
CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

On the parameterized complexity of
a generalized Rush Hour puzzle ∗

H. Fernau† T. Hagerup‡ N. Nishimura§ P. Ragde§ K. Reinhardt†

Abstract

We consider the parameterized complexity of a general-
ized version of the game Rush Hour1, which is a puzzle
requiring the player to find a sequence of moves by ve-
hicles to enable a special target vehicle to escape from
a grid-shaped game board that may contain obstacles.
Although the problem is PSPACE-complete, we demon-
strate algorithms that work in polynomial time when ei-
ther the total number of vehicles or the total number of
moves is bounded by a constant. Our contributions are
two-fold, entailing the application of ideas of param-
eterized complexity to games and to motion-planning
problems (albeit motion-planning problems of a very
constrained nature).

1 Introduction and Definitions

The goal of the Rush Hour puzzle is to remove a target
vehicle from a grid by moving it and other vehicles until
eventually it reaches an exit on the perimeter of the grid.
Each vehicle can move either horizontally or vertically,
but cannot change its initial orientation, and a vehicle
can be moved from one position to another only when
all intervening grid positions are empty. The grid may
also contain obstacles that do not move; we use the
generic term “car” to denote a vehicle or an obstacle.
The original puzzle consists of a 6× 6 grid with a single
fixed exit and cars of width one and length two or three.

The Rush Hour puzzle is one of many games and
puzzles determined to be computationally difficult to
solve [Dem01]; such problems include the (n2 − 1)-
puzzle [RW90] and Atomix [HS01, HEFN01], related to
a variant of Rush Hour in which all cars are squares of
shape 1× 1. The original Rush Hour problem was gen-
eralized by Flake and Baum to allow arbitrary grid sizes
and placements of the exit and shown to be PSPACE-
complete [FB01].

We extend the generalization formulated by Flake and
Baum [FB01]. In our generalization, the game board is

∗This work was initiated while the authors were participants
in the Dagstuhl Seminar on Parameterized Complexity in July
2001. The first author is currently with University of Newcastle,
Australia.

†Universität Tübingen, Germany
‡Universität Frankfurt, Germany
§University of Waterloo, Canada
1The name “Rush Hour” is a trademark of Binary Arts, Inc.

an infinite plane, cars are arbitrary axes-parallel rect-
angles, and each vehicle must reach one of a set of goal
positions in the plane.

The PSPACE-completeness result of Flake and Baum
indicates that there is not much hope of finding a solu-
tion to a given Rush Hour instance in polynomial time.
However, we show that when the number of cars or the
number of moves allowed is small, the problem can be
solved in polynomial time. More specifically, we employ
the framework of fixed-parameter tractability as devel-
oped by Downey and Fellows [DF99], where a problem is
fixed-parameter tractable (belongs to FPT) if it is solv-
able in time O(f(k)p(n)), where n is the instance size, k
is the value of the parameter (here: the number of cars
or the number of moves), f is an arbitrary function and
p is a polynomial.

In still greater generality, an instance of the
Rush Hour problem can be formalized as a tuple
(C,S, p0, d, Z), where C is a finite set (of cars) and
the remaining components are functions mapping C to
P(R2), R

2, R
2 and P(R), respectively. For each c ∈ C,

S(c) is the shape of c, p0(c) is its initial position, d(c)
is its directional vector, and Z(c) is the set of its goals.
A car c is an obstacle iff d(c) = (0, 0). A car c initially
covers the points p0(c)+S(c) in the plane, and it can be
moved to positions of the form p0(c) + ud(c), for u ∈ R,
where it will cover the points (p0(c)+ud(c))+S(c). Cor-
respondingly, the position of car c (at a certain moment
in time) can be described by a number u(c) ∈ R, and
the set of goals available to a car can be described by a
set of goal intervals.

The object of the game is to move each car to one
of its goal positions. A configuration is a function u :
C → R, and it is legal if (p0(c) + u(c)d(c) + S(c)) ∩
(p0(c′) + u(c′)d(c′) + S(c′)) = Ø for all c, c′ ∈ C with
c �= c′. A move (defined formally in the full paper)
is an operation that adds to (or subtracts from) the
position of a car a multiple of its directional vector;
it is legal if the initial and final configurations as well
as all intermediate configurations are legal, that is, no
other car blocks the passage. A solution to an instance
is a sequence of legal configurations such that the first
consists of the cars in their initial positions, the last
consists of the cars in goal positions, and each pair of
successive configurations is connected via a legal move.

