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Abstract 

 

Glioma is a harmful brain tumor that requires early 

detection to ensure better health results. there is a 

challenging task to find tumors due to tumor 

characteristics like location and size. A reliable method to 

accurately separate tumor zones from healthy tissues is 

deep learning models, which have shown promising results 

over the last few years. In this research, a 3D Dual 

Residual U-Net with Attention Gate and Spatial Attention 

Mechanisms (3D-DRUwAS) is introduced. This model is 

an innovative combination of dual residual networks, 

attention gate, and spatial attention mechanisms. The dual 

residual network architecture captures high-level semantic 

and intricate low-level details from brain images, ensuring 

precise segmentation of different tumor parts, types, and 

hard regions. The integrated attention gate and spatial 

attention mechanisms assign variable weights to image 

regions and preserve the spatial context, enhancing the 

focus on informative features related to tumor regions and 

improving segmentation accuracy. We initially trained the 

model for 100 epochs using the ReLU activation function, 

achieving substantial results. Then, we trained our model 

for an additional 60 epochs, utilizing pre-trained weights 

and the swish function. These adjustments have improved 

our model's accuracy in tumor detection and segmentation. 

The 3D-DRUwAS model is evaluated based on BraTS 2018 

and BraTS 2019 and BraTS 2020 dataset. The results 

demonstrate a higher Dice score in comparison to state-of-

the-art techniques. 

1. Introduction 

A brain tumor, an abnormal growth of cells, poses a 

significant threat to the patient's health and survival. Early 

detection of tumors is essential in effective treatment, 

requiring the precise segmentation of tumorous areas. 

There are various glioma imaging techniques; among 

them, MRI is considered the standard imaging method for 

diagnosing brain tumors [1]. There are four modalities in 

MRI images for Glioma: fluid-attenuated inversion 

recovery (FLAIR), T1 weighted (T1), T2 weighted (T2), 

and contrast-enhanced T1 weighted (T1ce). Fig 1 shows 

different modalities along with their ground truth. 

 

 
Figure 1. Different Modalities of Brain MRI with their Ground 

Truth 

 

Traditionally, manual annotation of these tumors by 

specialists has been the norm, but it is time-consuming, 

costly, and sometimes inconsistent due to human error. 

This has led to the rise of automated segmentation 

approaches powered by deep-learning-based methods, 

particularly using Convolutional Neural Networks 

(CNNs), which have high efficiency and strong 

generalizability in the detection of brain tumors. In 

addition to CNN, Deep learning techniques have 

demonstrated significant promise in enhancing the 

accuracy of tumor segmentation [2]. However, these 

methods typically employ additional convolutional layers 

and pooling layers, which can lead to a network 

degradation problem. This often results in reducing 

segmentation accuracy and the overall performance of the 

model. 

To address this challenge, various techniques have been 

explored, such as skip connections [3], residual 

connections [4], and attention mechanisms [5]. These 

methods aim to alleviate the negative effects of network 

degradation and maintain or even enhance segmentation 

precision. Residual networks, for instance, were introduced 

as a solution to increase the performance of deep neural 

networks [4]. Alongside these developments, the U-Net 

Architecture has become a widely adopted framework in 

this field [3]. Despite the progress made in brain tumor 

segmentation, a significant challenge remains in dealing 

with the issue of unequal representation between healthy 

and tumorous tissue. This paper proposes a novel 3D-Net 

model to segment a brain tumor. This enhanced model 

integrates a new architecture of attention gates, spatial 

attention, and ResNet blocks into the traditional U-Net 

framework. Our experiments aim to demonstrate that this 

model offers improved performance over existing 

architectures in brain tumor segmentation.  
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2. Related Work 

2.1. U-Net Architecture 

U-Net, a CNN optimized for biomedical image 

segmentation, offers fast and precise results [3]. Its unique 

feature is a symmetrical expanding path that complements 

the contracting path, reducing input size while increasing 

depth for context capture. The expanding path then 

upsamples feature maps for detailed pixel predictions. U-

Net's skip connections transfer information between layers, 

enhancing local and global context use in segmentation. 

