
CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

An Implementation of a Linear Time Algorithm for Computing the Minimum
Perimeter Triangle Enclosing a Convex Polygon

Anna Medvedeva
School of Computer Science

University of Windsor
Windsor, Canada

Asish Mukhopadhyay
School of Computer Science

University of Windsor
Windsor, Canada

Abstract

In this paper, we discuss an efficient and robust im-
plementation of a linear time algorithm due to [1] for
computing the minimum perimeter triangle that cir-
cumscribes a convex n-gon. Our implementation is in
C++, and utilizes the OpenGL graphics library for visu-
alization and animation. The proposed implementation
is efficient in the sense that it complies with the algo-
rithm’s linear time complexity while achieving a small
constant factor. The implementation is robust in the
sense that it will work for all input instances.

1 Introduction

The problem of computing a minimum perimeter tri-
angle enclosing a convex n-gon in linear time has been
a long-standing problem in the field of geometric opti-
mization. De Pano [6] proposed an O(n3) algorithm for
this problem. Later, it was improved to O(n2) by Chang
and Yap [5]. Aggarwal and Park [2] used the powerful
matrix searching technique to improve the complexity
to O(n log n). Recently, Bhattacharya and Mukhopad-
hyay [1] proposed a linear time algorithm for solving the
minimum perimeter triangle problem. In this paper, we
describe an implementation of this algorithm.

2 Overview of the Algorithm

It was established in [6] that a minimum perimeter tri-
angle that circumscribes a convex polygon (polygon, for
short) is flush with at least one of its edges.

The main (and simple) idea of the algorithm is to con-
sider each edge in turn and compute a minimum perime-
ter triangle that is flush with this edge. This compu-
tation is built on a novel scheme of circle-fitting and
wedge-flipping. The former consists of fitting the small-
est circle into a wedge that contains the given polygon
as shown in Fig. 1. Once such a circle is determined,
we also have a new wedge that contains the polygon as
shown in Fig. 2, and we repeat the previous step with
this new wedge. This is wedge-flipping.

It has been proved in [1] that in each iteration, we
reduce the perimeter of the enclosing triangle. We stop

��
��
��
���

�
�
�

P

 A

 Q

CB

P

Figure 1: Fitting a circle into a wedge from the right

when we obtain an enclosing triangle �ABC such that
BP = CQ, where P is the point where the circle fitted
into the wedge W (CA,CB) touches AB, and Q is the
point where the circle fitted into the wedge W (BA,BC)
touches AC (See Fig. 3).

The circle-fitting procedure makes use of a solution
to the following basic problem.

�����
�
�
�

Q
P

A

B C

P

Figure 2: Fitting a circle into a wedge from the left

1



15th Canadian Conference on Computational Geometry, 2003

B

A

C

P Q

Figure 3: A minimum perimeter configuration for a
given polygon edge

Problem 1 Given a wedge W (BA,BC) and a point Q
contained in it, find a triangle of minimum perimeter
that has two of its sides along the arms of the wedge
and the third side incident on the given point Q.

When the circle-fitting and wedge-flipping procedure
terminates, we have a triangle of minimum perimeter.
The proof of the former makes fundamental use of the
fact that the solution to the following problem (Problem
2) is a unique one and can also be found by circle-fitting
and wedge-flipping.

Problem 2 Given two points P and Q at heights hP

and hQ respectively, hP ≥ hQ, above a line L, P to the
left of Q, find a triangle �ABC of minimum perime-
ter such that the side BC is incident on L, while the
points P and Q are interior to the sides AB and AC
respectively.

Finally, the linearity of the algorithm crucially de-
pends on the fact that the following left-interspersing
lemma holds. Its chief implication is that we do not
have to backtrack as we move from one edge to the next
in an anticlockwise order.

Lemma 1 The search for a minimum perimeter cir-
cumscribing triangle never backtracks as we traverse the
polygon P in an anticlockwise order.

The polygon needs to be traversed in a clockwise
order too, as shown in the paper [1], and a similar
right-interspersing lemma underlies the linearity of
this search.

3 The Implementation

3.1 Details and Efficiency Issues

Our implementation follows the algorithm closely. We
find a minimum perimeter triangle for each edge of an n-
gon. The polygon edges are considered in clockwise and
anticlockwise order with both implementations available
to the user. One of the sides in the minimum enclosing
triangle is always flush with the corresponding polygon
edge, a property proved by De Pano [6] and utilized in
the implementation. The remaining two triangle sides
are found by using the wedge-switching and circle-fitting
technique, described in the previous section.

The algorithm uses several geometric operations as
it computes the enclosing triangles. In particular, it
relies on the operations such as finding an antipodal
point, finding an excircle for a triangle, computing a
point of tangency of a circle and a line, finding a circle
inscribed in a wedge, computing a cross point of two
lines, and so on. To achieve maximum efficiency for
our implementation, we mathematically derived optimal
solutions for all operations specified or implied by the
algorithm. All geometric primitives were determined
through the use of Euclidian orthogonal coordinates.

