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Converging lines of research provide compelling evidence that 
the cerebellum is engaged in a broad range of cognitive func-
tions, well beyond its historical association with sensorimotor 

control1. Anatomical tracing studies in non-human primates have 
revealed reciprocal connections with parietal and prefrontal asso-
ciation cortices2. Individuals with lesions to the cerebellum exhibit 
behavioral impairments on tasks designed to assess non-motor pro-
cesses such as duration discrimination, attentional control, spatial 
cognition, emotion perception and executive and language func-
tion. Perhaps most intriguing, neuroimaging studies consistently 
reveal activations of the cerebellar cortex during a diverse set of 
motor, cognitive, and social and affective tasks3.

This raises the question of whether the cerebellum can be mean-
ingfully subdivided into a discrete set of regions, reflecting distinct 
functional contributions across diverse task domains. In contrast to 
the cerebral cortex, the cytoarchitectonic organization is remark-
ably uniform across the entire cerebellar cortex. Due to this homo-
geneity, neuroimaging and neuropsychological studies have mostly 
relied on the macroanatomical folding of the cerebellum along the 
superior to inferior axis into ten lobules (numbered I–X)4. More 
recently, functional parcellations based on task-free functional 
magnetic resonance imaging (fMRI) data have been proposed5–7. 
However, the degree to which these proposed boundaries corre-
spond to functional divisions remains unclear. Task-based studies 
have been limited by the lack of a comprehensive neuroimaging 
data set. A few studies have employed data sets involving multiple 
tasks7,8, but the small number of task conditions (<7) and the lack 
of a common measurement baseline have made it difficult to derive 
and evaluate task-based functional parcellations. The functional 
heterogeneity of the cerebellum has also been explored using meta-
analytic approaches9, which have the disadvantage that data for dif-
ferent tasks come from different groups of participants.

In the present study, we aimed to fully characterize the func-
tional organization of the cerebellar cortex by employing a large and 
diverse task battery comprising 47 unique conditions designed to 

engage a broad range of sensorimotor, cognitive and social/affective 
processes. Using a block design, activation for each task was mea-
sured over four fMRI scanning sessions against a common baseline. 
Our task set was successful in eliciting activation across the entirety 
of the cerebellar cortex, allowing us to derive a novel parcellation 
that characterizes the functional profile of cerebellar subregions in 
unprecedented detail. The breadth of the task sets also enabled us to 
summarize the functional specialization of each region in terms of 
the underlying latent motor, cognitive and social/affective features.

We developed a metric to evaluate the strength of the proposed 
functional boundaries. This allowed us to address the fundamen-
tal question of whether there are distinct functional regions in the 
cerebellum, or whether functional specialization is better described 
in terms of continuous gradients7. The approach is predicated on 
the idea that, if a boundary between two regions divides function-
ally heterogeneous regions, then the activation pattern for two vox-
els that lie within the same region should be more correlated than 
voxel pairs that span a boundary. Critically, a meaningful functional 
parcellation needs to be predictive of boundaries for the activation 
patterns elicited by a different set of tasks. Using this approach, we 
demonstrate that the cerebellum has discrete functional regions and 
that our multi-domain task battery (MDTB) parcellation is superior 
to alternatives in predicting functional boundaries. The new func-
tional parcellation of the cerebellar cortex provides an important 
step toward understanding the role of the cerebellum across diverse 
functional domains.

Results
To obtain a comprehensive functional parcellation of the cerebellar 
cortex, we developed an MDTB of 26 tasks comprising 47 unique 
task conditions (Fig. 1a and Supplementary Table 1), selected to 
encompass a wide range of processes required for motor, cogni-
tive and affective/social function. To avoid strong learning-related 
changes, 24 healthy individuals were trained on the task protocol 
(approximately 10 h) before scanning. During scanning, each task 
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was performed once per imaging run for a 35 s block (Fig. 1b). This 
ensured that all tasks were measured against a common baseline, 
allowing for any between-task comparison. To make this approach 
feasible, the tasks were split into two sets (Fig. 1a), and each task set 
was tested in two separate fMRI scanning sessions, resulting in a 
total of approximately 5.5 h of functional data per participant.

