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1 Introduction

The goal of this research is to provide practical solu-
tions for covering problems. Covering problems arise
in a variety of practical settings such as manufacturing,
telecommunications, spatial query optimization, pub-
lish/subscribe middleware, graphics, molecular mod-
eling, medical treatment and mobile military sensor
coverage and targeting. For example, in the mobile
sensor case a region is associated with each sensor rep-
resenting the extent of its coverage. The goal is to find
placements of the sensors so that, together, they cover
a collection of target regions. This section specifies the
covering problem addressed here, surveys related work
and gives an overview of the remainder of the paper.

1.1 Problem Specification

A finite collection of shapes is specified along with the
allowable motions for the shapes. Each shape is a semi-
algebraic subset of R

n. The shapes are rigid. The al-
lowable motions are a subgroup G of SO(n, R) � R

n,
the group of rigid motions of R

n of the first type. We
seek only one solution instead of all possible solutions.

Rigid Exact Covering: Let Q = {Q1, Q2, ..., Qm}
be a set of rigid covering items and P = {P1, P2, ..., Pl}
be a set of rigid target items. Let G be a subgroup
of SO(n, R) � R

n. Our covering problem seeks γ =
{γ1, . . . , γj , . . . , γm}, where γj ∈ G, such that:

P ⊆
�

1≤j≤m

γj(Qj). (1.1)

This paper addresses 2D rigid, exact, covering for
polygonal shapes with translational motion of the
items in Q. The items in P are not allowed to move.
Polygonal items may be nonconvex. Rigid, exact,
translational covering is NP-hard [DI01b, DI01a].
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1.2 Related Work

Algorithmic1 2D covering work has primarily focused
on specialized forms of the covering shapes and the
target shapes, often addressed the optimization prob-
lem of minimizing the number of covering polygons,
and identified many NP-complete covering problems.
[Tot97] surveys results for covering the plane with
congruent convex shapes. [JCR88] summarizes early
hardness results for coverings that are also decompo-
sitions. [DI01a] surveys some work on covering and
closely related problems.

The first known work on NP-hard 2D translational
covering for arbitrary polygonal covering and target
items is [DI01b] and [DI01a]. In [DI01a] an assign-
ment constrains each covering polygon to cover a par-
ticular point in the target set. An initial subset of
target points is selected, assignments are generated,
and the result is tested to see if the assignments guar-
antee coverage of the entire target set. If not, the
subset of target points is augmented and the process
repeats. The convex hull of the target set is selected as
the initial subset of target points. Assignments for a
small collection of target points can sometimes guar-
antee coverage of the entire target set using a con-
vexity coverage property. [DI01b] builds on [DI01a]
using intersection graphs. Given polygonal P , Q, and
a translation vector for Q, let R be the partition of P
induced by the boundaries of the translated items of
Q. An intersection graph2 for a cover is an undirected
graph containing one node for each region of R and
an edge connecting each pair of nodes whose regions
of R share an edge in R. [DI01b] seeks covers having
particular intersection graph topologies.

In Grinde and Daniels [GD99] a combinatorial cov-
ering optimization problem is reformulated along the
lines of a maximum cover location problem. [GD99]
addresses a two-phase layout problem in apparel man-
ufacturing. The first phase places large pattern pieces
and the second (trim placement) places small pieces.

1Nonalgorithmic results on covering and packing, such as
density bounds, are surveyed in [Tot97].

2Intersection graphs have been used previously in the context
of covering (see [FPT81], for example).
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[GD99] views the trim placement problem as a col-
lection of many small containment problems followed
by a combinatorial covering problem. Each contain-
ment problem identifies a group of trim pieces that fit
within a container delimited by large pattern pieces.
The combinatorial problem maximizes a weighted sum
of placed trim pieces by selecting one group for each
container. An integer programming (IP) formulation
of the covering problem is solved using a Lagrangian
Heuristic.

1.3 Overview

The approaches of [DI01a] and [DI01b] work well for
problem instances in which the number of vertices of
the convex hull of P is small, the entire convex hull can
be covered by the covering shapes, and the number of
faces of a convex decomposition of Q is small. In such
cases these algorithms can often find a cover by exam-
ining only a small number of candidate assignments.
However, these methods lack a strong mechanism for
deciding which covering polygon should cover which
parts of P . The goal of this paper is to reduce this
limitation. The new heuristic uses the combinatorial
covering method of [GD99] to maximize coverage of
P . Section 2 describes the heuristic. Section 3 dis-
cusses implementation and results. Results of the new
technique are compared with the polygonal covering
algorithm of [DI01b], which builds on [DI01a].

