
CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

Linear Binary Space Partitions and the Hierarchy of Object Classes

Petr Tobola∗ Karel Nechv́ıle∗

Abstract

We consider the problem of constructing binary space par-
titions for the set P of d-dimensional objects in d-dimensional
space. There are several classes of objects defined for such
settings that support the design of effective algorithms. We
extend the existing de Berg hierarchy of classes [4] by defin-
ing new classes based on old ones and we show the desir-
ability of such an extension. Moreover we propose a new
algorithm that works on generalized Λ-low-density scenes
[11] (defined in this paper) and provides BSP trees of lin-
ear size. The tree can be constructed in O(n log2 n) time
and space, where n is the number of objects. Moreover, we
can trade-off between size and balance of the BSP tree fairly
simply.

1 Introduction

In the past, much attention has been paid to the develop-
ment of algorithms whose goal is to construct the smallest
possible BSP trees. Initially, several heuristics were devel-
oped (for example [5, 8]) but these can create a tree of ex-
cessive size under unfavourable circumstances (Ω(n2) in the
plane and Ω(n3) in R3 space). The first provable bounds
were obtained by Paterson and Yao [7, 6]. They showed
[7] that the optimal size of BSP is Θ(n2) in R3 space and
O(n log n) in a plane in the worst case. The next result by
these authors [6] was an optimal sized BSP algorithm for
the set of orthogonal objects with Θ(n3/2) in R3 space in
the worst case and Θ(n) in a plane in the worst case.

It was observed that, in practice, many scenes behave rea-
sonably and enable efficient processing. Several attempts to
specify object sets of such scenes have been made. Recently,
de Berg et al. [3] have investigated the common properties
of the scenes where effective algorithms can be used. Most
real-world scenes fall into this category. A hierarchy of the
known object classes has been composed and matched with
realistic input models. This can simplify the design of algo-
rithms that are provably efficient.

Although the de Berg hierarchy includes a large number
of scenes, there is still a wide spectrum of simple and poten-
tially practical scenes remaining that do not match it. We
will outline a few particular examples of such scenes and then
we will try to highlight their significant common features.

A wooden fence is a line of many long and thin planks.
This scene does not fit within the de Berg hierarchy because
the planks are located tightly one after another. Similar
results can be obtained if we consider a school of long and
thin fish, radiator fins, suits in a wardrobe, books in a library,
a cluster of fluorescent lamps, or a thick forest.

∗Support was provided by the grants GACR 201/98/K041,
Grant Agency of Czech Republic and MSM 143300004, Ministry
of Education, Czech Republic.

It seems that the real world scenes frequently contain
groups of similar objects that usually appear in (isolated)
clusters and these objects usually differ only in their position
(and possibly in scale ratio). Moreover, it is very probable
that the described similarity holds for many objects that lie
near to each other. The correctness of this presupposition
has been shown by results of practical implementation. We
will be describing the practical results precisely in a forth-
coming paper.

Although the picket fence does not form a set of fat ob-
jects, we can transform it to the set of fat objects by simple
linear scale transformation. In the following, we extend some
object classes of the existing de Berg hierarchy by including
linear transformation.

This paper is organized as follows. In Section 2, we give
some essential definitions needed in the rest of the paper.
Section 3 presents the BSP construction method and de-
scription of the algorithm. Section 4 includes concluding
remarks. Due to space limitations, all proofs are deferred to
the full paper.

2 Preliminary

We introduce some ideas which will be used in the follow-
ing sections. In particular we need the definitions of simple
and extended rectangular neighborhood and a useful tool –
the Cutting Lemma.

Definition 2.1: Let p be an object in Rd. The bounding
box of p (further bb(p)) is the smallest axis-aligned box that
completely contains p.

We now define some special neighborhoods of axis-aligned
hyperrectangles in d-dimensional space.

Definition (Simple/Extended neighborhood) 2.2:
Let r, rn ⊆ Rd be d-rectangles, r ⊂ rn. Assume that r and
rn are axis-aligned. We call the difference Ω(r, rn) = (rn−r)
the rectangular neighborhood of r.