Despite these innovative features, U-Net exhibits certain 

limitations for more complex tasks such as brain tumor 

segmentation, particularly when the regions of interest in 

an image are small or subtle [6]. 

To overcome these challenges, several enhancements 

have been proposed to address U-Net's limitations. One of 

the significant adaptations is the development of a 3D U-

Net, which extends U-Net's 2D operations into 3D, thereby 

enabling more effective handling of volumetric images [7]. 

Furthermore, the integration of residual connections and 

attention mechanisms has shown promising results. 

Residual U-Net, for instance, merges the benefits of U-Net 

and Residual Network (ResNet), enabling deeper networks 

without the issue of vanishing gradients [4].  

On the other hand, Attention U-Net uses attention gates to 

selectively focus on relevant features and suppress 

irrelevant ones, potentially improving segmentation 

performance in complex tasks [8]. While U-Net has 

established a significant foundation for biomedical image 

segmentation, there still exists potential for further 

improvements. By embracing approaches such as residual 

learning, attention mechanisms, and complex connection 

structures, the proficiency and versatility of biomedical 

image segmentation can steadily progress. 

2.2. Residual Networks 

Residual Networks, or ResNets [4], address the problem 

of training deep neural networks by using skip connections 

or shortcuts, known as "residual blocks" , to jump over 

some layers. These links enable the model to establish a 

function that guarantees each subsequent layer will operate 

at least as effective as the preceding one, helping to reduce 

the issue of diminishing gradients. The main idea is to 

redefine the underlying mapping to be learned by the 

network, making optimizing and enabling the training of 

deeper networks easier. Adding these residual connections 

to U-Net can help learn more complex mappings and make 

optimization easier, thus potentially improving the model's 

performance on complex segmentation tasks. 

Despite the significant achievements of ResNets, they 

are not flawless. In particular, their performance on 

segmentation tasks, including brain tumor segmentation, 

can be improved further. In [9], a system utilizing an 18-

layer ResNet architecture is proposed for identifying brain 

tumor types. Another study [10], introduces a 

multipathway architecture built upon the U-Net with 

residual connections, which efficiently predicts multiple 

tumor types in a single pass. Furthermore, a paper [11] 

presents a model that combines a modified LinkNet 

structure with the ResNet152 for advanced tumor 

segmentation. While ResNets provides a powerful tool for 

deep learning tasks, their potential can be further unleashed 

through the right combination of its methods and 

architectures. 

2.3. Attention Mechanisms 

Attention mechanisms initially presented in Natural 

Language Processing (NLP) and have gained popularity in 

many other areas, including computer vision [5]. The 

principal concept of attention mechanisms enables the 

model to concentrate on specific input sections. Among the 

various types of attention mechanisms, Attention Gate and 

Spatial Attention are chosen for this work due to their 

potential ability to extract important feature maps in the 

proposed model. 

Attention Gate (AG) helps the network focus on specific 

areas of an input image by using gating feature maps from 

the encoder path in the U-Net [8]. This approach enhances 

model performance by highlighting relevant features and 

suppressing irrelevant ones. Its integration into U-Net has 

been particularly successful in brain tumor segmentation. 

For instance, the GCAUNet model emphasizes tumor 

details and key features [12], while the Attention Res-UNet 

with Guided Decoder (ARU-GD) combines a guided 

decoder with attention gates for advanced feature 

activation [13]. the Multimodal Attention-gated Cascaded 

U-Net (MAC U-Net) is tailored for early-stage low-grade 

brain tumors, using group normalization and attention 

gates for precision [14]. Additionally, the AGResU-Net 

merges residual modules with attention gates, proving 

effective for small tumor segmentation [15]. 

Spatial attention, on the other hand, allows the network 

to focus on pertinent sections of the image. However, this 

attention mechanism works by assigning varying 

importance levels to different spatial locations [16]. A 

variety of novel architectures have been proposed with the 

integration of Spatial attention mechanism. The Efficient 

Spatial Attention Network (ESA-Net) is an example [17], 

optimizing U-Net with Efficient Spatial Attention (ESA) 

blocks for enhanced efficiency and accuracy. Another 

innovative model, the SCAR U-Net, combines channel and 

spatial attention in a 3D residual U-Net architecture [18]. 

