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Multidimensional Orthogonal Range Search Using Tries

Lingke Bu ∗ Bradford G. Nickerson †

Abstract

We present a novel k-dimensional range search algo-
rithm for reporting all k-d rectangles from a set D of size
n intersecting a query rectangle. Our algorithm uses 2k-
d tries to solve the orthogonal range search problem in k
dimensions, requires linear space, and supports dynamic
operations. An expected time analysis of the algorithm
indicates it is competitive with the best known k-d range
search algorithms when k is large (i.e. k ≈ log n).

1 Introduction

Range search represents an important class of problems
that occur in computational geometry. Information re-
trieval problems can also formulated as range search in
k dimensions (e.g. [1], [13]). Given a collection D of
records, each containing several attributes or keys, an
orthogonal range query asks for all records in D with
key values each inside specified ranges. The range search
problem can be interpreted geometrically by considering
the record attributes as coordinates and the k values for
each record as a point in a k-d coordinate space. Our
definition for orthogonal range search is as follows:

Definition 1 For a data space Rk, where k = the num-
ber of dimensions, orthogonal range search is defined as
finding and reporting the set HR, (|HR| = A,HR ⊆
D,D = the set of axis-aligned orthogonal data objects
represented as rectangles, |D| = n) of data intersect-
ing a query rectangle W ={[L1,H1], [L2,H2],· · · ,[Lk,Hk]},
where [Lj ,Hj] represents a range for dimension j of the
query rectangle, and Lj < Hj .

Lower bounds for range search were studied by
Chazelle [7] [8], who showed that a sequence of n op-
erations for insertion, deletion, and reporting points in
a given range costs Ω(n(log n)k). Edelsbrunner intro-
duced the d-fold rectangle tree to support orthogonal
range search on k-d rectangles with time complexity
O(log2k−1 n + A) [9], close to the lower bound, with
storage S(n, k) = O(nlogk−1n). The time complexity
analysis of range search for balanced k-d trees [4] shows
that the search cost is O(sn1−1/k + A) for s of the k
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coordinates restricted to a subrange, and (k− s) for the
unspecified coordinates [12]. As pointed out in Flajolet
and Puech [11], 1-d tries tend to be better balanced com-
pared to 1-d search trees. For k-d search, this improved
balance can lead to asymptotically smaller search times.

2 The data structure

Without loss of generality, we consider our problem de-
fined on real [0, 1]k space and the following discussions
are all based on unit space. We assume the coordinate
value on each dimension in unit space can be represented
in B bits.

Binary tries are data structures that use a binary
representation of a key to store the key as a path in
a tree [3]. Binary k-d tries use the principle of bit
interleaving. Child nodes in a k-d trie cover 1

2 the
search space of their parent. We represent a rectan-
gle as four coordinate values (xmin, xmax, ymin, ymax).
The bit string for a rectangle is formed as follows:
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Extending the bit interleaving principle to k dimen-

sions, we represent a k-d rectangle as (xmin
j , xmax

j )k,
∀j ∈ {1 · · · k}, so the resultant bit string will be
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Thus, a k-d rectangle can be represented as a 2k-d point
in a binary trie of height 2kB.

A collection of rectangles in k-d space is denoted
by D = {R1, R2, · · · , Rn}, where n is the number of
rectangles in the set. For the ith rectangle Ri ∈ D, let
(xmin

ij , xmax
ij ) denote the jth side of rectangle Ri, 1 ≤

j ≤ k and 1 ≤ i ≤ n. We denote by T the 2k-d trie
constructed by inserting all the rectangles in D into an
initially empty trie. Given a node u in T, we denote by
Tu the subtree of T rooted at u. There are altogether n
leaves in T. Every leaf is associated with one rectangle.
The height of the trie (i.e. the length of the key) is
2kB. At each node in the trie corresponding to a bit b,
we traverse the left branch of the trie if b = 0 and we
traverse the right branch if b = 1. After preprocessing
all n rectangles in D, we obtain the trie T, which allows
us to carry out an orthogonal range search.
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3 Range search

A query rectangle W = [L1,H1]×[L2,H2]×· · ·×[Lk,Hk]
is abbreviated as [Lj ,Hj ]k. For a rectangle Ri ∈ D,
the set of k rectangle sides is defined as {(xmin

ij , xmax
ij ),

0 ≤ xmin
ij ≤ xmax

ij ≤ 1,∀j ∈ {1 · · · k}, i ∈ {1 · · ·n}.
Remark Two rectangles R1 and R2 intersect if and
only if their sides on every dimension in the data space
intersect, i.e. R1 ∩ R2 is true iff ∀j ∈ {1, · · · , k},
(xmin

1j , xmax
1j )∩ (xmin

2j , xmax
2j ) is true, which happens when

xmin
1j ∈ [0, xmax

2j ) and xmax
1j ∈ (xmin

2j , 1].