Let Ω(r, rn) be a rectangular neighborhood of r, i ∈
{1, ..., d}, x−

i (r) and x−
i (rn) be the minimal coordinates of

r and rn with respect to the i-th coordinate axis, w−
i =

|x−
i (rn)− x−

i (r)|. Analogously, we can define x+
i (r), x+

i (rn)
and w+

i . We define the width of the neighborhood to be the
set {wk

i |i ∈ {1, ..., d}, k ∈ {+,−}}.
The rectangle r is determined by its edge vectors �e1, ... ,�ed

and a reference point. The neighborhood is determined by
its width. Let f be an array of d functions f = 〈f1, ..., fd〉,
fi = fi(δ, r) and δ be a parameter. We will take into account
only the special case when w−

i = w+
i (i.e. the rectangle r is

centered in rn). Then we define the Ω(δ, f, r)-neighborhood
to be the rectangular neighborhood of r with w−

i = w+
i =

|fi(δ, r)�ei|.

1

15th Canadian Conference on Computational Geometry, 2003

1. If fi = δ; i ∈ {1, ..., d}, then we call the neighborhood
Ω(δ, f, r) a simple neighborhood and denote it Ωs(δ, r).

2. Let j be the coordinate with maximal edge length |�ej |.
If fi =

| �ej |
|�ei| (1 + 2δ), i ∈ {1, ..., d}, then we call the

neighborhood Ω(δ, f, r) an extended neighborhood and
denote it Ωe(δ, r).

Extended neighborhood

Simple neighborhood

r

�e1

�e2

r

�e1

�e2

w1

w2

δ = 1/2

w1 = w2 = |�e1|(1 + 2δ) = 2|�e1|

Figure 1: Simple and Extended hyperrectangle neigh-
borhood.

We have already mentioned the de Berg hierarchy of ob-
ject classes. The basic classes of that hierarchy are Fat-
ness, Low-density, Clutteredness and Simple-cover complex-
ity. The exact definition can be found in [4]. We now define
the extension of that hierarchy which is based on the scaling
idea mentioned above.

In the following text, we are using slightly incorrect nota-
tion for the scene-region intersection. Let P be a scene (i.e.
set of objects) and R be a region. The intersection P ∩ R
means the set of objects {qi|qi = pi ∩ R, pi ∈ P}.

Definition 2.3: Let C be an object class and P ∈ C

be a set of objects (a scene). We call the class C local iff for
any set of objects P ∈ C and any convex region R holds that
(P ∩ R) ∈ C.

Locality markedly simplifies work with particular scenes.
For example, the classes Low density and Uncluttered scenes
are local. The classes SCC and Guarding scenes are not,
which makes them more difficult to analyze.

Definition 2.4: Let C be a local class of objects. We
define the extension of C called locally-balanceable-C (LB-C)
as follows:

Let P = {p1, ..., pn} be a scene (i.e. set of objects), δ
be a constant, Ri be the minimal convex region containing

Ωe(δ, bb(pi)). We say that P ∈ LB-C iff ∀(pi ∈ P) : the inter-
section Ri∩P can be reduced by linear scale transformations
along some coordinate axes to a scene in C.

The proposed BSP algorithm exploits properties of the
λ-low-density scenes which extend to the LB-λ-low-density
scenes.

Finally, we give the cornerstone of the algorithm - the
Cutting Lemma. It was introduced by Tobola and Nechv́ıle
in [10] and it is essential for designing the algorithm and for
proving the bounds on the size of resulting BSP trees. The
Cutting lemma concerns two sets of segments in a plane.
The simplified idea of the Cutting lemma is as follows.

Let us have two identical sets of segments S and B in the
plane. Then we shift the whole set B in an arbitrary direc-
tion. It seems probable that for any direction we can select
a line l cutting at least as many segments from the set B
as segments from the set S. The Cutting lemma generalizes
and proves this idea.

Proposition (Cutting lemma) 2.5: Let S, B be non-
empty sets of segments in the plane which fulfil the following
conditions:

1. n = |S| ≤ |B| = n + k; k ≥ 0 is an integer.

2. There is an injective mapping σ : I → J, where I =
{1, ..., n}, J = {1, ..., n+k}, and a real constant α such,
that the following is true for all i ∈ I: (|si| ≤ α|bσ(i)|)∧
(si ‖ bσ(i)), where |si| means the length of segment si ∈
S and |bσ(i)| means the length of segment bσ(i) ∈ B.

Then for any non-zero vector v such that ∃(si) : si ∦ v
there is a line p parallel to v, such that |p∩ S| ≤ α|p∩B| ≥
1, where |p ∩ S| is the number of intersections between p
and segments from S, |p ∩ B| is the number of intersections
between p and segments from B.

