
CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

A Genetic Algorithm for Minimum Tetrahedralization of a Convex
Polyhedron∗

Kiat-Choong Chen† Ian Hsieh† Cao An Wang†

Abstract

A minimum tetrahedralization of a convex polyhedron
is a partition of the convex polyhedron with minimum
number of tetrahedra. The problem of finding the
minimum tetrahedralization of a convex polyhedron is
known to be NP-Hard. In this paper, a genetic algo-
rithm is presented to find an approximate solution to
this problem. Our result always shows improvements to
those produced by commonly used peeling and pulling
methods.

1 Introduction

Tetrahedralization is an importatnt research topic in
computational geometry. It has many applications in
areas such as finite element method, computer graph-
ics, robotics, CAD/CAM and mesh generation. While
a simple polyhedron may not be always tetrahedraliz-
able [10], it can always be done for convex polyhedra.
Moreover, finding a minimum tetrahedralization even
in convex polyhedra has been proved to be NP-C [2].
There are two widely used methods for tetrahedralizing
a convex polyhedron, namely, peeling and pulling. The
former is the reverse process of repeatedly removing the
(tetrahedralized) cap of a vertex in the polyhedron, and
the latter (or called starring) is to partition the polyhe-
dron by connecting a vertex to all its non-adjacent ver-
tices by edges. The peeling method produces O(n log
n) tetrahedra for a convex polyhedron with n vertices
[3]. It is O(n2) for ordered peeling (ordered peeling will
be described later in the paper). The pulling method
outputs 2n - deg(v) - 4 tetrahedra, where v is the tip
vertex of the pulling and deg(v) is the degree of v in the
surface graph of the polyhedron[4]. In many cases, such
as stacked polyhedron, both methods may produce very
bad results with respect to the optimum one.

In this paper, we propose a genetic algorithm for the
problem. We briefly describe how to represent popula-
tion, selection, crossover, and mutation for tetrahedral-

∗This work is based on the undergraduate Honours project by
the first two authors. The work of the third author is partially
supported by NSERC grant OPG0041629.

†Department of Computer Science, Memorial Univer-
sity of Newfoundland, St. John’s, Newfoundland, Canada
A1B 3X5 (email: kiat@cs.mun.ca, ihsieh@cs.mun.ca,
wang@garfield.cs.mun.ca)

ization. The algorithm is implemented in JAVA. The re-
sults of our algorithm are compared with the results gen-
erated from peeling and starring methods. It is shown
that the genetic approach can produce a lesser number
of tetrahedra than the above mentioned two methods in
almost all the cases. Moreover, the genetic approach can
obtain the optimal result for certain convex polyhedrons
for which the minimum tetrahedralization is known (e.g.
’stacked’ polyhedron and ’bi-umbrella’ polyhedron).

This paper is organized as follows: section 2 gives a
brief description of genetic algorithms, while section 3
shows the results produced by our program, and section
4 concludes our work.

2 Genetic Algorithm

The Genetic Algorithm (GA for short) is a heuristic
search model and it performs a multi-directional search,
while other methods (e.g. hill climbing) only process a
single direction in the search space. A GA goes through
a process of evolution: the best fits will survive to the
next generation and the bad fits will die off. A fitness
function is used to distinguish and measure how good
each solution.

The set of possible solutions (called chromosomes) are
generated. The set is called a population. Once the
population has been initialized, a process that mimics
evolution in nature begins, and runs for a designated
number of times. This evolutionary process crosses the
genetic information of two chromosomes to form two
new children or mutates a chromosome’s existing ge-
netic information to form a new chromosome. Each
iteration, also called a generation, creates a new pop-
ulation of chromosomes based on the previous iteration
of chromosomes. The evolution process consists of the
following steps:

(1) Evaluating the fitness function f (x) of each chro-
mosome in the population; (2) Selection - selecting two
parent chromosomes for crossover, based on their f (x)
value; (3) Crossover - exchange the genetic information
of the two parents to form two new children and copy
them into the new population, based on a percentage.
If crossover was not performed then duplicate copies of
the parents are copied into the new population; and (4)
Mutation - change or alter the genetic information of a
chromosome based on percentage.