Identification of motor features from the MDTB. As a first step, 
we sought to identify cerebellar regions where the hemodynamic 
response was closely tied to motor function, specifically hand and 
eye movements. Our experimental design did not include specific 
contrasts that isolated each motor component. Instead, we varied 
the motor demands across task conditions; for example, the motor 
sequence task involved approximately 40 left and right finger 
responses, the theory of mind tasks two left-hand responses and 
the movie tasks no responses. We then generated a motor feature 
model, which included the number of left- and right-hand responses 
and the number of saccadic eye movements made per task (see 
Methods). Using regularized regression, we could then estimate the 
activation across tasks attributable to motor involvement.

Left- and right-hand movements were associated with acti-
vation increases in the two hand motor areas of the cerebellum  
(Fig. 1c), the anterior hand region located on the boundary of lobules  
V and VI, and the inferior region in lobules VIIIb (ref. 10). Saccadic 
eye movements elicited activation in vermis VI, consistent with 
the location of the oculomotor vermis in the macaque monkey11. 
Compared to previous contrast-based human fMRI studies12, which 
have yielded relatively inconsistent results, our feature-based map-
ping approach resulted in an extraordinarily clear localization of eye 
movement activation to the oculomotor vermis. While these results 
mainly confirm the well-known functional localization within the 

cerebellum for movement, they demonstrate that a broad task-
based approach without tightly matched control conditions pro-
vides a powerful means of revealing functional organization.

MDTB elicits varied activation patterns across the cerebellum. 
We then characterized the task-related activation patterns that 
could not be explained by basic motor features. Overall, we could 
elicit strong and distinguishable patterns of activation (Fig. 1e and 
Supplementary Fig. 1) across the cerebellar cortex. To determine 
the reliability of the activation patterns, we calculated the correla-
tion of the individual, unsmoothed task activation profiles for each 
voxel across the two sessions of each set. On average, these task 
activation profiles were reliable (set A: r = 0.43, 95% confidence 
interval (CI) = 0.39–0.46; set B: r = 0.42, 95% CI = 0.37–0.46; see 
Supplementary Fig. 2 for individual participants). The resulting 
voxel-wise reliability map (Fig. 1d) confirmed that this was the case 
for the entire cerebellar cortex, with the exception of lobules I–IV. 
These lobules are associated with foot movements10,13, a feature 
absent from our tasks.

Qualitatively, the activation patterns elicited by our task sets rep-
licated numerous results obtained in previous neuroimaging stud-
ies. For example, right-lateralized activation throughout Crus I, 
Crus II and VIIb was observed with the verb generation task8 while 
left-lateralized activation throughout Crus I and Crus II was dem-
onstrated with the biological motion task. Consistent with previous 
working memory studies14, the n-back tasks activated two distinct 
lateral regions of lobules VII. Recent evidence for medial Crus I and 
Crus II activation during movie tasks was also corroborated15.

The task activation maps also demonstrated some insights 
that have not been (or not as clearly) reported in the previous lit-
erature. The rest condition (contrasted against the mean of all 

No-go
Go
Math
Digit judgment
Unpleasant scenes
Pleasant scenes
Object viewing
Sad faces
Happy faces
Interval timing
Motor imagery
Stroop incongruent
Stroop congruent
Verbal 2-back–
Verbal 2-back+

Theory of mind
Action observation
Video knots
Finger simple
Finger sequence
Object 2-back–
Object 2-back+
Visual search–easy
Visual search–medium
Visual search–hard
Spatial imagery
Verb generation
Word reading
Rest

Nature movie
Landscape movie
Animated movie
Spatial map–easy
Spatial map–medium
Spatial map–hard
Mental rotation–easy
Mental rotation–medium
Mental rotation–hard
Response alt.–easy
Response alt.–medium
Response alt.–hard
Biological motion
Scrambled motion
CPRO
True prediction
Violated prediction
Scrambled prediction