3 The BSP Construction

We now are going to describe the algorithm for creating
a linear BSP tree. The algorithm exploits a set of hyperrec-
tangles to form a BSP tree. The set of the hyperrectangles
R = {r1, ..., rn} is a set of bounding boxes of the original ob-
jects P = {p1, ..., pn} with constant complexity in Rd space.
Initially, we build up d pairs of auxiliary sets of segments
Bi, Si|i ∈ {1, ..., d} as follows:

Let us project the set {r|r ∈ R} of original hyperrec-
tangles onto the i-th coordinate axis (further i-axis). The
set of segments Si contains the projected rectangles: Si =
{s|s = Proji(r), r ∈ R}. For the sake of simplicity, we will
suppose that the endpoints are in general position (i.e. no
two endpoints have the same x-coordinate). The degener-
ate cases can be simply solved by lexicographical ordering
of the points of the original hyperrectangles. Each endpoint
of s ∈ Si can be considered as a projection of the unique
point pmax (pmin) ∈ r maximal (minimal) in the standard
lexicographical ordering.

The Ωs(δ, r) neighborhood belonging to r is a part of a hy-
perrectangle enclosing r. Let us project the set {Ωs(δ, r)|r ∈
R} onto the i-axis. We get the set of segments. Let us split
each segment Proji(Ωs(δ, r)) into two parts by subtraction

2

CCCG 2003, Halifax, Nova Scotia, August 11–13, 2003

of the Proji(r) from it. We obtain two segments: b1 with
lower coordinates and b2 with higher coordinates associated
with the segment s, as you can see in Figure 2. It follows
from the definition of Ωs(δ, r) that |b1| = |b2| = δ|s|. More-
over, the segments b1, b2 form Ωs(δ, s) neighborhood of the
segment s. The set Bi is a unification of all segments b1 and
b2 generated by the set {Ωs(δ, r)|r ∈ R}. The degenerate
cases are treated by lexicographical ordering as well.

neighbourhoods

S1

R

B1

x

y
s

b1

b2

Figure 2: The sets S1 and B1.

The total number of s ∈ S = ∪i∈{1,...,d}Si segments is dn
and the total number of b ∈ B = B ∪{1,...,d} Bi segments is
2dn, where d is the dimension of space.

Definition 3.1: We call the segment s ∈ S
′
i bounded iff

both segments b1, b2 associated with s have been eliminated
from the set B

′
i (see the algorithm below). We call the hy-

perrectangle r bounded iff all segments s associated with r
are bounded.

Algorithm

if The set
�d

j=1
Sj is not empty then

begin
(1) Eliminate all segments {s ∈ Sj | j ∈ {1, ..., d}

∧ s belongs to a bounded hyperrectangle}
from the set Sj ;

(2) if We cannot select an i such that a line l
fulfills the Cutting lemma conditions
for the sets Si, Bi then

// ∀(l) : |l∩B|
|l∩S| ≤ δ

Select a line l with maximal value of |l∩B|
|l∩S| ;

(3) else Select an appropriate line l
according to the Cutting lemma;

(4) Select a hyperplane p that contains the line l.
The hyperplane p should be perpendicular
to the i axis;

(5) Eliminate all segments b ∈ Bj |b ∩ p �= ∅
from the sets Bj |j ∈ {1, ..., d};

(6) Use p as the splitting hyperplane for the set R

onto subregion Rp−
and Rp+

;

(7) Split the sets Sj ∪ Bj |j ∈ {1, ..., d} using p

so that the resulting sets Sp−
j and Sp+

j

correspond to Rp−
and Rp+

(see fig. 3);

(8) recurse on the sets Sp−
j , Bp−

j |j ∈ {1, ..., d} and Rp−
;

(9) recurse on the sets Sp+

j , Bp+

j |j ∈ {1, ..., d} and Rp+
;

end
else
(10) Apply autopartition on the resulting set;

First subregion Second subregion

s2 R

s1

s2

s1

R

R
′

s
′
2

s
′
1

Figure 3: The rectangle R and sets S and B are split
into two parts.

Lemma 3.2: Let P ⊂ Rd be the λ-low density scene, d be
the constant. The proposed algorithm provides a linear BSP
tree for the scene P.

Lemma 3.3: If the above algorithm works for a local
class C, then it also works for the class LB-C.

Corollary 3.4: The above algorithm works for the class
LB-low-density.

The method presented above provides us with a pseudo
algorithm for creating a linear BSP tree. If we opt for a
brute force approach in implementation of the algorithm, it
could behave very inefficiently and it could violate the space
and time bounds given above.

The main difficulty is to find the splitting line according
to the Cutting lemma. We suggest two ways to achieve the
O(n log2 n) time bound.