Once the code for all geometric operations is written,
we follow the algorithm in invoking the necessary func-
tions to accomplish the tasks specified by the algorithm.
As we compute the geometric primitives during the pro-
gression of our algorithm (intersection points, antipodal
lines, inscribed circles, etc.), we graphically display the
intermediate results using OpenGL.

3.2 Robustness Issues

All coordinates and geometric equation coefficients for
this implementation are floating-point numbers. Since
we use finite-precision arithmetic, all comparison tests
are carried out with respect to an input precision. For
instance, for many algorithmic operations, the program
computes lines through their algebraic equations, and
checks whether two lines are parallel. In this case,
we compare the floating-point coefficients of the line
equations not exactly, but rather with certain precision,
specified by the user. This precision identifies an accept-
able error limit beyond which the values being compared
are considered indistinguishable. Accordingly, if the ab-
solute value of the difference is greater than the specified
precision, the values are considered distinct. Our typ-
ical precisions used for most calculations are 0.1 and
0.01.

The same precision argument applies to the key com-
parison operation in the algorithm, which determines
the number of wedge-switching and circle-fitting iter-
ations necessary to either terminate the iterations and
output the minimum perimeter triangle for the edge un-

2



CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

der consideration (when BP = CQ) or conclude that
the current edge cannot generate a minimum perimeter
triangle (when the height of point P becomes less than
that of point Q).

3.3 Experimental Results

The key factor in characterizing the efficiency of our im-
plementation is the number of iterations computed for
each polygon edge in the process of finding an enclosing
riangle of a minimum perimeter corresponding to that
edge. We performed the following experiments in order
to empirically determine whether there is any depen-
dency of the number of such iterations on n. We exe-
cuted our program for various arbitrary n-gons, where
n varied from 4 to 30. Each polygon was specified by
the floating-point Euclidian coordinates of its vertices.
Table 1 shows our results, where ”Average” and ”Min-
imum” have the following meaning. We recorded the
average of the number of iterations, ”Average”, that
were needed to compute a minimum perimeter triangle
for each polygon edge (the average was computed over
all polygon edges). We also recorded the number of iter-
ations, ”Minimum”, that corresponded to the edge that
produced the minimum perimeter triangle for the poly-
gon. We performed both, anticlockwise and clockwise
searches of the polygon edges. The averages and the
minimum values were computed for both of the edge
searches. The number of polygon vertices n and the
polygon vertex coordinates were chosen arbitrarily.

Our experiments indicate that the number of itera-
tions necessary to compute a minimum perimeter trian-
gle corresponding to a polygon edge is at most a fraction
of the number of edges n, and the overall number of it-
erations for all edges of the polygon is on the order of n.
This result agrees with the algorithm’s linear time com-
plexity and shows that this complexity can be achieved
experimentally. The number of iterations is determined
by the geometry of the input polygon and by the desired
calculation precision.

Our results also show that the algorithm often finds
the same minimum perimeter triangle whether we con-
sider the polygon edges in anticlockwise or clockwise
order. When both searches are performed, the result-
ing enclosing triangle is not dependent on whether we
first consider the polygon edges in clockwise or anti-
clockwise order. The number of iterations may slightly
differ for anticlockwise and clockwise solutions, which is
particularly true for polygons with no geometric sym-
metry. We have also observed that the final minimum
perimeter triangle for the polygon is often (in our exper-
iments) flush with the longest polygon side, particularly
for larger n. Finally, we have demonstrated that the re-
sulting minimum perimeter triangle for the polygon is
not dependent on our choice of precision.

Anticlockwise Search Clockwise Search
n Average Minimum Average Minimum

0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01

4 2.75 2.75 2 2 2.00 2.00 2 2
4 1.75 1.75 2 2 1.75 1.75 2 2
4 11.0 14.0 11 14 11.0 14.0 11 14
5 3.00 3.00 3 3 5.00 5.60 3 3
5 4.40 5.40 2 2 3.40 4.20 2 2
5 2.40 2.40 3 3 3.20 3.20 6 6
8 3.25 3.25 3 3 3.25 3.25 4 4
8 2.88 2.88 3 3 6.00 6.88 4 4
8 6.50 8.00 11 14 3.38 3.63 10 12
10 2.90 2.90 3 3 4.20 4.50 3 3
10 5.30 6.30 4 4 4.60 5.40 4 4
10 4.20 4.80 9 12 3.80 4.00 8 10
13 4.08 4.31 3 3 4.08 4.08 4 4
13 3.31 3.69 3 3 4.08 4.77 4 4
13 4.62 5.08 4 4 5.31 6.15 3 3
15 4.33 4.93 3 3 4.93 5.67 4 4
15 4.67 5.20 5 8 4.93 5.60 7 7
15 5.67 6.67 9 12 5.00 5.67 10 13
18 4.56 5.22 5 5 3.44 3.78 4 4
18 5.89 6.83 4 4 4.17 4.33 3 3
18 4.22 4.56 6 6 3.06 3.22 2 2
20 5.20 5.60 4 4 4.95 5.45 3 3
20 4.30 4.60 3 3 3.95 4.25 4 4
20 4.65 5.00 4 4 4.95 5.65 3 3
23 3.91 4.43 3 3 4.57 4.91 4 4
23 4.52 5.17 4 4 4.43 4.91 4 4
23 4.57 5.13 3 3 4.61 5.17 4 4
25 4.92 6.32 3 3 4.96 5.96 3 3
25 4.88 5.72 3 3 3.76 4.16 4 4
25 5.76 6.52 4 4 4.20 4.76 4 4
28 5.07 5.79 9 11 4.29 4.75 6 7
28 5.32 6.04 3 3 4.75 5.25 4 4
28 4.54 4.75 6 6 5.79 6.43 4 4
30 5.07 5.77 4 4 4.80 5.37 4 4
30 5.13 5.83 11 14 5.43 6.17 10 13
30 5.03 5.60 10 13 5.37 6.13 4 4