Most of our work focusses on a special case of the
general problem in which all cars are axes-parallel

1

15th Canadian Conference on Computational Geometry, 2003

rectangles and the only directional vectors allowed
are (1, 0), (0, 1) and (0, 0). An APR instance sat-
isfies the additional constraints that for all c ∈ C,
d(c) ∈ {(1, 0), (0, 1), (0, 0)} and S(c) is an open rect-
angle contained in the first quadrant of the plane and
with the origin as a corner. In this case, a car c is
called horizontal if d(c) ∈ {(1, 0), (0, 0)} and vertical if
d(c) ∈ {(0, 1), (0, 0)}. Flake and Baum’s version is a
special case of APR Rush Hour.

2 Parameterization by the Number of Cars

When the number of cars and the number of goal inter-
vals for each vehicle are bounded by a constant k, we
can solve the APR Rush Hour problem in polynomial
time. The idea behind our algorithm is to restrict the
search to a small set of special configurations. If con-
figurations are viewed as nodes in a graph whose edges
represent sequences of legal moves, finding a solution en-
tails searching for a path from the initial configuration
to a goal configuration. If the graph is guaranteed to be
polynomial in size, then so is the cost of the search.

Define the lane of a vehicle as the set of all points
in R

2 that the vehicle could cover if all other cars were
removed. The horizontal (vertical) lane of an obstacle
is defined in the same way, but pretending that the ob-
stacle can move horizontally (vertically). When c and
c′ are horizontal cars, we write c <∗

h c′ if the (horizon-
tal) lanes of c and c′ overlap and c is (always) to the left
of c′, and we define <h as the transitive reduction of <∗

h.
We form a horizontal conflict graph, a directed labeled
graph with the vertices C and the edges <h, where the
length of an edge (c, c′) is |π1(S(c))|, the length of the
projection of S(c) onto its first coordinate. A vertical
conflict graph with edges <v is defined analogously.

We next explain what we mean by a multi-move by
a vehicle v. Suppose first that v is horizontal. A multi-
move by v starts as a usual move by v. As soon as v
hits some other horizontal vehicle v′, however, v′ starts
to move in the same direction as v and with the same
speed. In general, at all times during the move, there is
a set V of moving horizontal vehicles. Whenever some
vehicle in V hits a horizontal vehicle, that vehicle is
included in V and starts moving in synchrony with the
other vehicles in V . A multi-move by a vertical vehicle
is defined analogously, with the roles of horizontal and
vertical vehicles switched.

A multi-move is legal if, during its execution, no point
is ever occupied simultaneously by two or more cars. Al-
though multi-moves are not provided as primitives by
the definition of the game, it is easy to see that every
legal multi-move that involves m vehicles can be imple-
mented through m suitable legal moves by single vehi-
cles, carried out in an appropriate order. For a multi-
move towards the left, e.g., an appropriate order can

be obtained from a topological sorting of the horizontal
conflict graph.

For convenience, we will assume that the board is
made “finite” through four special obstacles, sufficiently
far away, that form a rectangular frame.

Given a sequence of legal moves in a copy G of
the game, we will show how to simulate the sequence
through a sequence of multi-moves of a special kind in
another copy G′ of the game. The simulation will be
characterized through the following invariant:

If a horizontal vehicle is entirely to the left
(right) of the lane of a vertical vehicle or the
vertical lane of an obstacle in G, the same is
true in G′. Correspondingly, if a vertical ve-
hicle is entirely above (below) the lane of a
horizontal vehicle or the horizontal lane of an
obstacle in G, the same is true in G′. More-
over, if a vehicle is in one of its goal intervals
in G, it is in the same goal interval in G′.

Initially, all cars occupy the same positions in G′ as
in G, so the invariant holds trivially.

Every move in G by a vehicle v is simulated in G′

through a multi-move by v in the same direction that
continues for as long as the invariant remains true.
Hence the invariant holds at the end of the multi-move
by v in G′, but an “infinitesimal” additional movement
would violate it. Here, for the purpose of stating what
it means for the invariant to hold during a move, we
assume that the movements by v in G and G′ are syn-
chronized in the sense that if a position is occupied by
v during the move in both G and G′, this happens si-
multaneously.

Example. If all cars shown are horizontal vehicles, a
multi-move by v1 may lead from

v1

v3

v2
v4

to the configuration

v1

v3

v2
v4

The hatched rectangle symbolizes a vertical lane,
which causes the move to stop because v2 is about to
enter the lane.