Instruction
Task 1

Instruction Task 7

Set A
29 task conditions

   Set B
32 task conditions

0.6

0

e

Theory of mind
Action observation
Video knots
Finger simple
Finger sequence
Object 2-back–
Object 2-back+
Visual search–easy
Visual search–medium
Visual search–hard
Spatial imagery
Verb generation
Word reading
Rest

Nature movie
Landscape movie
Animated movie
Spatial map–easy
Spatial map–medium
Spatial map–hard
Mental rotation–easy
Mental rotation–medium
Mental rotation–hard
Response alt.–easy
Response alt.–medium
Response alt.–hard
Biological motion
Scrambled motion
CPRO
True prediction
Violated prediction
Scrambled prediction

MDTB

Reliabilityc d

a

b

A
rb

itr
ar

y 
un

it

–0.1

0.1

Action observationVerb generation Theory of mind Visual search

Finger sequenceObject 2-back Rest Sad faces

Animated movie Finger simpleLandscape movie Spatial imagery

Spatial mapBiological motion MathMental rotationLeft-hand presses Right-hand presses Saccades

R
eliability

Fig. 1 | MDTB. a, Experimental design. A total of four fMRI scanning sessions were collected on the same set of participants using two tasks sets. Each 
set consisted of 17 tasks, with 8 tasks in common. The tasks were modeled as 29 task conditions in set A and as 32 in set B, with 14 task conditions 
common across both task sets. b, Timing of each task: 5!s instruction period followed by 30!s of task execution. Tasks consisted of a different number 
of task conditions (gray bars, range 1–3). c, Unthresholded, group-averaged motor feature maps, displayed on a surface-based representation of the 
cerebellar cortex14. d, Across-session reliability of activation patterns for each voxel. e, Group-averaged activation maps for selected tasks, corrected for 
motor features. The red-to-yellow colors indicate increases and the blue colors denote decreases in activation, relative to the mean activation across all 
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the other conditions) was associated with bilateral activation in a 
mid-hemispheric region in Crus I and II, effectively forming the 
cerebellar component of the default mode network5. Similar cer-
ebellar regions were strongly activated during the theory of mind14 
and movie tasks15. The finger sequence and visual search tasks led 
to strong activation in cerebellar hand and eye movement-related 
areas, respectively. Given that these activation maps were corrected 
for movement-related activity, these results indicate that these areas 
are especially activated during movements with high attentional 
demands. Finally, the action observation task elicited activation in a 
distinct set of areas surrounding the motor areas of the cerebellum, 
especially in the posterior motor representation. When using a dis-
similarity measure to construct a representational space for all tasks 
(Supplementary Fig. 4), the action observation condition emerged 
as one of the most unique activity patterns.

The passive picture viewing tasks (that is, sad faces) did not elicit 
much activation in the cerebellum. This is generally consistent with 
the notion that the cerebellum does not receive cortico-pontine pro-
jections from the inferior temporal cortex, a pathway involved in 
visual object and scene recognition. To quantify this observation, we 
tested the activation patterns of all possible task conditions against 
each other. While over 95% of the pairwise comparisons were sig-
nificant (uncorrected P < 0.001), the most notable exceptions were 
pairs of the picture viewing tasks (Supplementary Fig. 4a). In con-
trast, passively watching engaging movie snippets (nature movie, 
animated movie) resulted in reliable and specific activity patterns 
(Fig. 1e and Supplementary Fig. 1), probably related to processes 
required for action perception and social cognition.

