On the Complexity of Halfspace Volume Queries

Erik D. Demaine ${ }^{*} \quad$ Jeff Erickson ${ }^{\dagger} \quad$ Stefan Langerman ${ }^{\ddagger}$

Abstract

Given a polyhedron P in \mathbb{R}^{d} with n vertices, a halfspace volume query asks for the volume of $P \cap H$ for a given halfspace H. We show that, for $d \geq 3$, such queries can require $\Omega(n)$ operations even if the polyhedron P is convex and can be preprocessed arbitrarily.

1 Introduction

A typical range query problem can be formulated as follows: Preprocess a set S of n points in \mathbb{R}^{d} so that, given an arbitrary query range $r \subseteq \mathbb{R}^{d}$ of some fixed type, the number of points in $r \cap S$ can be computed efficiently. There is extensive literature on this class of problems [1], but little has been done to generalize it to a more continuous setting.

We consider range queries on (solid) polyhedra in \mathbb{R}^{d}, where the ranges are halfspaces. We denote the halfspaces above and below a hyperplane h by h^{+}and h^{-}, respectively. Let P be a fixed polyhedron. A halfspace volume query asks, given a query hyperplane h, to compute the volume of the intersection $P \cap h^{-}$(or equivalenty, of $P \cap h^{+}$).

Czyzowicz, Contreras-Alcalá, and Urrutia [3, 4] studied the problem of halfplane-area queries, in the special case where P is a convex polygon. In that case, an $O(n)$ space data structure can be constructed to find the two edges intersected by the query line h in $O(\log n)$ time. Given those two edges, they show a simple technique to compute the area of $P \cap h^{-}$in $O(1)$ time. Boland and Urrutia [2] observe that the same method also works for non-convex polygons as long as h intersects exactly two edges of P. If h intersects k edges of P, these edges can be found in $O(k \log n)$ time using standard ray-shooting techniques. Then, given those k edges, the algorithm of Czyzowicz et al. can be generalized to compute the area of $P \cap h^{-}$in $O(k)$ time.

In light of results in discrete range searching, where most queries can be performed in sublinear time aftre suitable preprocessing, it is natural to ask whether halfplane-area queries can be performed in $o(k)$ time.

[^0]Recently, Langerman [6] gave a negative answer, showing that any straight-line program requires $\Omega(k)$ operations to answer arbitrary halfplane area queries, even if the k edges intersecting h are known in advance, and regardless of preprocessing time and storage space.
Iacono and Langerman [5] generalized the data structures for \mathbb{R}^{2} to simply connected polyhedra P in \mathbb{R}^{3}. As in the planar case, the k edges of P that intersect h can be found in $O(k \log n)$ time; given those k edges, the volume of $P \cap h^{-}$can be computed in $O(k)$ time with a data structure using $O(n)$ space and preprocessing. Langerman's lower bound [6] implies that the $O(k)$ time bound is worst-case optimal when P is not convex, but this lower bound does not apply when P is convex.
Our main result is that Iacono and Langerman's algorithm is optimal even when P is convex.

Main Theorem. For any $d \geq 3$, any straight-line program that answers halfspace-volume queries for a fixed convex polyhedron in \mathbb{R}^{d} requires $\Omega(k)$ time in the worst case, where k is the number of edges intersecting the query hyperplane, regardless of preprocessing and storage space, even if the k intersected edges are known at preprocessing time.

Like all lower bounds in the straight-line-program model, including Langerman's earlier result [6], our bound also holds in more general models of computation such as algebraic computation trees and the real RAM.