These advancements highlight the growing role of 

attention mechanisms in refining image segmentation 

models. 
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3. Dataset Description 

Our research employs the BraTS 2020 dataset, designed 

for the Multimodal Brain Tumor Segmentation Challenge 

(BraTS) [19]. It includes 3D MRI scans from 369 patients 

with Glioma, across four modalities, each with a dimension 

of 240 x 240 x 155 slices. These modalities provide a 

detailed view of the brain's structure. 

The BraTS 2020 dataset includes four labels: Label 0 

(Background), Label 1 (Necrosis and non-enhancing 

tumor), Label 2 (Edema), and Label 4 (Enhancing tumor). 

Each of these labels corresponds to unique characteristics 

of the brain scans, which are individually marked by one to 

four neuroradiologists. For our study, we used labels 1, 2, 

and 4 for one-hot encoding, creating a binary 

representation to simplify the network's prediction process 

and reduce segmentation complexity. 

Additionally, we extended our research to include the 

BraTS 2018 and 2019 datasets [6, 20, 21]. The 2018 dataset 

contains data from 285 patients and a validation set of 66 

cases, while the 2019 dataset includes 335 glial tumor cases 

and a validation set of 125 cases. Both datasets provide the 

same four MRI modalities and ground truth labels for 

comprehensive analysis. 

4. Proposed Method 

Our proposed architecture, 3D Dual Residual U-Net 

with Attention Gate and Spatial Attention Mechanisms 

(3D-DRUwAS), combines the proven strengths of the 3D 

U-Net architecture along with a series of enhancements 

tailored for the effective handling of three-dimensional 

data. Specifically, it integrates residual connections, spatial 

attention, and attention gates to construct an intricate and 

potent network capable of performing volumetric 

segmentation or classification tasks with high efficiency. 

 

The significant innovation in the 3D-DRUwAS is the 

integration of dual residual connections in the form of 

modified Residual Blocks (ResBlocks). These ResBlocks 

form the backbone of the encoder part of the model, 

replacing the traditional convolutional layers used in U-Net 

models. Each ResBlock incorporates two 3D convolutional 

layers, utilizing ReLU activations and Group 

Normalization for effective feature extraction. The residual 

connection within each block allows the model to bypass 

the main layers if necessary, alleviating potential issues of 

vanishing or exploding gradients and enabling the model 

to learn identity functions. Consequently, the ResBlocks 

helps capture both simple and complex patterns in the data 

across different levels of abstraction. 

 
Figure 1: Residual Block of the proposed architecture 

 

In this architecture, the input of the residual block 

choose one path based on these conditions:  

• If stride = 1 or input channels = output channels, this 

path directly goes down as a "Skip Connection," bypassing 

all the intermediate layers and connecting directly to the 

end. 

• If stride = 1 or input channels ≠ output channels, the 

data flows through a convolutional layer "Conv 3 × 3 × 3" 

followed by "Group Normalization." After this 

normalization, the "ReLU Activation Function" is applied. 

The output from the ReLU function undergoes another 

"Group Normalization." The flow then proceeds through a 

"Conv 1 × 1 × 1" convolutional layer followed by its own 

"Group Normalization." 

 
Figure 2. Spatial Attention Block of 3D-DRUwAS architecture. 

 

The 3D-DRUwAS 's main strength comes from its 

advanced attention mechanisms, which include both spatial 

attention and attention gates. The spatial attention blocks 

apply a 3D convolution to the input and use a sigmoid 

activation function to generate a spatial attention map. This 

map is then multiplied with the original input to direct the 

model's attention toward the regions of extracted features 

that hold the most significant information. Meanwhile, the 

attention gates use gating and input signals to compute 

attention coefficients for the input features. This gate 

guides the network to give more emphasis to certain 

channels and suppress others, facilitating the model's 
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ability to identify intricate and varied dependencies in the 

3D input data. The proposed architecture is illustrated in 

Fig. 3. 
 