Table 1: Experimental results for different n-gons

4 Conclusion

We have given an implementation of a linear time al-
gorithm for computing the minimum perimeter trian-
gle enclosing a convex polygon. This implementation
has been shown to be reliable for various input in-
stances. Asymptotically, our implementation is more
efficient than previous solutions for accomplishing the
same task. Our program also achieves flexibility by al-
lowing the user to specify the precision to which arith-
metic comparison tests are to be performed. It appears
that the precision factor determines the number of it-
erations needed for every polygon edge while comput-
ing its corresponding minimum perimeter triangle can-
didate, if one exists. Thus, our implementation controls
its own constant factor by means of specifying the pre-

3



15th Canadian Conference on Computational Geometry, 2003

cision variable. We have demonstrated that the aver-
age number of iterations is small and rarely exceeds 10
for precisions of 0.1 and 0.01 and for polygons with up
to 30 edges. This once again illustrates that the num-
ber of iterations for each edge is a fraction of n with
O(n) iterations for all polygon edges combined. We
have shown that the resulting minimum perimeter trian-
gle is not dependent on the order in which the polygon
edges are considered, being it clockwise or anticlock-
wise search first. Both searches often produce the same
results; however, in general, it is necessary to perform
both searches. Finally, we have demonstrated that the
resulting minimum perimeter triangle is not dependent
on our choice of the precision value.

Our use of OpenGL makes the implementation graph-
ical and interactive.

References

[1] B. Bhattacharya and A. Mukhopadhyay, On min-
imum perimeter triangle enclosing a convex poly-
gon, Japan Conference on Discrete and Computa-
tional Geometry, December 2002.

[2] A. Aggarwal and J. K. Park, Notes on searching
in multi-dimensional monotone arrays, FOCS, pp.
497–512, 1988.

[3] P. K. Agarwal and M. Sharir, Efficient Algorithms
for geometric optimization, ACM Computing Sur-
veys, Vol. 30, pp. 412–458, 1998.

[4] J. E. Boyce, D. P. Dobkin, R. L. Drysdale, and L.
Guibas, Finding extremal polygons, SIAM J. Com-
put., Vol. 14, pp. 134–147, 1985.

[5] J. S. Chang and C. K. Yap, A polynomial solution
for potato-peeling and other polygon inclusion and
enclosure problems, In 25th Annual Sym posium
on Foundations of Computer Science, IEEE, Singer
Island, Florida, pp. 408–416, 24–26 October 1984.

[6] N. A. A. De Pano, Polygon approximation with op-
timized polygonal enclosures: applications and al-
gorithms, Ph. D. Thesis, 1987.

[7] D. P. Dobkin and L. Snyder,On a general method
for maximizing and minimizing among certain ge-
ometric problems, Proc. IEEE Symp. FOCS, pp.
9–17, 1979.

[8] D. Dori and M. Ben-Bassat, Circumscribing a con-
vex polygon by a polygon of fewer sides with mini-
mal area addition, Computer Vision Graphics and
Image Processing, Vol. 24, pp. 131–159, 1983.

[9] H. Freeman and R. Shapira, Determining the min-
imum area enclosing rectangle for an arbitrary
closed curve, CACM, Vol. 18, pp. 409–413, 1975.

[10] P. M. Gruber, Approximation of convex bodies, In
Convexity and its Applications, Editor P. M. Gru-
ber, Birkhauser, 1983.

[11] V. Klee and M. C. Laskowski, Finding the small-
est triangles containing a given convex polygon, J.
Algorithms, Vol. 6, pp. 359–375, 1985.

[12] J. O’Rourke, A. Aggarwal, S. Madilla, and M.
Baldwin, An optimal algorithm for finding minimal
enclosing triangles, Journal of Algorithms, Vol. 7,
pp. 258–269, 1986.

[13] A. W. Roberts and D. E. Varberg, Convex func-
tions, Academic Press, 1973.

[14] G. T. Toussaint, Solving geometric problems with
the “rotating calipers”, Proceedings IEEE MELE-
CON ’83, Athens, Greece, 1983.

4