This defines intersection strictly as an overlap in the
sense of Allen [2] and Egenhofer [10]. Therefore, rectan-
gle Ri intersects W iff xmin

ij ∈ [0,Hj) and xmax
ij ∈ (Lj , 1],

∀j ∈ {1 · · · k}.
k-d orthogonal range search is performed using our

2k-d trie for a query W . We use j as the index of the
data space, j ∈ {1 · · · k}, and we use p as the index for
our problem space, p ∈ {1 · · · 2k}. They are related as
j = �p/2�.
Definition 2 Each node in the trie T covers part of
the 2k-d space; that is, every node has a cover space
defined as NC2k = [Lp,Up]2k, 1 ≤ p ≤ 2k. For a
given query rectangle W = [Lj ,Hj ]k, we obtain the
query rectangle’s cover space WC2k and define it to
be WC2k = [Lp,Up]2k,Lp = 0, Up = Hj − ε, when
p mod 2 = 1; Lp = Lj + ε, Up = 1, when p mod 2 = 0,
where 1 ≤ p ≤ 2k, j = �p/2�, and ε is a small value to
guarantee open intervals.

On the pth dimension, there are three types of relation-
ship of WCp with NCp, which we call BLACK, GREY,
and WHITE. Figure 1 illustrates the three colors for a
node’s cover on dimension p. Dashed lines are used for
WCp and solid lines for NCp. WHITE indicates when
the trie can be pruned. BLACK relationships occurring
2k times contiguously indicates that all rectangles in the
subtree intersect W . GREY indicates the trie must be
searched further.

Definition 3 If, on all 2k dimensions, the cover space
relationship satisfies WCp ∩ NCp = BLACK, ∀p ∈
{1,2,· · ·, 2k}, then the node in the trie is black. If the
cover space relationship satisfies ∃p ∈ {1, 2, · · · , 2k},
such that WCp ∩NCp =WHITE, then the node in the
trie is white. All other nodes are grey nodes.

The range search algorithm (see Figure 2) traverses
from the root of trie T down to its leaves. Arrays L

and U store the lower and upper bounds of node T ’s
cover space on 2k dimensions. At the root, level � = 0.
For the root, the cover space NC2k has Lp = 0 and
Up = 1, ∀p ∈ {1, 2, · · · , 2k}. The cover space is split
on the pth dimension as we move down, p = �mod 2k,
∀ � ∈ {0, 1, · · · , (2kB−1)}. If on the pth dimension, a
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Figure 1: GREY ((a), (b), and (c)), BLACK ((d) and
(e)), WHITE ((f) and (g)) relationships of a trie node
cover space NCp to a query rectangle cover space WCp

in dimension p of the 2k-d problem space.

Rangesearch(T, �,L,U, RI,W,List)
1 if T = nil or � > 2kB
2 then return
3 p ← (� − 1) mod (2k)
4 RI[p] ← InRange(L[p],U[p], �,W )
5 if RI[p] is grey
6 then � ← � + 1
7 p ← � mod (2k)
8 if left[T ] �= nil
9 then U[p] ← (L[p] + U[p])/2

10 Rangesearch(left[T ], �,L,U,
11 RI,W,List)
12 if right[T ] �= nil
13 then L[p] ← (L[p] + U[p])/2 + ε
14 Rangesearch(right[T ], �,L,U,
15 RI,W,List)
16 else if RI[p] is black and Color(RI) is black
17 then Collect(T,List)

Figure 2: Pseudo-code for the k-d orthogonal range
search algorithm. InRange(L[p],U[p], �,W ) is a func-
tion to decide the color of NC2k and WC2k relation-
ships for node T . ε is a small value to guarantee T ’s
left and right children’s cover spaces do not share any
points.
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Figure 3: Example of three rectangles E, F, and G with
a query rectangle W and number of data bits B = 3.

parent node T has cover space [Lp,Up], then T ’s left
child’s cover space is [Lp, (Lp + Up)/2] and T ’s right
child’s cover space is ((Lp + Up)/2,Up]. Comparing
a node’s cover space NC2k (stored in L and U) with
[0,Hj) and (Lj , 1], if one of the 2k ranges falls outside
(as determined by the InRange function), we encounter
a white node and the search need not check any subtrees
of T . All nodes in the subtree of a white node are white
nodes.