The first way is to use the tandem search [2] technique.
This technique leads to the O(n log2 n) time and, further-
more, it works in O(n) space. Unfortunately, this method
tends to create maximally unbalanced BSP trees. Because
the balance criterion is very important in practice, we sug-
gest another method for solving this problem.

The second way is to use the segment trees discovered by
Bentley [1]. We will maintain the set of segments Bi and
Si in a segment tree along with some extra data. Using

3

15th Canadian Conference on Computational Geometry, 2003

these trees, we will be able to select the splitting plane ef-
fectively according to the Cutting lemma. This technique is
described in detail in [9]. The advantage of this technique
lies in the possibility of controlling the search of the cutting
line l. Hence, we can easily trade-off the balance and size of
the resulting BSP tree. The small drawback of this method
is the O(n log2 n) space requirement.

At the end it should be noted that the algorithm works
well even if the non-overlapping condition is not satisfied.
The resulting BSP tree is always correct.

Theorem 3.5: Let P be a set of objects in Rd, P ∈
LB-λ-low-density. Then the linear size BSP tree can be con-
structed in O(n log2 n) time and O(n log2 n) space. More-
over, we can trade-off between balance and size of the result-
ing tree.

LB-Low-density

SCC

Low-density

Fat

Clutteredness

LB-Clutteredness

Figure 4: The hierarchy of recent object classes. The
left box denotes the domain of our algorithm and the
right box denotes domain of de Berg’s algorithm.

4 Conclusion

In this paper, we have proposed the extension of the ex-
isting de Berg hierarchy of object classes by a set of locally
balanceable (LB) classes. The full class hierarchy is depicted
in Figure 4.

Moreover, we have presented a new BSP construction al-
gorithm that works provably well for sets of objects with
LB-λ-low density. In such cases it provides linear BSP trees
and runs in O(n log2 n) time and space. This method is very
simple.

The de Berg’s algorithm works for the uncluttered scenes
which are more general than λ-low density scenes. How-
ever, our algorithm covers some scenes which fall outside
the definition of uncluttered scenes. Moreover, the Cutting
lemma provides our algorithm with certain input sensitivity.

We have implemented both the discussed algorithms. The
practical comparisons show that the BSP trees of the de Berg
algorithm have been almost two times greater on average.

The next step is to perform some other practical tests.
Moreover, it would be interesting to explore the definition
of LB-C scenes and to try to refine it further.

References

[1] J. L. Bentley. Solutions to Klee’s rectangle problems.
Technical report, Carnegie-Mellon Univ., Pittsburgh,
PA, 1977.

[2] M. de Berg, M. Overmars, and O. Schwarzkopf. Com-
puting and verifying depth orders. In Proc. 8th Annu.
ACM Sympos. Comput. Geom., pages 138–145, 1992.

[3] Mark de Berg. Linear size binary space partitions for
uncluttered scenes. Algorithmica, 28(3):353–366, 2000.

[4] Mark de Berg, Matthew J. Katz, A. Frank van der Stap-
pen, and Jules Vleugels. Realistic input models for ge-
ometric algorithms. In Symposium on Computational
Geometry, pages 294–303, 1997.

[5] H. Fuchs, Z. M. Kedem, and B. Naylor. On visible
surface generation by a priori tree structures. Comput.
Graph., 14(3):124–133, 1980. Proc. SIGGRAPH ’80.

[6] M. Paterson and F. Yao. Optimal binary space parti-
tions for orthogonal objects. J. Algorithms, 13:99–113,
1992.

[7] M. S. Paterson and F. F. Yao. Efficient binary space
partitions for hidden-surface removal and solid model-
ing. Discrete Comput. Geom., 5:485–503, 1990.

[8] S. Teller. Visibility Computations in Densely Occluded
Polyhedral Environments. Ph.D. thesis, Computer Sci-
ence Div., Univ. of California, Berkeley, 1992.

[9] Petr Tobola and K. Nechvile. Linear BSP trees for
sets of hyperrectangles with low directional density. In
V. Skala, editor, WSCG 2001 Conference Proceedings,
pages 237–244, 2001.

[10] Petr Tobola and Karel Nechvile. Linear BSP tree in the
plane for set of segments with low directional density.
In V. Skala, editor, WSCG’99 Conference Proceedings,
pages 297–304, 1999.

[11] A. van der Stappen and M. Overmars. Motion plan-
ning amidst fat obstacles. In In Proc. 10th Annu. ACM
Sympos. Comput. Geom., pages 31–40, 1994.

4