2 Covering Heuristic

For each polygon of Q the new heuristic creates a
list of groups of triangular regions of P that it can
cover. It then selects one group for each polygon of Q.
The selection process uses the Lagrangian Heuristic of
[GD99] to try to maximize the number of triangles cov-
ered. If the union of the covered triangles covers all of
P , then the covering heuristic terminates successfully.
Otherwise, it subdivides an uncovered triangle of P ,
the group list is augmented, and the group selection
process repeats. A subdivision tolerance provides a
stopping criterion. The success of this approach relies
on the strength of the group generation process and
the method for selecting one group for each polygon
of Q. Section 2.1 provides high-level pseudocode. Sec-
tion 2.2 describes the combinatorial covering technique
that performs group selection.

2.1 Pseudocode

COVER (P,Q, τ)
T ← TRIANGULATE(P )
G ← ∅

ToleranceReached ← FALSE
while not ToleranceReached

G ← ADD-GROUPS(T, P,Q,G)
γ ←LAGRANGIAN-COVER(G,T )
if (P \�j γj(Qj)) = ∅

then return γ
else T ′ ← SUBDIVIDE-TRI(T, τ)

if T ′ = T
then ToleranceReached ← TRUE
else T ← T ′

report failure

ADD-GROUPS (T, P,Q,G)
for each triangle t ∈ T
if {t} /∈ GS

then for each Qj ∈ Q

K ← t ⊕−Qj

if K �= ∅

then �v ← first vertex of K
GS ← GS ∪ {t},GQ ← GQ ∪ {Qj , {t}, �v}
for each vertex �v of K

C ← P ∩ �v(Qj)
g ← {t′ ∈ T |t′ ⊆ C}
GS ← GS ∪ g, GQ ← GQ ∪ {Qj , g, �v}

return G

The group structure G consists of two types of in-
formation3 : 1) GS : a list of all groups and, for each
group g, a list of triangles of T in g, and 2) GQ: for
each Qj in Q, a list of all groups that fit into Qj and,
for each group g, a translation vector for Qj that allows
it to simultaneously cover all the triangles in g. The
subdivision tolerance τ specifies the maximum number
of triangles in T . If the subdivision tolerance has not
been reached, SUBDIVIDE-TRI subdivides into sev-
eral triangles the largest triangle of T that is not cov-
ered by the current group selections. LAGRANGIAN-
COVER uses the method described in the Section 2.2
below to attempt to maximize coverage of the triangles
in T .

ADD-GROUPS uses the translational intersection
and containment properties of the Minkowski sum4.

3Although G is not a set, we use set notation to manipulate
it. The meaning should be clear from context.

4The symbol ⊕ is a Minkowski sum operator: A⊕B = {a +
b|a ∈ A, b ∈ B}.
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For each triangle t that fits within a particular Qj ,
ADD-GROUPS finds the polygon K representing all
translations of Qj for which t fits into Qj . It then at-
tempts to identify large groups of triangles that Qj can
simultaneously cover by successively placing Qj at ver-
tices of K. Each vertex of K represents a two-contact
placement5 of t within Qj . For each such placement,
ADD-GROUPS determines which triangles of T fit
into Qj ; these form a group.

2.2 LAGRANGIAN-COVER

LAGRANGIAN-COVER uses a Lagrangian Heuristic
to solve the following IP formulation. The formulation
has two groups of integer decision variables. Assign-
ment variables that show if a given group is assigned
to a particular Qj and usage variables that reflect
whether or not a given group is used in the optimal
solution are given in Eqns. 2.1 and 2.2 respectively
for 1 ≤ i ≤ |T |, 1 ≤ k ≤ |GS |, 1 ≤ j ≤ m.

gkj =
�

1
0
if group k is assigned to Qj

otherwise
(2.1)

ti =
�

1
0
if triangle i ∈ group k 	 gkj = 1

otherwise
(2.2)

Two types of parameters are given below in Eqns. 2.3
and 2.4; these provide coefficients for the constraints
of the IP formulation.

aik =
�

1
0
if triangle i ∈ group k

otherwise
(2.3)

bkj =
�

1
0
if group k fits in Qj

otherwise
(2.4)

The IP model is stated as follows:

maximize

|T |�
i=1

ti (2.5)

subject to
�

k�bkj=1

gjk = 1, j = 1, . . . , m (2.6)

ti ≤
m�

j=1

�
k�bkj=1

aikgkj , i = 1, . . . , |T | (2.7)

The objective function in Eqn. 2.5 maximizes the num-
ber of triangles covered. The m constraints of Eqn. 2.6
ensure that exactly one group is selected for each Qj .
The constraints of Eqn. 2.7 cause a value of 1 to be

5A two-contact placement removes both translational degrees
of freedom.

contributed to the objective function for each trian-
gle covered by a Qj , where that triangle is in a group
selected for that Qj .

