
CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

On Exact Solution of a Point-Location Problem in a System of
d-dimensional Hyperbolic Surfaces

M. L. Gavrilova∗ S. Bespamyatnikh†

Abstract. We present a new algorithm for re-
liable point-location problem in a system of d-
dimensional hyperbolic surfaces. The problem is
perpetual to many applications, including model-
ing of a molecular system represented as a set of
polydisperse spheres through the use of the Eu-
clidean d-dimensional Voronoi diagram. The algo-
rithm is provided for the d-dimensional case and
its implementation in a 3-dimensions is discussed.

Keywords: Reliable computation, hyperbolic sur-
faces, biological modelling, fixed precision floating-point
arithmetic.

1 Introduction

The reliable point-location problem is relevant to many
areas, including computer simulation, biological mod-
eling, Geographical Information Systems, motion plan-
ning and computer graphics. In these applications, the
issues concerning robustness and numerical stability of
algorithms, as well as the actual running times of their
implementations, are crucial [1, 3, 2, 4, 11].

This paper presents a new and reliable algorithm for
addressing the point-location problem based on the im-
plicit computation of the distance from the query point
to the d-dimensional hyperbolic surface. The method
is based on the fast algorithm to compute the sign of
algebraic equation in a fixed-precision arithmetic. The
set of hyperbolic surfaces nearest to the query point is
first determined by applying a fast approximation al-
gorithm based on the partitioning of the d-dimensional
space. The algorithm to carry out the computations in
exact arithmetic (with any specified precision) is pro-
vided. Finally, the implementation of the algorithms
and application to molecular modeling is discussed.

The algorithm can be used for exact and efficient
point-location in the d-dimensional Euclidean Voronoi
diagram of a set of polydisperse spheres. The main ad-
vantage of the algorithm is its simplicity: there is no
need to resolve to complex methods based on iterative
approximation techniques, or involve libraries for ex-
act computations, such as LEDA, PRECISE, CORE or
ECLibrary (Exact Computation Library) [7, 5, 8, 9, 11].

∗Dept of Computer Science, University of Calgary, Calgary,
AB, Canada, T2N1N4. marina@cpsc.ucalgary.ca

†Dept of Computer Science, University of Texas at Dallas, Box
830688, Richardson, TX 75083, USA. besp@utd.edu

As a result, much more efficient implementation and
simpler method for exact point-location in a system of
hyperbolic surfaces, than, for instance, the method de-
scribed in [5], is obtained. The method is implemented
on an example of a 3-dimensional Euclidean Voronoi
diagram of spheres, representing the molecular system.
Preliminary results confirm the algorithm efficiency.

2 The Problem

Given (d + 1) spheres in Rd: Pi =
{pi = (xi1, xi2, ..., xid) , ri} , i = 1..d + 1, where xij

and ri are represented by floating-point numbers.
The Euclidean Voronoi diagram is used to store the
topological information about the system of spheres as
well as to answer point-location queries.

Definition 1. A generalized Euclidean Voronoi dia-
gram for a set of spheres S in Rd is the set of Voronoi
regions

�
x ∈ Rd

�� d(x, P ) ≤ d(x, Q),∀Q ∈ S − {P}
�

,

where d (x, P ) is the Euclidean distance function
between a point x and a sphere P ∈ S.

The distance between a point x and a sphere P with
center at p and radius rp is defined as

d(x, P ) = d(x,p) − rp, (1)

where

d(x,p) =

�
d�

i=1

(xi − pi)2. (2)

According to the definition, the generalized Voronoi
vertex is obtained as the intersection of d quasi-
halfspaces with hyperbolic boundaries (see Fig. 1). The
task is to perform a fast and efficient point-location, i.e.
to identify the Voronoi region enclosing the point.