The proposed residual block incorporates "Group 

Normalization" in place of the traditional Batch 

Normalization. It also adds an additional "Conv 1 × 1 × 1" 

convolutional layer, which is followed by Group 

Normalization, before it connects with the skip connection. 

Additionally, in this design, ReLU activation functions are 

positioned after the group normalization layers, while in 

the original design [4], they are placed after Batch 

Normalization and before the convolutional operations. 

The residual block is shown in Fig. 1. 
 

In Fig. 4, Attention gate mechanism is depicted which 

employs Group normalization rather than batch 

normalization. Group normalization offers benefits in 

situations where batch size is small or inconsistent. In 

addition of attention mechanism, a spatial attention is 

integrated to the model to increase the model’s 

performance. It involves processing 3D Convolution block 

outputs into attention maps using a Sigmoid Activation 

block.  These maps are then element-wise multiplied with 

the input tensor, resulting in a Weighted Tensor with 

spatially focused features. Finally, you get the Weighted 

Tensor as the output, which contains the spatially attended 

features. Fig. 2 presents the Spatial Attention Block, where 

spatial attention involves calculating attention scores, 

normalizing them (often with softmax), and applying them 

to the input, typically through multiplication [5]. Our 

approach uses a 3D convolutional layer with a 1-size kernel 

for linear voxel transformation, followed by a sigmoid 

activation to generate spatial attention weights, which are 

then multiplied with the input. 

 

The model begins with an input of shape (1, 4, 128, 128, 

128), where 1 represents the batch size, 4 represents the 

channels (the image modalities), and the last three 

dimensions are for the epth, height, and width. 

Figure 3: The architecture of 3D Dual Residual U-Net with Attention Gate and Spatial Attention Mechanisms (3D-DRUwAS) 

Figure 4: Spatial Attention Block of 3D-DRUwAS architecture. 
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 In the model's downsampling path, each encoder block 

has two residual blocks and a max-pooling layer, with 

feature maps doubling from an initial count of eight. This 

captures the input image's context. The output then passes 

through a bottleneck comprising two residual blocks, 

processing the data further before the decoding pathway. 

 

In the decoder, a transposed 3D convolution upsamples 

feature maps. An attention gate merges these with encoder 

outputs, focusing on relevant features. A spatial attention 

mechanism, using sigmoid-activated 3D convolution, 

assigns weights to different feature map areas, highlighting 

key regions. This process repeats in each decoding stage, 

gradually enhancing the spatial resolution of the features. 

In the final step, a convolution layer of 1×1×1 

dimensions is utilized to transform the multi-channel 

feature maps to the requisite number of classes, producing 

the ultimate segmentation map. In this case, the output size 

is (1, 3, 128, 128, 128), where 3 represents the number of 

segmentation classes.  

5. Evaluation measures 

Our methodology, built using Python programming 

language, leverages the capabilities of the PyTorch library 

[45]. The optimization process utilized the ADAM 

Architecture Year 
Dice Score HD95 

WT TC ET WT TC ET 

Dual-Path attention U-Net [22]  2021 0.8780 0.7790 0.7520 6.3000 11.0200 30.6500 

3D self-ensemble ResUNet [23] 2021 0.89 0.81 0.76 5.28 7.74 33.26 

modified 3D U-net [24] 2021 0.90 0.84 0.74 5.08 8.69 36.04 

TransBTS [25] 2021 0.8900 0.8136 0.7850 6.4690 10.4680 16.7160 

MENet [26] 2021 0.8800 0.7400 0.7000 6.9500 30.1800 38.6000 

ensembles of CNN [27] 2021 0.90 0.81 0.77 6.16 7.55 21.80 

Swinbts [28] 2022 0.8906 0.8030 0.7736 8.56 15.78 26.84 

3D PSwinbts [29] 2022 0.9076 0.8420 0.7948 5.573 7.252 19.437 

SwinUnet [30] 2023 0.8934 0.7760 0.7895 7.855 14.5940 11.0050 

Pre‐operative three‐dimensional MRI [31] 2023 0.88 0.79 0.77 7.79 13.86 32.69 

A deep CNN model for glioma tumor 

segmentation [32] 
2023 0.85 0.90 0.74 6.33 5.75 5 

HMNet [33] 2023 0.901 0.823 0.781 5.954 7.055 21.340 

Selective Deeply Supervised Multi-Scale 

Attention Network [34] 
2023 90.24 86.93 80.64 4.27 6.32 5.87 

Self-supervised hybrid fusion network [35] 2023 86.84 74.12 73.49 6.416 23.439 23.439 