If all 2k ranges fall within NC2k at some node Tu,
then all rectangles in the subtree attached to Tu inter-
sect W and are collected into a List for reporting. Array
RI of size 2k (initialized to store all grey values) keeps
track of the color of the NCp to WCp relationship for
T and ancestors of T . If the NCp to WCp relation-
ship for node T is BLACK, and the same is true for all
2k − 1 ancestors of T , then node T is black as defined
in Definition 3. Function Color(RI) checks that all
2k relationships are BLACK. All nodes in the subtree
of a black node are black nodes. Collect(T,List) tra-
verses the subtree of T adding each found rectangle to
List.

Figures 3 and 4 depict an example of the range search
algorithm, illustrated on an integer domain for clarity.
Figure 4 is the trie for the data shown in Figure 3. In
Figure 4, empty circles represent white nodes. A black-
filled circle represents a black node, which means all
rectangles represented by leaves inside the subtree at-
tached to the black node intersect W . A grey-filled
circle represents a grey node. For query rectangle
W = [2, 5] × [1, 4], k = 2, the query rectangle’s cover
space is WC4 = [0, 5)(2, 7][0, 4)(1, 7]. The rectangle de-
noted as G= [6, 7]× [1, 3] has its cover space NC4 listed
along the right side of Figure 4. The small letters b, w
and g to the right of a node indicate the result of the
InRange call giving the color of the NCp to WCp re-
lationship. The trie is divided into B= 3 bands, each of
height 2k = 4 (see Figure 4). For rectangle G, traversal
of T during the 2-d range search for rectangles intersect-
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Figure 4: Example of a binary 4-d trie for the 2-d data
of Figure 3. The list of 8-tuples near the right hand side
is the cover space NC4 of each node on the trie path
representing rectangle G.

ing W stopped at Band 1 when the first white node was
encountered. For rectangle F, a white node is found in
Band 0, and for rectangle E, the intersection with W is
determined in Band 2.

4 Analysis

We adapt the approach used in [6] which in turn, uses
Theorem 2 of [11].

Proposition 1 Given a binary trie T of τ nodes con-
taining a set of k-d input rectangles D = {R1, · · · , Rn},
assuming input data set D and query rectangle q sat-
isfy the uniform probabilistic model, q= (q1, q2, · · · , q2k),
S ⊂ {1, 2, · · · , 2k}, the cost of partial match retrieval
QS(n, k) measured by the number of nodes traversed in
trie T is

QS(n, k) = E{Στ
t=1

�
p∈S |NCp

t |}.

Proof The probability that a node in trie T will be vis-
ited is determined by the volume of every node’s cover
space in the space [0, 1].

The time complexity can be determined by computing
the number of grey and black nodes in the trie built from
input data D. We have the following equation:

Q(n, k) = Στ
t=1 1[nodet∈GN∪BN ]

where we use 1[A] as the characteristic function of the
event A.

Lemma 1 E{Στ
t=1

�2k
p=1 |NCp

t |} = O(log2 n).
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Theorem 1 Given a binary trie T containing a set of
k-d input rectangles D = {R1, R2, · · · , Rn}, Ri with
i.i.d. random variable center ci on [0, 1]k, and with i.i.d.
random variable side length di distributed on [0, 1]k,
consider a random orthogonal range search with query
rectangle W with center at Z which is uniformly dis-
tributed on [0, 1]k, and independent of the centers of D,
and with size ∆1 × ∆2 × · · · × ∆k which are also i.i.d.
random variables on [0, 1]k. The expected orthogonal
range search time E{Q(n, k)} ≤

ΣS⊂{1,··· ,2k}(
�

p/∈S |WCp|)(γ( 1
2k log2 n)n1− s

2k

+ O(1)) + O(log2 n),
where γu is a periodic function of u with period 1,

small amplitude, and mean value
γ0 = − s

4k2 log 2Γ( s
2k −1)Σ2k−1

�=0 (δ1 δ2 · · · δ�)2−�(1−s/2k)

with δ� = 1, if the �th attribute of the query is speci-
fied, and δ� = 2 if it is unspecified.