2 Proof

We prove our lower bound for a specific class of queries to be performed on a particular convex polyhedron P in \mathbb{R}^{3}. We first define a planar polygon Q with vertices $v_{0}, v_{1}, \ldots, v_{n}$, where $v_{i}=\left(a_{i}, a_{i}^{2}, 1\right)$ and $0=a_{0}<a_{1}<\cdots<a_{n}$. This polygon is clearly convex. Our polyhedron P is the unbounded cone whose apex is the origin $(0,0,0)$ and whose intersection with the plane $z=1$ is the polygon Q.
For any query hyperplane h, the polygon $P \cap h$ is a projective transformation of the base polygon Q, and computing the volume of $P \cap h^{-}$clearly reduces to computing the area of this transformed polygon. To prove the lower bound, we consider the following more general problem. Let π denote the plane $z=1$. A projective area query asks, given an arbitrary linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, represented by a 3×3 matrix, to compute the area of $T(P) \cap \pi$. (We can equivalently
view T as a planar projective transformation from π to itself that maps Q to $T(P) \cap \pi$ ．）We easily observe that

$$
\begin{aligned}
\operatorname{vol}\left(T(P) \cap \pi^{-}\right) & =\operatorname{det}(T) \cdot \operatorname{vol}\left(P \cap T^{-1}\left(\pi^{-}\right)\right) \\
& =\frac{\operatorname{det}(T)}{3} \cdot \operatorname{area}\left(P \cap T^{-1}(\pi)\right)
\end{aligned}
$$

Both $\operatorname{det}(T)$ and the plane $T^{-1}(\pi)$ can be computed in constant time．Thus，to prove our main theorem，it suffices to show that answering an arbitrary projective area query for P requires $\Omega(n)$ time．

We prove this lower bound by considering transfor－ mations of the form

$$
T_{x}=\left[\begin{array}{lll}
1 & 0 & x \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

for some real value $x>0$ ．The transformed polygon $Q_{x}^{\prime}=T_{x}(P) \cap \pi$ has vertices $v_{0}^{\prime}, v_{1}^{\prime}, \ldots, v_{n}^{\prime}$ ，where

$$
v_{i}^{\prime}=\left(\frac{a_{i}}{a_{i} x+1}, \frac{a_{i}^{2}}{a_{i} x+1}, 1\right)
$$

The area of Q_{x}^{\prime} can be expressed as the sum of the signed areas of all triangles of the form $\triangle v_{0}^{\prime} v_{i-1}^{\prime} v_{i}^{\prime}$ ；recall that $v_{0}^{\prime}=v_{0}=(0,0,1)$ ．

$$
\begin{aligned}
F(x) & =\operatorname{area}\left(Q_{x}^{\prime}\right) \\
& =\sum_{i=2}^{n} \operatorname{area}\left(\triangle v_{0}^{\prime} v_{i-1}^{\prime} v_{i}^{\prime}\right) \\
& =\sum_{i=2}^{n} \frac{\operatorname{area}\left(\triangle v_{0} v_{i-1} v_{i}\right)}{\left(a_{i} x+1\right)\left(a_{i-1} x+1\right)} \\
& =\frac{1}{2} \sum_{i=2}^{n} \frac{a_{i}^{2} a_{i-1}-a_{i-1}^{2} a_{i}}{\left(a_{i} x+1\right)\left(a_{i-1} x+1\right)} \\
& =\frac{1}{2} \sum_{i=2}^{n} \frac{\left(a_{i}^{2} a_{i-1}\right)\left(a_{i-1} x+1\right)-\left(a_{i-1}^{2} a_{i}\right)\left(a_{i} x+1\right)}{\left(a_{i} x+1\right)\left(a_{i-1} x+1\right)} \\
& =\frac{1}{2} \sum_{i=2}^{n}\left(\frac{a_{i}^{2} a_{i-1}}{a_{i} x+1}-\frac{a_{i-1}^{2} a_{i}}{a_{i-1} x+1}\right) \\
& =\frac{1}{2}\left(\sum_{i=2}^{n} \frac{a_{i}^{2} a_{i-1}}{a_{i} x+1}-\sum_{i=1}^{n-1} \frac{a_{i}^{2} a_{i+1}}{a_{i} x+1}\right) \\
& =\frac{1}{2}\left(\frac{a_{1}^{2} a_{2}}{a_{1} x+1}+\sum_{i=2}^{n-1} \frac{a_{i}^{2}\left(a_{i-1}-a_{i+1}\right)}{a_{i} x+1}+\frac{a_{n}^{2} a_{n-1}}{a_{n} x+1}\right)
\end{aligned}
$$