Segmentation via pixel-level and feature-level 

image fusion  [36] 
2023 0.8950 0.8178 0.7745 5.3117 9.4285 4.4715 

Large Kernel Attention [37] 2023 90.68 84.82 78.94 3.65 5.02 25.22 

dResU-Net [38] 2023 0.8660 0.8357 0.8004 - - - 

Multimodal Transformer of Incomplete MRI 

Data [39] 
2023 90.64 87.41 81.55 5.65 6.70 5.83 

MM-UNet [40] 2023 0.850 0.765 0.762 8.243 10.766 6.389 

3D-DRUwAS(Relu) (ours) 2023 0.9096 0.8869 0.8385 1.5853 2.5981 2.6794 

3D-DRUwAS(Relu+Swish) (ours) 2023 0.9115 0.9137 0.8584 1.4195 1.9541 2.2840 

Architecture 
Dice Score HD95 

WT TC ET WT TC ET 

3D U-Net with Augmentation [41] 0.873 0.783 0.751 5.90 8.03 4.53 

Context Aware 3D UNet [42] 0.872 0.795 0.741 5.04 9.59 5.58 

MCCNN and CRFs [43] 0.8824 0.7481 0.7178 12.6069 9.6223 5.6864 

ResU-Net [15] 0.870 0.802 0.760 - - - 

AG-ResUNet [15] 0.872 0.808 0.772 - - - 

Attention-aware fusion [44] 0.861 0.871 0.789 6.2 5.2 3.1 

3D-DRUwAS (ours) 0.8968 0.8524 0.7968 2.6901 4.6084 5.0269 

Table 2: Comparison of the proposed model with other approaches on the BraTS 2018 dataset. 

Table 1: Comparison of the proposed model with other approaches on the BraTS 2020 dataset. 
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optimizer, beginning with a learning rate of 5e-4. 

To further enhance the training, a learning rate scheduler 

based on the ReduceLROnPlateau function with a patience 

of 4 was employed. This effectively adjusted the learning 

rate downwards whenever the model's performance 

reached a plateau. In terms of architectural composition,  

we utilized the ReLU activation function in conjunction 

with group batch normalization. This combination has 

been proven to enhance our model's stability and 

performance by normalizing the network. In spite of the 

constraints related to computational resources, we 

succeeded in training the model over a cumulative of 100 

epochs, using a batch size of 4. Additionally, the input 

image was constructed using four modalities stacked 

together, each with a size of 128*128*128. The data was 

divided so that 70% was allocated for training, 20% for 

testing, and 10% for validation. This computational task 

was executed concurrently on two Tesla T4 GPUs, each 

equipped with 16 GB of RAM, made available by Kaggle. 

Our research expands upon the successes of the 

conventional U-Net model that has proven effective in the 

domain of brain tumor segmentation. We've innovatively 

refined this model by embedding a residual network, an 

attention gate, and spatial attention, enhancing its depth 

with ResNet blocks in our architectural framework. 

5.1. Dice Coefficient Score 

The Dice Coefficient Score (DSC) is a metric employed to 

assess the likeness between two sets. Within the scope of 

image segmentation, for example, in brain tumor 

segmentation, these "sets" indicate the anticipated 

segmentation and the actual or 'ground truth' segmentation. 

DSC is particularly beneficial in medical imaging because 

it provides a measure of overlap that is easy to interpret. It 

evaluates how close the predicted segmentation is to the 

actual segmentation by quantifying the spatial overlap 

accuracy. Therefore, a higher DSC suggests a higher match  

between the predicted and actual values, leading to better 

segmentation results. 