This IP formulation is a special case of the more
general one in [GD99]. In [GD99], groups of trim
pieces fit into containers and a group is selected for
each container. A triangle of P in the new heuristic
corresponds to a trim piece in [GD99]. A Qj maps to
a container. The formulation of [GD99] allows a trim
piece to have a weight and it accommodates categories
of trim pieces; these features are not used here.

Execution times can vary substantially when IP soft-
ware is used to solve the IP model. For this reason the
constraint set of Eqn. 2.7 is relaxed, bringing it into
the objective function so that the optimization-based
technique Lagrangian Relaxation can be used in con-
junction with a local improvement heuristic. The re-
sulting Lagrangian Heuristic does not guarantee opti-
mality, but tests in [GD99] showed it was successful in
finding the optimum most of the time, with shorter so-
lution times than traditional branch-and-bound meth-
ods. Details of this Lagrangian Heuristic applied to
trim placement appear in [GD99]; the same heuristic
is used here in LAGRANGIAN-COVER.

3 Implementation and Results

The implementation uses the LEDA and CGAL C++
algorithms libraries. It also uses the Lagrangian
Heuristic code of [GD99], with small modifications. In
Table 1 results of the new method are compared with
the polygonal covering algorithm of [DI01b], which
builds on [DI01a]. The first column gives the test case
number. The second column shows the number m of
polygons in Q. The third column shows the number η
of vertices of P . The value of l is 1 for the examples
shown, but the algorithm is designed to handle l ≥ 1.
In columns 4-7, the new heuristic is numbered 1 and
the algorithm of [DI01b] is numbered 2. Columns 4
and 5 show the number of points of P examined in
order to find a cover. For the new heuristic this is the
total number of triangle vertices. For the previous al-
gorithm this is the number of points of P involved in
assignments. Columns 6 and 7 show execution time in
seconds on a 450 MHz SPARC Ultra6. The stopping
criterion τ for the new heuristic is 300 triangles. Cases
in which the new heuristic reached this limit without
finding a cover are denoted by ∗. A time bound of 10
minutes was imposed on the previous algorithm. Cases
in which it reached this limit without finding a cover

6SPARC Ultra is a trademark of Sun Microsystems Corpo-
ration.
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# m η # Pts 1 # Pts 2 Time 1 Time 2
1 3 9 24 ∗∗ 25 ∗∗
2 7 20 20 ∗∗ 23 ∗∗
3 2 12 12 18 2 2
4 2 6 ∗ 11 ∗ 3
5 2 12 39 14 71 2
6 2 12 12 12 3 1
7 2 5 11 6 3 4
8 2 6 12 6 5 1
9 3 6 6 6 1 3
10 3 12 12 ∗∗ 3 ∗∗
11 3 12 12 ∗∗ 3 ∗∗
12 5 9 54 ∗∗ 258 ∗∗
13 4 12 24 ∗∗ 33 ∗∗

Table 1: Covering Comparison

Figure 1: Covers for Selected Rows of Table 1

are denoted by ∗∗. [DI01b] uses a LEDA randomized
convex decomposition function. Due to randomization
the results reported for that algorithm are the best re-
sults obtained in 10 test runs. Figure 1 depicts cov-
ers obtained for selected rows of Table 1. For row 4
the cover was obtained from the algorithm of [DI01b];
the remaining figures are from the new heuristic. Al-
though in each example each P ∩ �v(Qj) consists of a
single connected component, this need not be the case.

The algorithm of [DI01b] works well for problem

instances in which the number of points in the con-
vex hull of P is small, the number of faces of a con-
vex decomposition of Q is small and the entire con-
vex hull of P can be covered. In such cases it can
often find a cover by examining a small number of
candidate assignments of covering polygons to points
of P and seeking covers with particular intersection
graph topologies. However, it is limited by the lack of
a strong method for deciding which covering polygon
should cover which parts of the target set. The new
heuristic uses a group generation technique based on
Minkowski sums and the combinatorial covering ap-
proach of [GD99] to attempt to maximize coverage of
P . This allows it to find covers in many cases where
the algorithm of [DI01b] fails (see, for example, rows
2, 10, 12 and 13 of the table and their corresponding
figures). In particular, covering the convex hull of P
is not a limitation.

The new heuristic is limited by the NP-hardness of
the covering problem itself. For this reason it is only
expected to be able to handle a small number of cov-
ering shapes in Q. Another limitation arises from the
choice of triangle subdivision method. In some cases
in which a cover must be tight and have small over-
laps among the shapes in Q, many small triangles are
generated within and near the overlaps, causing the
heuristic to reach its limit on the number of trian-
gles. Future work will design a subdivision technique
that decomposes the target polygon based on proper-
ties of the covering shapes. With this improvement the
heuristic is expected to be strong enough to be used
as a building block in 2D covering applications.
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