$F(x)$ is a rational function in x ，parameterized by the values a_{1}, \ldots, a_{n} ．To prove a lower bound on the com－ plexity of computing this function，we use the following theorem of Motzkin［7］：

Motzkin＇s Theorem．Let K be an infinite field．If $u, v \in K[x]$ are relatively prime and the leading coeffi－ cient of v is 1 ，then

$$
L_{+}(u / v) \geq T(u, v)-1, \quad L_{*}(u / v) \geq \frac{1}{2}(T(u, v)-1)
$$

where $L_{+}(f)$ is the minimum number of additions and subtractions，and $L_{*}(f)$ the minimum number of mul－ tiplications and divisions，required to evaluate f ，where operations not involving x are regarded as costless． $T(u, v)$ is the degree of transcendence of the set of co－ efficients of u and v over the primefield of K ．

To compute $F(x)$ over some primefield \mathbb{K}（for ex－ ample， \mathbb{R} or \mathbb{Q} ），we enlarge \mathbb{K} to the extension field $K=\mathbb{K}\left(a_{1}, \ldots, a_{n}\right)$ ．If we write $F(x) \in K(x)$ as a quo－ tient of two polynomials，the denominator $\prod_{i=1}^{n}\left(a_{i} x+1\right)$ has n algebraically independent roots $-1 / a_{i}$ ，and thus the set of its coefficients has degree of transcendence n over \mathbb{K} ．Our lower bound now follows immediately from Motzkin＇s theorem．

Acknowledgments．This work was initiated during the Workshop on Geometric and Computational As－ pects of Instance－Based Learning，held at the Bellairs Research Institute，Barbados，January 31－February 7， 2003，organized by Godfried Toussaint．

References

［1］P．K．Agarwal and J．Erickson．Geometric range searching and its relatives．Advances in Discrete and Computational Geometry，1－56，1999．Contem－ porary Mathematics 223，American Mathematical Society．
［2］R．Boland and J．Urrutia．Polygon area problems． Proc．12th Canad．Conf．Comput．Geom．，159－162， 2000．〈http：／／www．cccg．ca／proceedings／2000／〉．
［3］F．Contreras－Alcalá．Cutting polygons and a prob－ lem on illumination of stages．M．Sc．thesis，Dept． Comp．Sci．University of Ottawa，Ottawa，ON， Canada，1998．〈http：／／www．csi．uottawa．ca／～fhca／ thesis／$/$ ．
［4］J．Czyzowicz，F．Contreras－Alcalá，and J．Urrutia． On measuring areas of polygons．Proc．10th Canad． Conf．Comput．Geom．，1998．〈http：／／www．cccg．ca／ proceedings／1998／〉．
［5］J．Iacono and S．Langerman．Volume queries in poly－ hedra．Proc．Japan Conf．Discrete Comput．Geom．， 156－159，2000．Lecture Notes Comput．Sci．2098， Springer－Verlag．
［6］S．Langerman．On the complexity of halfspace area queries．Proc． 1^{17} th Annu ACM Sympos．Comput． Geom．，207－211，2001．ACM Press．
［7］V．Strassen．Algebraic complexity theory．Algo－ rithms and Complexity，chapter 11，633－672， 1990. Handbook of Theoretical Computer Science A，MIT Press．

[^0]: *MIT Laboratory for Computer Science, edemaine@mit.edu
 ${ }^{\dagger}$ University of Illinois at Urbana-Champaign, jeffe@cs.uiuc. edu, http://www.cs.uiuc.edu/~jeffe. Partially supported by NSF CAREER award CCR-0093348 and NSF ITR grants DMR0121695 and CCR-0219594.
 ${ }^{\ddagger}$ Chargé de recherches du FNRS, Université Libre de Bruxelles, stefan.langerman@ulb.ac.be