Cerebellar lobules do not reflect functional subdivisions. One 
way to summarize these activation patterns is to subdivide the cer-
ebellum into functionally distinct regions. However, this approach 
is only meaningful if there are stable functional subdivisions in the 
cerebellum that generalize across tasks. To address this fundamental 
question, we developed an evaluation metric, which we refer to as 
the distance-controlled boundary coefficient (DCBC). If a bound-
ary divides two functionally heterogeneous regions, then any equi-
distant pair of voxels within a region should have activation profiles 
that are more correlated with each other than two voxels that are 
separated by the boundary (Fig. 2a; see Methods). Specifically, we 
calculated correlations between voxel pairs using a range of spatial 
bins (4–35 mm). The difference between the within- and between-
region correlations for each spatial bin then served as our evalu-
ation criterion. This method extends standard clustering metrics 

(that is, silhouette coefficient) to account for spatial distance. Given 
that the spatial resolution of fMRI is insufficient to cleanly resolve 
individual folia, the spatial distance was measured in the volume 
(see Methods for details).

We first employed this evaluation method to determine the 
degree to which functional boundaries follow the major lobular sub-
divisions5. This is a question of high practical importance given that 
lobular boundaries are commonly used to define regions of interest 
for interpreting functional activations in the cerebellum. Notably, 
the correlation between voxels within a lobule was not much greater 
than the correlation between voxels that spanned a lobular bound-
ary (Fig. 2b). The correlations, averaged over distances of 4–35 mm, 
were r = 0.28 (95% CI, 0.26–0.30) within lobules and r = 0.25 (95% 
CI, 0.05–0.46) between lobules. While statistically significant 
(t23 = 4.62, P < .01), the difference was very small (DCBC = 0.03). 
Thus, lobular boundaries do not reflect strong functional subdivi-
sions in the cerebellum.

The DCBC can also be used to evaluate the strength of individ-
ual boundaries (Fig. 2c). For example, the superior posterior fissure 
separating lobule VI from VII was the strongest lobular boundary 
(DCBC = 0.152), while the primary fissure, which serves as the 
first principal subdivision of the cerebellum, was relatively weak 
(DCBC = 0.068). The boundary separating Crus I and Crus II did 
not predict any functional specialization (DCBC = 0). In sum, many 
cerebellar fissures did not demarcate a change in function.

MDTB parcellation uncovers strong functional boundaries. Next, 
we asked whether a parcellation based on the MDTB data would 
more clearly identify functional boundaries. We first estimated a 
group-based parcellation using all of the MDTB data. Using con-
vex semi-non-negative vector factorization, we decomposed the N 
(tasks) × P (voxels) data matrix into a product of an N × Q (regions) 
matrix of task profiles and a Q × P matrix of voxel weights. The voxel 
weights, but not the task profiles, were constrained to be non-nega-
tive. Using a winner-takes-all approach, we then assigned each voxel 
to the region with the highest weight. Figure 3b shows the result-
ing parcellation using ten regions. For this parcellation, the average 
DCBC was 0.159 (Fig. 3a, dashed line, t23 = 31.85, P < 1 × 10−10), a 
value higher than that obtained for the strongest lobular boundary.

However, functional parcellations will invariably yield boundar-
ies for a given task set, since training and evaluation data overlap. 
Critically, a good parcellation should be able to predict boundaries 
for a new set of tasks. Therefore, we determined the parcellation 
based on all task conditions from set A and evaluated the boundaries 
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using the unique tasks from set B. We repeated this out-of-sample 
generalization test in the other direction and averaged the two val-
ues. Using this approach, the average DCBC was 0.130, only slightly 
lower that the non-cross-validated estimate (Fig. 3a; t23 = 24.232, 
P < 1 × 10−10). The cross-validated DCBC will underestimate the 
true predictive power of the full parcellation, with true performance 
on a novel task probably falling between the cross-validated and 
non-cross-validated DCBC. To remain conservative, we only report 
the cross-validated DCBC estimates for the remainder of the article.