 DSC Equation is calculated as follows in Equation 1: 

 

𝐷𝑆𝐶 = 2 ×
(𝑋 ∩ 𝑌)

(|𝑋| + |𝑌|)
                         (1)     

 

In this context, 'X' represents the anticipated segmentation, 

while  

'Y' stands for the actual truth. The symbol '∩' implies 

intersection, and '|' signifies the magnitude of the set. Each 

voxel of the tumor is tagged as 1, and those not part of the 

tumor are tagged as 0. 

5.2. Hausdorff Distance 

The Hausdorff Distance (HD) is a well-liked metric for 

assessing the similarity between two sets of points [33]. It's 

particularly effective in quantifying the 'proximity' of the 

predicted segmentation to the actual, especially in medical 

image analysis. A variant of this metric, the 95th percentile 

Hausdorff Distance (HD95), excludes the top 5% of 

distance values.  

The value of HD95 lies in its robustness as a measure of 

the spatial distance between the boundaries of the 

segmented and true regions, making it less susceptible to 

outliers than the traditional Hausdorff distance. HD95 can 

be determined as shown in Equation 2:  

 

𝐻𝐷95 (𝑋, 𝑌) = max(ℎ𝑑95(𝑋, 𝑌), ℎ𝑑95(𝑌, 𝑋))     (2) 

 

In the Equation, X and Y denote two sets of points. The 

function hd95(X,Y) determines the 95th percentile of the 

shortest distances from any point in set X to any point in 

set Y. Conversely, hd95(Y,X) does the same, but from set 

Y to set X. 

 

The combination of DSC and HD95 provides a 

comprehensive assessment of the performance of 

segmentation models, considering both the overlap of 

segmented regions (DSC) and the spatial distance between 

their boundaries (HD95). 

 

We also experimented with various alternatives to the 

ReLU activation function to boost the predictive accuracy, 

including LeakyReLU, GeLU (Gaussian error Linear 

Unit), and Swish, utilizing our pre-trained model. 

Architecture 
Dice Score HD95 

WT TC ET WT TC ET 

dual supervision guided attentional network [46] 0.882 0.771 0.727 8.09 10.3 6.6 

heuristic approach for segmentation  [47] 0.8598 0.7728 0.7153 - - - 

RAAGR2-Net [48] 0.884 0.814 0.763 - - - 

Swinbts [28] 0.8975 0.7928 0.7443 - - - 

Cascaded 3D U-Net and 3D U-Net++ [49] 0.867 0.834 0.802 - - - 

Multiscale lightweight 3D segmentation with attention 

mechanism [50] 
0.8994 0.8349 0.7791 5.45 6.56 4.03 

3D-DRUwAS (ours) 0.8939 0.8502 0.8117 2.0616 3.5858 4.3453 

Table 3: Comparison of the proposed model with cutting-edge techniques utilizing the BraTS 2029 dataset 
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Importantly, the Swish activation function resulted in 

enhanced model performance. Figure 4 depicts an 

additional 60 epochs of training for the model using the 

Swish activation function to attain its peak performance. 

  

The Dice Score is utilized to gauge the overlap between 

two instances. A higher Dice Score indicates better 

overlap, suggesting the better performance of the model in 

accurately segmenting the tumor area. Regarding the Dice 

Score, our proposed model provides a good performance in 

segmenting Whole Tumor (WT), Tumor Core (TC), and 

Enhanced Tumor (ET), attaining scores of 0.9121, 0.9121, 

and 0.8583, respectively. Also, we used HD95 to provide 

an estimate of the worst-case segmentation error. Lower 

values imply better performance in terms of segmentation  

 accuracy. Our proposed model 3D-DRUwAS 

demonstrates a better average performance compared to all 

the other models, with HD95 scores for Whole Tumor, 

Tumor Code, and Enhanced Tumor being 1.2261, 1.33527, 

and 1.6837, respectively. 

