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Parallel Morphing of Trees and Cycles∗
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Abstract

We prove that for any two simple chains [more generally,

trees] in Rd with corresponding edges parallel, there is a

parallel morph between them—i.e. a morph in which all

intermediate chains [trees] remain simple and parallel to the

original. A similar result had been proved by Guibas et al.

[8] for simple cycles in R2. We prove that the result for

cycles does not extend to R3 by giving two simple cycles,

with corresponding edges parallel, that represent the same

knot, and yet have no parallel morph.

1 Introduction

A morph is a continuous transformation, or “metamor-
phosis” of one image or object to another. Morphs can
be used to create visual effects, simulate growth, etc.,
and are of great interest in computer graphics for these
reasons. See [6]. This paper is concerned, not with vi-
sual effects, but with maintaining the geometric struc-
ture of objects throughout a morph; specifically, we wish
to morph one configuration of line segments to another
while preserving incidence relationships and the direc-
tions of the segments. This problem bears some similar-
ity to linkage reconfiguration problems, where we wish
to morph one configuration of line segments to another
while preserving incidence relationships and the lengths
of the segments.

Given a graph (V,E) where where V is a set of ver-
tices and E is a set of edges of the form (u, v), u, v ∈ V ,
a straight-line drawing of (V,E) is a triple (V,E, p) such
that p is a mapping from each v ∈ V to a unique
point in d-dimensional Euclidean space. Although, in
general, drawings of graphs need not have straight-line
edges, throughout this paper we discuss only straight-
line drawings and refer to these simply as “drawings”.
Further, we are only interested in drawings that are sim-
ple, in that edges of the drawing are pairwise disjoint,
except when they meet at a common vertex. In the
special case that every edge of a drawing is oriented
parallel with one of the d axes, we say that the drawing
is orthogonal.

Two drawings of the same graph, P = (V,E, pP ) and
Q = (V,E, pQ), are said to be parallel if for every edge
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(u, v) ∈ E, its drawing in P is parallel with its draw-
ing in Q. A parallel morph between parallel drawings
P,Q of the same graph is a continuously changing fam-
ily of drawings, R(t), 0 ≤ t ≤ 1, with R(0) = P and
R(1) = Q, such that each R(t) is parallel with P and
Q. Moreover, we require that every drawing R(t) is sim-
ple, that is, no two edges may meet except at a common
vertex.

This paper addresses the question: Given two par-
allel drawings of a graph, do they admit a parallel
morph? We concentrate on restricted graph classes,
namely paths, trees and cycles. Paths are a special case
of trees but can be treated more simply. To summa-
rize our results: Parallel drawings of paths and trees al-
ways admit a parallel morph in any d-dimensional space.
However, there exist parallel drawings of cycles in 3-
dimensional space that do not admit a parallel morph,
even though the cycles form the same knot.

In the plane, simple drawings of cycles are simple
polygons. In work that motivated this research, Guibas
et al. [8] and Grenander et al. [7] show that simple par-
allel polygons always admit a parallel morph. (Also
see [10] for the case of orthogonal polygons.) Parallel
morphing of trees in the plane follows from this result,
since a tree can be converted to a polygon by “thicken-
ing” each edge. However, this approach does not apply
in higher dimensions.

Two polygons are parallel iff they have the same se-
quence of internal angles and the same first edge direc-
tion. Vijayan [11] proved that a given angle sequence
is realized by some simple polygon iff the obvious an-
gle sum condition holds. Any realizable angle sequence
can be realized by a family of parallel polygons. The
question of whether two simple parallel polygons have
a parallel morph can be viewed as a question of con-
nectivity within this family. Realizability of angles for
more general plane graphs is NP-complete [5]. In three
dimensions the question of whether a sequence of angles
is realized by a simple polygon is solved for the orthog-
onal case [1].

We conclude this section by discussing the connec-
tions between parallel morphing and linkage reconfigu-
ration problems. To describe this connection, we need
to mention parallel redrawings and rigidity theory. A
drawing of a graph has a parallel redrawing [12] if the
vertices can be moved such that all edges remain parallel
to those in the original drawing, and the resultant draw-
ing is neither a translation nor a scaling of the original.
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Note that maintaining the simplicity of the drawing is
not an issue. Whiteley [12], and Servatius and Whiteley
[9] study questions of the existence of a parallel redraw-
ing. This turns out to be directly related to questions
in rigidity theory.