1



15th Canadian Conference on Computational Geometry, 2003

In our problem, the set of chromosomes is the set of
possible tetrahedralizations of the convex polyhedron
from the point set.
• Representations
A tetrahedralization of a convex polyhedron uniquely

determines a set of triangles. In our case, we represent
each tetrahedralization by a list of triangles as well as
a list of (internal) edges. For each triangle, we use its
three vertices to represent it. For each vertex, we record
its x, y, and z coordinates. To represent the relationship
between the edges and the triangles, a 2-dimensional
matrix stores the number of triangles that share a cer-
tain edge. That is, if the element at row i and collumn
j in the matrix is a 4, then it corresponds edge (i, j)
is shared by exactly 4 traingles. For example, the left-
hand side of Figure 1 is the tetrahedralization of convex
polyhedron with 5 vertices, and the middle of the figure
is the matrix representing the relationship of the edges
and the numbers of their sharing triangles.
• Initialize Population
First, all the points forming a convex polyhedron are

generated using a JAVA package from [7]. Since these
points are randomly generated on a sphere, all these
points are the vertices of the convex polyhedron. After
the vertices of a convex polyhedron had been created,
we use Peeling and Pulling methods to create tetrahe-
dralizations. In peeling method, we have two variations:
random and ordering. With random method, a vertex is
randomly chosen from the remaining vertices and con-
nect it to the tetrahedralization of a subset of vertices
previously chosen to form a new tetrahedralization with
one more vertices. With ordering method, the vertices
are ordered by their x (or y or z) coordinates and then
chosen in the ordered sequence.
• Evaluation of Fitness
Evaluating the fitness function of each chromosome in

the population is based on Euler’s formula t = e+n−3,
where t is the number of tetrahedra, e is the number of
internal edges and n is the number of vertices of the
convex polyhedron. Since the number of tetrahedra is
proportional to the number of internal edges, the chro-
mosome’s fitness is determined by the number of inter-
nal edges it contains. The fitter chromosome will have
a lesser number of internal edges. The fitness function
is defined as f(C) = SIZE(eiList), where C is the
chromosome and SIZE is a function that returns the
number of internal edges in eiList of C.
• Selection Process
The Roulette Wheel Selection method is used for the

selection of chromosomes that will become the candi-
dates (parents) for the crossover operator [9].

In addition, another parameter, called Elitism, is
used for selection. Elitism is a selection method where
the most-fit chromosomes in the population are auto-
matically copied into the next generation. That is, if

the elitism parameter were set to K, then the top K
chromosomes in the population are copied to the next
generation. This is to ensure that the best chromosome
generated so far is passed down to the next generation
and to guarantees that our population will not degrade
over the evolution process.
• Crossover
Crossover is to exchange genetic information between

two parent chromosomes (say C1 and C2 which are
selected from the selection process) to form two new
children. The crossover operator is associated with a
crossover rate. For example, for a particular crossover
process, a random number between 0 and 1 is gener-
ated. If the number is lower than certain value, says
CR (crossover rate), then the crossover operator is per-
formed. With regard to our representation of a tetrahe-
dralization, a simple swapping of triangles and internal
edges between two tetrahedralizations does not guaran-
tee a legal tetrahedralization as some internal triangles
would overlap each other and hence needs correction
after crossover. To avoid this problem, a method simi-
lar to the polygon crossover as described in [5] is used.
In our case, a common subboundary (SUB) is searched
for both C1 and C2. A SUB is the set of vertex that
forms a boundary which is common in C1 and C2. The
algorithm of finding SUB is outlined briefly as below:-

Randomly select an internal edge, iEdge, which is in
one chromosome, say C1, but not in the other, say C2.
If iEdge intersects any triangles of C2, then (1) record
all the vertices of the intersecting triangles to SUB. (2)
record all the edges that exist between the vertices of
both, the two end points of iEdge and the vertices of
the intersecting triangles, and the vertices in SUB. (3)
record all the internal edges from both chromosomes
such that one of the end points of the internal edge is in
SUB, but not the other, and (4) record all the edges that
exist between the vertices of the intersecting triangles
and the two end points of iEdge. All these edges are
recorded in a Stack, say STK. Next, do the intersection
checking process using all the recorded edges in STK
as iEdge against the triangles of C1. This intersection
checking process is repeated until no more intersections
are detected in both C1 and C2.