Lemma 1 Every multi-move in G′ is legal.

Proof: If not, then at some time during the multi-
move, some point in G′ is covered by both a horizontal
car v and a vertical car v′. This implies that v intersects

2

CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

the (vertical) lane of v′, and vice versa. Since, by defi-
nition, the invariant holds throughout the multi-move,
the same condition is true in G, a contradiction.

Lemma 2 After each move in G and the corresponding
multi-move in G′, the invariant holds.

Proof: Suppose without loss of generality that the
move in G is by a horizontal vehicle v that moves to
the right. The simulating multi-move stops while the
invariant still holds, but v might continue to move in G
and violate the invariant by leaving the lane of a vertical
vehicle or the vertical lane of an obstacle or by reaching
a goal position. We demonstrate that this is not the
case by showing that in G′, v moves at least as far to
the right as in G.

The multi-move in G′ stops because continuing it
would violate the invariant. Because of the synchro-
nization between G and G′, this cannot be because of a
condition in the invariant that involves v. Therefore the
multi-move must stop because some horizontal vehicle
v′ other than v is about to enter the lane of a vertical
vehicle or the vertical lane of an obstacle that is not
intersected by v′ in G or to leave a goal interval in G′

that is occupied by v′ in G. The invariant implies in
either case that in G, v′ is no further to the right than
in G′. But since v′ is “pushed” directly or indirectly by
v and the length of a longest path from v to v′ in the
horizontal conflict graph is the same in G and in G′, we
may conclude that even in G, v cannot move further to
the right.

Assume that k is an upper bound on the number of
cars and on the number of goal intervals available to a
single car. If a sequence of moves in G leads to a goal
configuration, the invariant implies that the correspond-
ing sequence of simulating multi-moves in G′, starting
from the same configuration, also leads to a goal con-
figuration. Therefore if G has a t-step solution, there
is a solution using at most tk steps of the special kind
defined by the simulation.

In the simulation, the move by a horizontal vehicle v
stops at a position determined solely by some horizontal
vehicle v′ “pushed” by v (at most k possibilities) and
some lane that it is about to enter or goal interval that
it is about to leave (at most (k − 1) + k possibilities).
Hence v stops at one of at most k(2k − 1) positions.
A vehicle “pushed” by v, including v itself, ends at a
position determined solely by the identity of v (at most
k possibilities) and by the position at which v ends (by
the above, fewer than 2k2 possibilities). Hence every
such vehicle ends at one of fewer than 2k3 positions.
Including also the initial position of the car, we see that
between moves, every car occupies one of at most 2k3

positions. We may conclude that all configurations used
by the simulation belong to an easily computable set of
at most (2k3)k discretized configurations.

Lemma 3 If an APR instance A has a t-step solution
and k upper-bounds both the number of cars and the
number of goal intervals available to a car, then A has
a solution of at most kt steps that uses only discretized
configurations.

This result implies the correctness of an algorithm that
consists of the formation of a configuration graph re-
stricted to discretized configurations, followed by the
search for a path from the initial to a goal configuration.
The exact time required by such an algorithm depends
on factors such as the representation of the input and
the model of computation. If n denotes the input size,
however, it is easy to see that any reasonable combina-
tion admits a running time of the form O((2k3)2kp(n)),
where p is a polynomial (small modifications to the al-
gorithm and a tighter analysis can lower the factor de-
pending on k substantially). This shows that, with the
number of cars as the parameter, the APR Rush Hour
problem belongs to FPT.

3 Parameterization by the Number of Moves

To handle the case where the number of moves m is
bounded by a constant, we compute a set of cars with
the property that if all other cars are removed, we are
certain that for every t ≤ m this will not change an
instance without a t-step solution into one that has a t-
step solution. In other words, the computed set should
contain all cars that might be relevant. It may contain
additional spurious cars that, in actual fact, do not make
any difference, but we bound the number of relevant cars
by 3m. Then we apply an algorithm similar to the one
of the previous section, which leads to a running time
of the form 2O(m2·3m)p(n).

The difference to the previous section is that to main-
tain the number of moves, we need a 1-to-1 correspon-
dence between moves in G and their counterparts in G′.
Given a legal sequence of moves in G, we find the cor-
responding sequence in G′ by repeating the following
procedure until no further changes are possible:

Take a move to the right (resp. down) and
make it as short as possible such that the in-
variant in Section 2 holds and the rest of the
moves is still legal. Take a move to the left
(resp. up) and make it as long as possible such
that the invariant holds and the move is still
legal.