3 The Exact Solution to a Point-location Problem

3.1 The Cell Method Based Approximate Solution

Consider the d-dimensional Voronoi diagram in Eu-
clidean metric. The d-dimensional space is partitioned
by the axis-parallel hypercubes in Rd. These are generi-
cally called cells in the sequel. A sphere is said to reside
in a cell if its center belongs to the cell. Each cell con-
tains a list of particles that currently reside in it. The

1



15th Canadian Conference on Computational Geometry, 2003

Figure 1: The Euclidean Voronoi diagram of a set of
spheres in 3D

set of neighbors of a particle comprises all particles re-
siding in the same or any of the 3d−1 neighboring cells.
To ensure correctness, the size of a cell must be greater
or equal to the diameter of the largest particle. Then,
if two particles are in contact, they are guaranteed to
reside in the same or in the two neighboring cells. Each
particle Pi = (pi, ri) is represented by a pair consisting
of the coordinates of its center pi = pi (t) and the ra-
dius ri. Assume that the size of the simulation domain is
such that there are k cells in each direction. Consider a
d-dimensional box with a diameter l as a simulation do-
main. The size of a cell must exceed the diameter of the
largest particle. Thus, k is defined as the diameter of the
simulation domain divided by the diameter of a largest
particle M = max

Pi∈S
(2ri), i.e. k = �l/M�. The diameter

of the smallest particle is denoted by m = min
Pi∈S

(2ri).

Assumption 1. The ratio γ = M/m between the
maximum and the minimum diameter is invariant of n.

Lemma 1 Under Assumption 1, the maximum number
of particles nc in each cell is bounded by a constant.

The coordinates of the query point ξ = (ξ1, ξ2, . . . , ξd)
are checked using direct (non-precise) arithmetic in a
constant time and the cell containing the query point is
identified. The set of candidates - the hyperbolic sur-
faces intersecting the identified cell - is next tested in
order to determine exactly to which region the query
point belongs.

The candidates selection procedure is now outlined.
We will need to establish a couple of basic facts in order
to develop the fast method and prove its correctness.

Lemma 2 Let A = {(a1, a2, ..., ad) , ra} and B =
{(b1, b2, ..., bd) , rb} be two d-dimensional spheres. Then

for any point x ∈ B, d (b,A)−rb ≤ d (x,A) ≤ d (b,A)+
rb, where b = (b1, b2, ..., bd) is the center of the sphere
B.

Lemma 3 Let R be a d-dimensional box with center r
and sides ri, i = 1..d. Let A = {(a1, a2, ..., ad) , ra} and
B = {(b1, b2, ..., bd) , rb} be two d-dimensional spheres.
If the following condition is true: d (r,A) + rR <

d (r,B), where rR =

�
d�

i=1

r2
i is the radius of the small-

est sphere enclosing R, then for any point x ∈ R,
d (x,A) < d (x,B).

Following Lemma 3, R does not contain any points
from Voronoi region V or (B). The above Lemma en-
ables us to limit the total number of spheres that must
be considered as potential candidates for Voronoi dia-
gram point location. The following algorithm is used to
pre-process the set of spheres.

For each cell R, compute distances from the center
of the cell r to each of the spheres. Choose the closest
sphere A and exclude all spheres for which the distance
d (r,B) is greater than d (r,A) + rR. Essentially, this
allows to compute the set of spheres, whose Voronoi
regions might intersect the cell R.

Now, we can subdivide the query space into a set of
regular cells, and compute the set of candidate spheres
for each of the cells.

If the resulting set of candidate spheres it too large,
it is possible to divide R into two parts and recompute
the set of potential candidates. We will continue subdi-
viding the cells until the number of potential candidate
spheres is sufficiently small, or if the size of the cell be-
comes sufficiently small.

Note that for some sphere configurations, it is possi-
ble that the number of candidates is very large. One
such example is a set of spheres situated on a larger
sphere around R. However, on average, the number of
candidates is just a constant.

If a regular cell structure was selected, then the cell
containing the query point q can be located in constant
time. If cells were obtained by subdividing larger cells,
then the cell containing the query point can be located
in log (m) time, where m is the total number of cells,
by walking the k − d tree of cells.

After the cell containing the query point is found, we
compare the distances from the query point to each of
the candidate spheres that were precomputed for this
cell. Assume the number of candidates is k. Using the
exact comparison method described in the following sec-
tion, we determine the closest sphere in O (k) time.