Because SUB is contained and common in both par-
ent chromosomes, both of those regions can be legally
swapped from the two parents, producing two new le-
gal tetrahedralizations as children. In the worst case,
there is no SUB between C1 and C2 (SUB will be the
given convex polyhedron) and hence C1 and C2 will be
treated as children of next generation with no crossover.
• Mutation
Mutation is to alter a small portion of a chromosome

and hence introduces variability into the population of
the next generation. In our case, the mutation operator
is based on ”local transformation” or flip, namely ”3-2”

2



CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

Figure 1: RP = Random Peeling Tetrahedralization GARP = Genetic Algorithm that used Random Peeling to
initialize its initial population, OP = Ordered Peeling Tetrahedralization, GAOP = Genetic Algorithm that used
Ordered Peeling to initialize its initial population, Starring / Pulling = Pulling Tetrahedralization, GAStarring =
Genetic Algorithm that used Pulling to initialize its initial population.

Figure 2: Above figure shows the performance of GA for different number of points (n) and population sizes. For n
= 10 and 15, population size between 40 - 50 gives lesser number of internal edges compared other population sizes,
whereas when n = 20 and 30, a ’good’ population size is in about the range 50 - 70.

flip and ”2-3” flip as described in [1]. A ”3-2” flip is to
remove an internal edge whereas a ”2-3” flip is to add
an internal edge. Therefore, they can be used to alter
the chromosome so that the number of tetrahedra can
possibly be increased or decreased. However, not all in-
ternal edges are flippable. A ”3-2” flippable edge must
satisfy two conditions: (1) it is shared by exactly three
tetrahedra and (2) it is not on the CH. For ”2-3” flip,
the edge to be added must also satisfy two coditions: (1)
it intersects exactly one triangle and (2) the vertices of
the intersecting triangle must have edges connecting to
both end points of the new edge. In the left-hand side of
figure 3, the internal edge (2,3) can be removed with the
”3-2” flip operator and can be added with the ”2-3” flip
operator. As with the crossover, the mutation operator
is also associated with a mutation rate (MR) to deter-
mine whether or not the mutation operator is to be ap-
plied to the chromosome. To determine which mutation
operator is to be applied to the chromosome, a random
number between 0 and 1 is generated. If the number is
lower than a certain value, say FR (flip rate for 3-2 flip),
then ”3-2” flip is chosen, otherwise, the ”2-3” flip would
be chosen. There are two ways to select the flippable
edge, by random selection (Random Mutation) or rank-

ing selection (Ranking Mutation). Random selection is
to select randomly the flippable edge from a set of all
possible flippable edges, whereas ranking selection is to
rank the set of flippable edges according to the vertex
degree before the selection. For ”2-3” flip, the ranking
is in descending order, else ascending order. By using
the ranking mutation, the chromosome is possibly mu-
tated towards a similar structure as the chromosomes
generated by pulling method that gives linear number
of tetrahedra in the hopes that this will direct GA to
produce a better minimum than the pulling method.

3 Results

The GA contains three parts; tetrahedralization, visu-
alization and evolution. The first two parts are imple-
mented by modifying a CH applet package from [7]. GA
is tested on point sets of sizes 10, 15, 20 and 30 with 10
sets of each size. The point sets were randomly gener-
ated on the sphere. The size of the generations was set
to 20(n) where n is the number of points or the itera-
tion will terminate when there is no more internal edges
in the tetrahedralization. Population size was set to 40
for n = 10 and 15 and 50 for n = 20 and 30 (see figure

3



15th Canadian Conference on Computational Geometry, 2003

2). The crossover rate was set to 0.05, elitism was set
to 1 and mutation rate was 0.7. Flip rate was set to
0.5 for ”3-2” flip and 0.5 for ”2-3” flip. The results of
GA are compared with three different methods of tetra-
hedralization, namely random peeling, ordered peeling
and pulling.