In rigidity theory, frameworks are composed of rigid
bars, idealized as straight-line edges and attached at
vertices. Where two bars meet at a vertex, they are
allowed to move freely with respect to each other. The
fundamental problem is that of deciding whether or not
a framework is rigid. That is, is there a non-trivial in-
finitesimal motion that moves the vertices while keeping
the lengths of the bars fixed. Simplicity is not an issue.
To contrast the two situations: in parallel redrawings
edge lengths may change but angles are fixed, whereas
in rigidity theory, edge lengths are fixed and angles may
change. The answers are the same however: a configura-
tion has a parallel redrawing iff it is not rigid, since the
vectors orthogonal to an infinitesimal motion provide a
parallel redrawing. See [9].

Linkage reconfiguration problems also deal with rigid
bars and flexible angles, however—in contrast with
rigidity theory—simplicity must be maintained, and the
questions are about reachability: given two structures
that are composed of the same set of rigid bars and with
the same combinatorial structure, can we morph from
one to the other preserving incidence relationships and
the lengths of the bars? Linkage reconfiguration has
received much attention from the computational geom-
etry community in recent years. Chains and polygons in
2D can be reconfigured [4], but chains in 3D cannot [2].

Thus linkage reconfiguration problems are to rigid-
ity theory as parallel morphs are to parallel redrawings.
The fact that rigidity is equivalent to the non-existence
of parallel redrawings opens the door to the possibility
that techniques from linkage reconfiguration may apply
to parallel morphs. However, there is no simple corre-
spondence, since, as we show in this paper, the answers
are different: chains in 3D have parallel morphs, but
cannot always be reconfigured.

2 Morphing Paths

Given a path (V,E) with V = {v1, . . . , vn} and E =
{(v1, v2), (v2, v3) . . . , (vn−1, vn)}, let P = (V,E, pP ) and
Q = (V,E, pQ) be parallel, simple drawings of (V,E) in
Rd. We show that such drawings always admit a parallel
morph.

We simplify the problem by defining a canonical form
for each of P and Q such that the canonical forms of
both P and Q are identical up to a scaling operation.
Thus, a parallel morph from P to Q can be accomplished
by morphing P to its canonical form, scaling the entire
drawing, and then reversing the morph between Q and
its canonical form.

ball

k  v   v

  v

k+1

k+2

Figure 1: The ball, after morphing edges
(v1, v2), . . . , (vk−1, vk).

2.1 Orthogonal drawings

In this subsection, we limit our discussion to orthogo-
nal drawings. Define the minimum feature size δP of P
to be the minimum of (1) the smallest distance between
non-incident edges of P , and (2) the length of the short-
est edge in P . Define the canonical form of P to be the
parallel drawing of P in which each edge (vi, vi+1) has
length δP 2i−n−1. Note that any two parallel drawings
P,Q have the same canonical form up to a scaling op-
eration, where the size of this scaling depends upon the
ratio between δP and δQ.

The morph works as follows: For i = 1 to n−1, shrink
edge (vi, vi+1) to length δP 2i−n−1. Clearly, following
this morph we have a drawing that is the canonical form
of P , and every intermediate drawing of the morph is
parallel to P .

Claim 1 Every intermediate drawing of the morph (in-
cluding the canonical drawing) is simple.

Proof: By induction. Notice that after shrinking
edge (vk−1, vk), all preceding edges lie entirely within
a d-dimensional ball centered at vk—as illustrated in
Figure 1—whose L1 (rectilinear) radius is equal to the
sum of the lengths of the edges (v1, v2) to (vk−1, vk):

δP

k−1�
i=1

2i−n−1 = δP 2−n(2k−1 − 1) < δP 2k−n−1 < δP

When edge (vk, vk+1) shrinks, the edges inside the
ball remain static with respect to each other. Likewise,
the edges outside of the ball remain static respect to
each other. We need only show that the edges inside
the ball cannot intersect those outside the ball.

Because the final length of (vk, vk+1) is greater than
the radius of the ball, shrinking (vk, vk+1) leaves the
ball disjoint from vk+1 and from its next incident edge
if there is one. No other edge outside the ball can enter
the ball since they all have distance at least δP from the
edge (vk, vk+1), and δP is greater than the radius of the
ball. �

Theorem 1 Any two parallel, orthogonal drawings
P,Q of a path (V,E) embedded in d-dimensional space
admit a parallel morph.
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Figure 2: The d-dimensional ball after morphing the
first k − 1 edges.

2.2 General drawings of paths

To generalize the above result to non-orthogonal draw-
ings of paths, we redefine the canonical form of a draw-
ing. As before, let δP denote the minimum feature size
of a drawing P . Let θP denote the size of the the min-
imum angle between two incident edges of P . Define,
Γ = 2

sin(min{π,θP }) .
We now define the canonical form of P as the drawing

that is parallel to P in which each edge (vi, vi+1) has
length δP Γi−n−1.