3.2 The Exact Sign of Expression Algorithm

The ESSA algorithm computes the sign of an algebraic
sum exactly using standard fixed precision floating-
point arithmetic [6]. The summands are represented

2



CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

as normalized single precision floating-point numbers
with fixed mantissa length. The main idea of the al-
gorithm is to separate the positive and the negative
summands into two lists, sort the two lists separately
and then decimate leading terms recursively. More de-
tails on algorithm implementation can be found in [6].
The ESSA method is extended with the algorithm to
compute the sign of arithmetic expression containing
product exactly. In this approach, a product of k single-
precision terms N1 ∗N2 ∗ ...∗Nk is represented as a sum
of 2k−1 single precision monomials. The method is de-
scribed in [5]. Thus, the ESSA can be applied to com-
pute the sign of algebraic expression containing sums
and products exactly.

3.3 The Exact Point Location Algorithm

The task
Given a query point ξ = (ξ1, ξ2, ..., ξd) and

two spheres a = {(a1, a2, ..., ad) , ra} and b =
{(b1, b2, ..., bd) , rb}. It is required to determine whether
the query point ξ is closer to the sphere a or b.
The Solution

Lemma 4 In exact computation of the sign of expres-
sion x−y, where both x and y are non-negative, the sign
of x − y is the same as the sign of expression x2 − y2

computed exactly.

Assume without the loss of generality that ra−rb ≥ 0.
Then comparing the values of da and db exactly will
provide an exact answer to the problem:

da =

�
d�

i=1

(ξi − ai)
2 − (ra − rb)

db =

�
d�

i=1

(ξi − bi)
2

If da < db then the query point ξ is closer to sphere
a, if da = db then the query point ξ is on the bisector,
and if da > db the ξ is closer to sphere. The following
present the exact algorithm to determine whether the
query point is closer to the sphere a or b.

The Algorithm

1. Compute the sign of da exactly using the ESSA.
Note that db is always non-negative. To compute
the sign on da, consider the two parts of the equa-
tion through which it is expressed. Both summands
are positive. Take both parts to the power of 2 and
compute the sign of their difference exactly using
ESSA

δ =
d�

i=1

(ξi − ai)
2 − (ra − rb)

2
.

If the sign δ is negative, then da is negative. Re-
port that the query point ξ is closer to sphere a.
Otherwise, goto Step 2.

2. Compute the sign of the difference of da and db,
taking to the power of 2.

Since both da and db are positive, take them to the
power of 2, and compute the sign of the difference
of squares exactly:

d2
a − d2

b =
d�

i=1

(ξi − ai)
2 + (ra − rb)

2

−2 (ra − rb)

�
d�

i=1

(ξi − ai)
2 −

d�
i=1

(ξi − bi)
2 (3)

In order to do it, first compute the sign of the fol-
lowing expression exactly:

d�
i=1

(ξi − ai)
2 + (ra − rb)

2 −
d�

i=1

(ξi − bi)
2 (4)

Apply the ESSA to handle this task, using the tech-
nique to take the equation to the 2nd power de-
scribed in [5].

If the sign of (4) is negative, then the conclusion
can be drawn that the sign of (3) is also negative,
since

2 (ra − rb)

�
d�

i=1

(ξi − ai)
2 (5)

is always positive. Report that the query point ξ is
closer to sphere a. Otherwise, goto Step 3.

3. Since both terms of (3) are positive, taking them
to the second degree will lead to the equation:�

d�
i=1

(ξi − ai)
2 + (ra − rb)

2 −
d�

i=1

(ξi − bi)
2

	2

−4 (ra − rb)
2

d�
i=1

(ξi − ai)
2 (6)

Compute the sign of this expression exactly using
the ESSA. Note that most of the summands are the
4th degree products. If the sign of equation (6) is
negative, then the query point ξ is closer to sphere
a. Else if the sign of equation (6) is 0 then the
query point ξ is located on the hyperboloid (bisec-
tor between two spheres). Otherwise, the the query
point ξ is closer to sphere b.

Lemma 5 The above algorithm determines location of
a query point in respect to the Voronoi face, represented
as a hyperboloid in a d-dimensional space, exactly in a
floating-point arithmetic.