For the sequence in G′ thus obtained we can say the fol-
lowing: every position, which is used at any time during
the sequence by a vehicle v is

the initial position of v,

a goal position of v,

3

15th Canadian Conference on Computational Geometry, 2003

the right (resp. lower) border of a vertical (resp.
horizontal) lane or

π1(S(v′)) right of (resp. below) a position which
was used by a vehicle v′ with v′ <h v (resp. v′ <v

v) at any time during the sequence.

If none of these were the case, then the above procedure
would cause this position to be more to the left (resp.
higher). Assume that 3m is also an upper bound on the
number of goal positions available to a single car, then
the number of possible positions for a car in the first 3
cases is 2·3m. The fourth case means in other words that
v touched one of 3m possible vehicles v′ with v′ <h v
(resp. v′ <v v) at some time. The position of this vehi-
cle itself is either one of of 2 ·3m possible positions for a
vehicle in the first 3 cases leading to 2 · 3m3m possibil-
ities or it is caused by touching a third vehicle v′′ with
v′′ <h v′ (resp. v′′ <v v′) at some time. Continuing this
argument leads to a recursion on the length of a path
in the horizontal (resp. vertical) conflict graph, where
we can estimate each step in such a “chain of causes”
by an additional factor of 3m. Since we consider only
m moves, a “chain of causes” cannot be longer than
m. Thus we obtain an upper bound of 2 · 3m(3m)m for
the number of possible positions for one car in G′. This
leads to at most (2 ·3m(3m)m)3

m

possible configurations
and thus a configuration graph of size 2O(m2·3m) and a
running time of the form 2O(m2·3m)p(n), for a polyno-
mial p. Again, the problem under consideration belongs
to FPT.

4 Conclusions and Future Work

We investigated the parameterized complexity of Rush
Hour, asking whether a given instance of this game is
solvable. We first gave a parameterized algorithm for
solving APR instances with the number of cars as pa-
rameter; then, we showed a parameterized reduction
from APR instances with the number of moves as pa-
rameter to the first-mentioned problem. In the more
general case of cars being arbitrary polygons that move
in arbitrary directions (as discussed in the full version
of the paper), we were not able to exhibit a fixed-
parameter algorithm for the number of cars as parame-
ter. Nonetheless (and this might provide a more general
guideline in the research on parameterized algorithms),
it was possible to use the reduction technique mentioned
above to get a fixed-parameter solution for the problem
with the number of moves as parameter.

For future research, we propose the following gener-
alizations and variations on Rush-Hour, bringing the
game closer to motion-planning problems that occur in
practice, such as those of robots moving in industrial
plants. We could require that just one car reaches its
goal or that all cars in a subset of vehicles reach their

goals. Alternatively, we could let each vehicle move at
an individual speed and ask for a solution within a fixed
time, or let vehicles move “in parallel”.

References

[Dem01] Erik D. Demaine. Playing games with al-
gorithms: Algorithmic combinatorial game
theory. In J. Sgall, A. Pultr, and P. Kolman,
editors, Mathematical Foundations of Com-
puter Science (MFCS 2001), volume 2136 of
LNCS, pages 18–32. Springer, 2001.

[DF99] R. G. Downey and M. R. Fellows. Param-
eterized Complexity. Monographs in Com-
puter Science. Springer, 1999.

[FB01] Gary W. Flake and Eric B. Baum.
Rush Hour is PSPACE-complete, or
“Why you should generously tip park-
ing lot attendants”. Manuscript.
http://www.neci.nj.nec.com/
homepages/flake/rushhour.ps, 2001.

[HEFN01] F. Hüffner, S. Edelkamp, H. Fernau, and
R. Niedermeier. Finding optimal solutions
to Atomix. In F. Baader, G. Brewka,
and T. Eiter, editors, KI 2001: Ad-
vances in Artificial Intelligence, volume 2174
of LNCS/LNAI, pages 229–243. Springer,
2001.

[HS01] M. Holzer and S. Schwoon. Assembling
molecules in Atomix is hard. Technical
Report TUM-I0101, Technische Universität
München, 2001.

[RW90] D. Ratner and M. K. Warmuth. The
(n2 − 1)-puzzle and related relocation prob-
lems. Journal of Symbolic Computation,
10(2):111–137, 1990.

4