 

From these results, the proposed models not only 

demonstrate high accuracy in tumor segmentation, as 

evidenced by the high Dice scores, but they also show high 

precision by achieving low Hausdorff distances. It is 

apparent that our proposed models, especially 3D-

DRUwAS (ReLU + Swish), provide better performance in 

terms of both segmentation overlap and accuracy in regard 

to the existing state-of-the-art models. Table 1 presents a 

comparative analysis between the 3D-DRUwAS model 

and the latest models using the BraTS 2020 dataset. The 

bolded values show the model’s performance in compared 

to the other methods. Also, the proposed method has been 

testred on BraTS 2018 and 2019, which is shown in Table 

2 and 3, respectively. 

6. Discussion 

Brain tumor segmentation is an essential task in medical 

diagnostics. With the help of precise automatic 

segmentation tools, doctors can detect the tumor and 

follow up treatment plans immediately. Recently, U-Net 

models have shown significant promise in these complex 

segmentation tasks. However, there are computational 

limitations when dealing with high-resolution 3D images 

like brain MRIs. Furthermore, the precision of U-Net 

segmentation is highly dependent on the amount of training 

data.  

Our study proposed an innovative 3D Dual Residual U-

Net with Attention Gate and Spatial Attention Mechanisms 

(3D-DRUwAS). The dual residual network helps the 

model learn features at different levels of abstraction, 

thereby capturing the intricate and diverse nature of  

gliomas. 

3D U-Net MRI Scans Ground Truth 3D U-Net  

Spatial 

Attention 

3D U-Net  

Attention 

Gate 

3D U-Net 

Spatial Attention 

Attention Gate 

3D U-Net 

ResNet 

Proposed 

Method (Relu) 

Proposed 

Method 

(Relu+Swish) 

Figure 5: The Model's performance and its ablation study on segmentation of Brain tumor. 
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The attention gate mechanism reduces the impact of 

irrelevant regions, allowing the model to focus on the more 

informative tumor regions. The spatial attention 

mechanism maintains the spatial context of images, 

ensuring the accurate segmentation of smaller or hard-to-

detect tumor regions. This approach has made an 

advancement in brain tumor segmentation by enhancing 

segmentation performance and surpassing previous 

methods in terms of precision and proficiency. 

The effectiveness of these modules on the model's 

segmentation performance, particularly their impact on 

Dice scores and HD95 values, is detailed in Table 4. 

Additionally, Figure 1 depicts the model's performance and 

its predictions, demonstrating the enhanced accuracy 

achieved through the integration of these modules. 

While our novel 3D-DRUwAS model has shown 

promising results in detecting brain tumors, there are 

certain limitations that need to be addressed. It uses similar 

convolution operations throughout, possibly overlooking 

the varied computational needs for different image details. 

Also, the model's performance highly depends on 

extensive datasets for training. Limited datasets might 

reduce the model's robustness and generalizability in 

detecting a wide range of brain tumors. Future directions 

in tumor segmentation involve using longitudinal data for 

insights into tumor growth, multimodal imaging for 

robustness, and generative models like GANs for training 

with limited data. Transfer learning could also enhance 

performance where data is scarce. We aim to continue 

advancing in medical imaging segmentation with these 

developments. 

7. Conclusion 

 Our proposed model, with its dual residual network 

structure, successfully captures both high-level semantic 

features and low-level details from brain images. The 

comprehensive feature learning allows the model to 

effectively distinguish between hard regions, tumor 

regions, and healthy tissues, demonstrating improved 

precision and accuracy in isolating different tumor types 

and parts. The integration of the attention mechanism 

assigns varying weights to different image regions, 

enabling the model to concentrate on the more informative 

tumor and hard regions while lessening the impact of non-

tumor areas. This mechanism improves overall 

segmentation performance and enhances boundary 

delineation. Furthermore, the spatial attention mechanism 

maintains intricate spatial structures, facilitating the 

accurate segmentation of smaller or hard regions of the 

tumor, which might otherwise be overlooked or lost during 

the segmentation process. Our experimental results 

demonstrate the proposed 3D-DRUwAS method 

significantly outperforms contemporary state-of-the-art 

methods. It validates our innovative combination of dual 

residual networks, attention mechanisms, and spatial 

attention as a robust architecture for brain tumor 

segmentation. 
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