3



15th Canadian Conference on Computational Geometry, 2003

4 Experimental results

The method feasibility was verified on an example of
a 3D Euclidean Voronoi diagram of a set of spheres,
representing molecular system. Algorithms were im-
plemented in object-oriented C++ environment on 1.4
MHz Intel processor. All operations on floating-point
numbers were performed using the ESSA algorithm and
its modification, the ESAE (Exact Sign of Algebraic Ex-
pression) method (see [7]).

The experiments were conducted on two configura-
tions: one representing a random distribution of spheres
confined inside a cube, another is a close to a degenerate
case when four spheres in 3D are almost tangent to the
same 3D planes. Note that in the second case the co-
ordinates of the spheres are slightly disturbed in order
to make it possible to find a solution (i.e. the inscribed
sphere).

First, the number of iterations required to obtain the
exact to a specified number of bits solution was mea-
sured. The computations were carried out to compute
the 53 bits representing a mantissa of a floating-point
number exactly. Experiments showed that on average
only two iterations were required to obtain the desired
precision.

Next, we measure the precision of computation for
random and degenerate distributions. The precision de-
pends on the number of iterations and is increased only
twice for both configurations. The method outperforms
the approach based on the exact computation of dis-
tances to two orders of magnitude.

5 Conclusions and Discussion

The new algorithm for fast and precise point-location
problem for d-dimensional Euclidean Voronoi diagram
of a set of spheres is provided. Results obtained confirm
the algorithm correctness and demonstrate suitability
of the method for reliable computation of the Euclidean
Voronoi diagram representing molecular system. The
method possesses a number of important characteristics,
such as simplicity, easy of implementation and possibil-
ity of bringing to different platforms. The algorithm
also allows for virtually unlimited precision exact arith-
metic and is more efficient than the previously devel-
oped method using ECLibrary or LEDA implementa-
tion. We plan to use the designed algorithm in applica-
tions in computational biology where the point-location
queries are required to compute the nearest atom.

The first author would like to thank the U of C Re-
search Services and NSERC for the valuable support of
the project.

References

[1] Blum, L., Cucker, F., Shub, M. and Smale, S. ”Com-
plexity and Real Computation” (1997).

[2] Dey, T.K., Sugihara K. and Bajaj, C. L. DT in three
dimensions with finite precision arithmetic, Comp. Aid.
Geom. Des 9(1992) 457-470.

[3] Edelsbrunner, H. And Mcke, E. Simulation of simplicity:
a technique to cope with degenerate cases in geometric
algorithms, SoCG (1988) 118-133.

[4] Fortune, S. And Wyk, C. Efficient exact arithmetic for
computational geometry, SoCG, (1993) 163-172.

[5] Gavrilova, M. A Reliable Algorithm for Computing the
Generalized Voronoi Diagram for a Set of Spheres in the
Euclidean d-dimensional Space, CCCG (2002) 82-87.

[6] Gavrilova, M., Ratschek, H. and Rokne, J. Exact compu-
tation of Voronoi diagram and Delaunay triangulation,
Reliable Computing, (2000) 6(1) 39-60.

[7] Gavrilova, M. (2002) Algorithm library development for
complex biological and mechanical systems. DIMACS
Workshop on Implementation of Geometric Algorithms,
2002.

[8] S. Krishnan, M. Foskey, T. Culver, J. Keyser, D.
Manocha, PRECISE: Efficient Multiprecision Evalua-
tion of Algebraic Roots and Predicates for Reliable Ge-
ometric Computations, SoCG (2002).

[9] Naher, S. The LEDA user manual, Version 3.1 (Jan. 16,
1995). Available from ftp.mpi-sb.mpg.de

[10] Sugihara, K. And Iri, M. A robust topology-oriented
incremental algorithm for Voronoi diagrams, IJCGA,
(1994) 4 (2): 179-228.

[11] Yap, C., Dube, T. The exact computation paradigm,

In ”Computing in Euclidean Geometry” (2nd Edition).

Eds. D.-Z. Du and F.K. Hwang, World Scientific Press

(1995).

4


