-
lows: Preprocess a set S of n points in Rd so that,
given an arbitrary query range r ⊆ Rd of some fixed
type, the number of points in r ∩ S can be computed
efficiently. There is extensive literature on this class of
problems [1], but little has been done to generalize it to
a more continuous setting.

We consider range queries on (solid) polyhedra in Rd,
where the ranges are halfspaces. We denote the halfs-
paces above and below a hyperplane h by h+ and h−,
respectively. Let P be a fixed polyhedron. A halfs-
pace volume query asks, given a query hyperplane h,
to compute the volume of the intersection P ∩ h− (or
equivalenty, of P ∩ h+).

Czyzowicz, Contreras-Alcalá, and Urrutia [3, 4] stud-
ied the problem of halfplane-area queries, in the special
case where P is a convex polygon. In that case, an O(n)-
space data structure can be constructed to find the two
edges intersected by the query line h in O(log n) time.
Given those two edges, they show a simple technique to
compute the area of P ∩ h− in O(1) time. Boland and
Urrutia [2] observe that the same method also works for
non-convex polygons as long as h intersects exactly two
edges of P . If h intersects k edges of P , these edges can
be found in O(k log n) time using standard ray-shooting
techniques. Then, given those k edges, the algorithm of
Czyzowicz et al. can be generalized to compute the area
of P ∩ h− in O(k) time.

In light of results in discrete range searching, where
most queries can be performed in sublinear time af-
tre suitable preprocessing, it is natural to ask whether
halfplane-area queries can be performed in o(k) time.
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Recently, Langerman [6] gave a negative answer, show-
ing that any straight-line program requires Ω(k) oper-
ations to answer arbitrary halfplane area queries, even
if the k edges intersecting h are known in advance, and
regardless of preprocessing time and storage space.

Iacono and Langerman [5] generalized the data struc-
tures for R2 to simply connected polyhedra P in R3.
As in the planar case, the k edges of P that intersect h
can be found in O(k log n) time; given those k edges,
the volume of P ∩ h− can be computed in O(k) time
with a data structure using O(n) space and preprocess-
ing. Langerman’s lower bound [6] implies that the O(k)
time bound is worst-case optimal when P is not convex,
but this lower bound does not apply when P is convex.

Our main result is that Iacono and Langerman’s al-
gorithm is optimal even when P is convex.

Main Theorem. For any d ≥ 3, any straight-line pro-
gram that answers halfspace-volume queries for a fixed
convex polyhedron in Rd requires Ω(k) time in the worst
case, where k is the number of edges intersecting the
query hyperplane, regardless of preprocessing and stor-
age space, even if the k intersected edges are known at
preprocessing time.

Like all lower bounds in the straight-line-program
model, including Langerman’s earlier result [6], our
bound also holds in more general models of computation
such as algebraic computation trees and the real RAM.

2 Proof

We prove our lower bound for a specific class of
queries to be performed on a particular convex poly-
hedron P in R3. We first define a planar polygon Q
with vertices v0, v1, . . . , vn, where vi = (ai, a

2
i , 1) and

0 = a0 < a1 < · · · < an. This polygon is clearly convex.
Our polyhedron P is the unbounded cone whose apex is
the origin (0, 0, 0) and whose intersection with the plane
z = 1 is the polygon Q.

For any query hyperplane h, the polygon P ∩ h is
a projective transformation of the base polygon Q, and
computing the volume of P ∩h− clearly reduces to com-
puting the area of this transformed polygon. To prove
the lower bound, we consider the following more general
problem. Let π denote the plane z = 1. A projective
area query asks, given an arbitrary linear transforma-
tion T : R3 → R3, represented by a 3 × 3 matrix, to
compute the area of T (P ) ∩ π. (We can equivalently
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view T as a planar projective transformation from π to
itself that maps Q to T (P )∩π.) We easily observe that

vol(T (P ) ∩ π−) = det(T ) · vol(P ∩ T−1(π−))

=
det(T )

3
· area(P ∩ T−1(π)).

Both det(T ) and the plane T−1(π) can be computed
in constant time. Thus, to prove our main theorem, it
suffices to show that answering an arbitrary projective
area query for P requires Ω(n) time.

We prove this lower bound by considering transfor-
mations of the form

Tx =

�
�1 0 x

0 1 0
0 0 1

�
�

for some real value x > 0. The transformed polygon
Q′

x = Tx(P ) ∩ π has vertices v′
0, v

′
1, . . . , v

′
n, where

v′
i =

�
ai

aix + 1
,

a2
i

aix + 1
, 1
�

.

The area of Q′
x can be expressed as the sum of the signed

areas of all triangles of the form �v′
0v

′
i−1v

′
i; recall that

v′
0 = v0 = (0, 0, 1).

F (x) = area(Q′
x)

=
n�

i=2

area(�v′
0v

′
i−1v

′
i)

=
n�

i=2

area(�v0vi−1vi)
(aix + 1)(ai−1x + 1)

=
1
2

n�
i=2

a2
i ai−1 − a2

i−1ai

(aix + 1)(ai−1x + 1)

=
1
2

n�
i=2

(a2
i ai−1)(ai−1x + 1) − (a2

i−1ai)(aix + 1)
(aix + 1)(ai−1x + 1)

=
1
2

n�
i=2

�
a2

i ai−1

aix + 1
− a2

i−1ai

ai−1x + 1

�

=
1
2

�
n�

i=2

a2
i ai−1

aix + 1
−

n−1�
i=1

a2
i ai+1

aix + 1

	

=
1
2

�
a2
1a2

a1x + 1
+

n−1�
i=2

a2
i (ai−1 − ai+1)

aix + 1
+

a2
nan−1

anx + 1

	

F (x) is a rational function in x, parameterized by the
values a1, . . . , an. To prove a lower bound on the com-
plexity of computing this function, we use the following
theorem of Motzkin [7]:

Motzkin’s Theorem. Let K be an infinite field. If
u, v ∈ K[x] are relatively prime and the leading coeffi-
cient of v is 1, then

L+(u/v) ≥ T (u, v) − 1, L∗(u/v) ≥ 1
2
(T (u, v) − 1)

where L+(f) is the minimum number of additions and
subtractions, and L∗(f) the minimum number of mul-
tiplications and divisions, required to evaluate f , where
operations not involving x are regarded as costless.
T (u, v) is the degree of transcendence of the set of co-
efficients of u and v over the primefield of K.

To compute F (x) over some primefield K (for ex-
ample, R or Q), we enlarge K to the extension field
K = K(a1, . . . , an). If we write F (x) ∈ K(x) as a quo-
tient of two polynomials, the denominator


n
i=1(aix+1)

has n algebraically independent roots −1/ai, and thus
the set of its coefficients has degree of transcendence n
over K. Our lower bound now follows immediately from
Motzkin’s theorem.
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