Proof E{Q(n, k)} = E{Στ
t=1 1[nodet∈GN∪BN ]}. This

calculation includes the reporting time for collection
of the subtree of black nodes which arises during the
traversal. The probability that a node is black or grey
is given as: Pr(nodei ∈ GN ∪ BN) ≤ �2k

p=1(|NCp| +
|WCp|). The probability for query rectangle W ’s cover
space WC to intersect a node’s cover space NC is the
probability that Zj , the center of W , is within dis-
tance ∆j

2 of NCj . This probability is bounded by the
volume of NC expanded by ∆j in the jth dimension,
∀j ∈ {1, · · · , k}. There are two cases. On the left side
of the jth dimension, |WCmin

j | = |WCp| = | [0,Hj) | =
Hj = Zj + ∆j

2 , and p mod 2 = 1. On the right side
of the jth dimension, |WCmax

j | = |WCp| = | (Lj , 1] | =
1 − Lj = 1 − (Zj − ∆j

2 ) = 1 − Zj + ∆j

2 , and p mod 2 =
0. We have

E{Q(n, k)} ≤ E{Στ
t=1

�2k
p=1(|WCp| + |NCp

t |)
= ΣS⊆{1,··· ,2k}(

�
p/∈S |WCp|)E{Στ

t=1

�
p∈S |NCp

t |}
= ΣS⊂{1,··· ,2k}(

�
p/∈S |WCp|)E{Στ

t=1

�
p∈S |NCp

t |}
+ΣS={1,··· ,2k}(

�
p/∈S |WCp|)E{Στ

t=1

�2k
p=1 |NCp

t |}
= ΣS⊂{1,··· ,2k}(

�
p/∈S |WCp|)E{Στ

t=1

�
p∈S |NCp

t |}
+E{Στ

t=1

�2k
p=1 |NCp

t |}
Using Theorem 2 from [11] for our 2k-d trie and

Proposition 1, we obtain E{Q(n, k)} ≤
ΣS⊂{1,··· ,2k}(

�
p/∈S |WCp|)(γ( 1

2k log2 n)n1− s
2k +

O(1) ) + E{Στ
t=1

�2k
p=1 |NCp

t |},
and by Lemma 1, we obtain E{Q(n, k)} ≤

ΣS⊂{1,··· ,2k}(
�

p/∈S |WCp|)(γ( 1
2k log2 n)n1− s

2k +
O(1) ) + O(log2 n).

A similar approach yields a lower bound of
E{Q(n, k)} ≥

ΣS⊂{1,··· ,2k}(
�

p/∈S
|WCp|

2 )(γ( 1
2k log2 n)n1− s

2k +
O(1)) − C, where C is constant value determined by k
[5].
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Figure 5: Experimental time for percent of data in range
= [0%, 10%].

5 Discussion and Experimental Results

Based on the lower and upper bound shown above, we
can write the expected range search time as

E{Q(n, k)} = c1

�2k
p=1 |WCp|n+

c2ΣS⊂{1,··· ,2k},0<|S|<2k(
�

p/∈S |WCp|)γ( log2 n
2k )n1− s

2k +
O(log2 n)

where c1 and c2 are constant values. The first term
accounts for the number of rectangles returned by the
orthogonal range search. The third term arises from the
height of the trie which is unavoidable. The second term
dominates, and arises from the number of grey nodes
checked to determine intersection with W . For k = 2
and k = 3, we have determined that E{Q(n, k)} behaves
as O(A + nα) for 0.5 ≤ α < 1 [5]. We conjecture that
E{Q(n, k)} ≈ O(A + nα) with α < 1 holds for k > 3,
but this remains to be shown.

Experimental validation of our approach was per-
formed using randomly generated k-d rectangles for
2 ≤ k ≤ 10 and 10 ≤ n ≤ 100000. Figure 5 shows
the time taken for k-d range search when A ≤ 0.1n.
For k = 10, Figure 5 shows time increasing at a rate of
approximately n0.9, which matches our theoretical find-
ings.
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