Since two parallel drawings P and Q necessarily share
the same minimum angle, the canonical drawings of
P and Q are identical up to a scaling operation. Ev-
ery edge in the canonical drawing of P is of length at
most δP Γ−2, and is hence smaller than the correspond-
ing edge in P . As in the orthogonal case, to morph P
to its canonical form we shrink each edge in turn to its
final length. Thus, every intermediate drawing of the
morph is parallel to P .

Claim 2 Every intermediate drawing of the morph (in-
cluding the canonical drawing) is simple.

Proof: By induction. Assume that the morphing pro-
cedure maintains simplicity throughout the shrinking of
edges (v1, v2) to (vk−1, vk). As illustrated in Figure 2,
these edges reside within a d-dimensional ball centered
at vk whose L2 (Euclidean) radius is

δP

k−1�
i=1

Γi−n−1 = δP Γ−n

�
1 − Γk−1

1 − Γ

�

By a similar argument as used in the proof of Claim 1,
the radius of the ball never exceeds δP . Thus, as
(vk, vk+1) shrinks the ball centered at vk cannot inter-
sect any edge outside of the ball that is not incident
upon (vk, vk+1). On the other hand, if π ≤ δP , then the
arguments of Claim 1 apply to show that the ball does
not intersect an the next edge incident with vk+1.

So, assume that π > δP . As (vk, vk+1) shrinks,
vk will get continually closer to edge (vk+1, vk+2).
When the edge has been shrunk to its final length,
the distance from vk to (vk+1, vk+2) will be at least
sin θP (δP Γk−n−1). It is not difficult to show that this

distance is greater than the radius of the ball centered
at vk, thus the ball cannot intersect (vk+1, vk+2). �

Theorem 2 Any pair of parallel drawings of a path em-
bedded in a d-dimensional space admit a parallel morph.

3 Trees

Let P be a drawing of a tree, such that δP is the min-
imum feature size, and θP is the minimum angle. We
root the tree at one vertex and let d(v) be the distance
from vertex v to the root.

We define the canonical form of P as the drawing that
is parallel to P , such that for each edge (u, v) where
d(u) = d(v) + 1, the length of the edge is

δP

�
2

sin(min{π, θP }/2)

�d(u)−n−1

We morph by shrinking each edge to its canonical
length, taking the edges in decreasing order of their dis-
tance from the root. Using a proof similar to that of
Theorem 2 we obtain:

Theorem 3 Parallel drawings of a tree in d-
dimensional space always admit a parallel morph.

4 Cycles

Clearly, parallel cycles in R3 that form different knots
do not have parallel morphs. More interesting is:

Theorem 4 Not all orthogonal, parallel drawings of cy-
cles admit a parallel morph, even if they represent the
same knot.

Proof: We prove this for the cycles in Figure 3. Con-
sider the possible orderings of the vertices along each of
the three axes. In fact, only one such ordering is pos-
sible with respect to the x and z axes. For each vertex
v ∈ {a, . . . , j}, let vx, vy and vz denote the x, y and z
coordinates of v, respectively.

With respect to x coordinates, two vertices connected
by an edge parallel to the y or z axis have equal x coor-
dinates, and two vertices connected by an edge parallel
to the x axis have a fixed order. Thus the x ordering of
the vertices is completely determined:

cx = dx = ex < fx = gx = hx = ix < jx = ax = bx

Likewise, with respect to z coordinates:

hz = iz = jz = az < bz = cz < dz = ez = fz = gz

Consider the edges (b, c) and (g, h). By the above
equations, cx < gx = hx < bx and hz < bz = cz < gz at
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Figure 3: Two drawings of a cycle that do not admit a
parallel morph.

all times throughout a parallel morph. Note that (b, c)
and (g, h) intersect with respect to x and z coordinates.
If, in addition, by = cy = gy = hy, then the edges inter-
sect, which is not allowed in a simple parallel morph. In
the uppermost drawing of Figure 3, by = cy < gy = hy,
while in the lowermost drawing we have the reverse,
by = cy > gy = hy. However, to get from one drawing
to the other there must be an intermediate drawing in
which the y-coordinates of both edges are equal. Thus,
there exists no parallel morph from the upper to the
lower drawing of Figure 3. �

5 Open Problems

• What is the complexity of deciding whether cycles in
3D admit a parallel morph?
• Do [edge sets of] polyhedra in 3D admit parallel
morphs?
• Are there parallel morphs of paths/trees that keep
edge lengths well-behaved? See [3] for results on cycles.
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