Results with Randomly Generated Point Sets On
Sphere

The results in the table were obtained by taking the av-
erage number of tetrahedra on 10 trials of each number
of points.

Results with Known Optimum Solution (point sets
are generated manually)

Below are the results obtained by the GA on point sets
for which the optimum solution is known. (See figure
4, the left-hand side shows the initial tetrahedralization
with many internal edges and the right-hand side shows
the result obtained by GA with no internal edges.)

4 Analysis

From the results, it can be seen that the GA can get
a better result than the pulling and peeling methods
in most instances and other instances it matches the
results of the two methods. This shows that the ge-
netic approach can be considered a viable solution to
this problem, especially GARP with Ranking Mutation
which shows a better result than using the GA with
Random Mutation. Nevertheless, further study and re-
search needs to be done to see how the parameters such
as the rate of the different genetic operator, the size of
the population and the number generations affect the re-
sult. The results also suggest that different parameters
should be applied to GAs with different tetrahedraliza-
tion methods because different tetrahedralization pro-
duces different structure of tetrahedralization and dif-
ferent number of tetrahedra. For instance, GAOP might
need a larger number of iterations (generations) to al-
low the GA to converge to the optimum because OP
produces more internal edges than RP and pulling. At
present, it is known that choosing a high percent for
the elitism and crossover parameters will saturate the
population with current ”good” solutions. However, the
current good solution may not be the optimum one, and
the current “bad” solution may lead to the optimum so-
lution but was pushed out by the elitism policy.

5 Conclusion

We have presented a genetic approach to find the min-
imum tetrahedralization of a convex polyhedron. The
results show that genetic approach is always better than

or equal to the pulling or peeling method. GA can even
obtain the optimum solution for point sets for which the
optimum is known.

Figure 3:

Figure 4: Stacked point set.

References

[1] B. Joe, Three-Dimensional Triangulations From
Local Transformations , SIAM J. SCI. STAT.
COMPUT. Vol 10, No. 4, pp 718-741 1989

[2] Below A., Brehm U., De Lorea J., and Richter-
Gebert J., Minimal Simplicial Dissections and Tri-
angulations of Convex 3-Polytopes, Discrete and
Computational Geometry 24, 2000, pp.35-48.

[3] Bern M., Compatible tetrahedralizations, Proc. 9th
Annu. ACM Sympos. Comput. Geom. pp. 281-288.

[4] Chin F., Feng S., and Wang C.A. (2001) Ap-
proximation for Minimum Triangulations of Sim-
plicial Convex 3-polytopes, Discrete & Com-
putational Geometry Vol.26, No.4, pp.499-511.
(Oct. 12, 2001)

[5] Kaihuai Qin, Wenping Wang, Minglun Gong, A
Genetic Algorithm for the Minimum Weight Tri-
angulation, IEEE, 1997.

4



CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

[6] Kolingerova I. Genetic Approach to the Minimum
Weight Triangulation , WSCG’98 Conference
Proceedings Volume II, Pilsen, Czech Republic,
1998, pp.184-191

[7] Lambert T., Convex Hull Algo-
rithms, http://www.cse.unsw.edu.au/ lam-
bert/java/3d/hull.html, 1998.

[8] Marek Obitko, Introduction to Genetic Algorithms
with Java Applets, http://cs.felk.cvut.cz/ xo-
bitko/ga/, 1998.

[9] Michalewicz, Zbigniew, Genetic Algorithms +
Data Structures = Evolution Programs, Springer,
1996.

[10] Rupert J. and Seidel R., On the Difficulty of Tetra-
hedralizing 3-Dimensional Non-convex Polyhedra,
Proceedings of the 5th ACM Symposium on Com-
putational Geometry (1989), pp. 380-392.

5