The exact form of a parcellation depends on the specified num-
ber of regions. We also derived a parcellation with 7 (Supplementary 
Fig. 5d) or 17 regions (Supplementary Fig. 5f). While the 7-region 
parcellation performed slightly worse than the 10-region parcella-
tion (DCBC = 0.121, t23 = −4.18, P = 0.00036), the 17- and 10-region 
parcellations performed comparably (DCBC = 0.133, t23 = 1.57, 
P = 0.131; Fig. 3e). While there was reasonable agreement across the 
different MDTB parcellations (Supplementary Fig. 5h), some differ-
ences in the functional subdivisions for the different parcellations 
emerged. While our results clearly show that the MDTB parcella-
tions reflect true functional boundaries in the cerebellum, they also 
make clear that there are a number of equivalent ways to subdivide 

the cerebellum. Thus, the exact choice of a ‘final’ parcellation is con-
strained by practical considerations. In this study, we focus on the 
ten-region parcellation because it provides a useful level of resolu-
tion for a full functional characterization.

To assess the stability of the parcellation, we conducted a boot-
strap analysis, across both participants and task conditions (for the 
details, see Methods). The mean Rand coefficient between each of 
the new parcellations and the original parcellation was 0.646 (95% 
CI = 0.55–0.73) for the bootstrap across participants and 0.654 (95% 
CI = 0.58–0.73) across task conditions. To quantify the uncertainty 
of specific boundaries, we calculated the proportion of bootstrap 
samples for which each voxel was assigned to the same compart-
ment as in the original parcellation (Fig. 3c). Overall, consistency 
was good for most of the cerebellum (Fig. 3d). Lobules I–IV had 
higher uncertainty, probably a consequence of a lack of foot move-
ments in our task battery.

The parcellations described earlier were based on group data. 
To quantify the variability in functional organization across indi-
viduals, we compared the correlation between the task activation 
maps across participants to the within-participant reliability across 
the two sessions (Fig. 3f). Overall, 27.7% of the pattern variance 
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was shared between individuals, whereas 72.3% reflected idiosyn-
cratic patterns. A spatial frequency decomposition of the patterns 
(see Methods) revealed that commonalities across participants 
were restricted to the low spatial frequencies (<1 cycle cm−2; activa-
tions of more than 5 mm in size), while the fine-grained patterns 
were purely idiosyncratic to the participant. Indeed, a parcellation 
derived from the functional data from the individual significantly 
outperformed group parcellation in predicting functional bound-
aries for new tasks for that same individual (Fig. 3g; t23 = 5.88, 
P < 1 × 10−5).

In summary, using the MDTB data, we were able for the first time 
to quantitatively demonstrate the existence of distinct functional 
regions in the human cerebellum. Our results clearly advocate the 
adoption of a functional parcellation to replace lobular subdivisions 
as a tool to summarize functional cerebellar data.

Task-free parcellations identify overlapping but weaker bound-
aries. Prior work has leveraged the correlational structure of task-
free (or ‘resting state’) fMRI data to derive various parcellations of 
the cerebellum, using 75, 106 or 175 regions (Fig. 4a–c). These par-
cellations were only moderately consistent with each other (Fig. 4f), 
with an average adjusted Rand index of 0.33 (0 = no communality; 
1 = perfect match). Correspondence between the different MDTB 
parcellations was slightly higher (adjusted Rand index = 0.47), indi-

cating more stability across the MDTB parcellations. The average 
adjusted Rand index between the MDTB and task-free parcellations 
was 0.15, indicating that there are systematic differences between 
the two approaches. To determine where task-free and MDTB par-
cellations diverge, we conducted a searchlight analysis, computing 
the adjusted Rand index locally using a 1-cm radius sphere for each 
pair of parcellations. The results demonstrated that task-free and 
MDTB parcellations corresponded most tightly in the mid-lateral 
areas of lobule VII. In these ‘default mode’ regions, the agreement 
between the MDTB and task-free maps (Fig. 4g) was similar to 
the agreement between MDTB maps (Supplementary Fig. 5h). In 
contrast, in more lateral aspects of lobule VII, and especially areas 
engaged in motor control or action observation, the correspondence 
between task-free and MDTB parcellations was much weaker. This 
is probably due to the relatively low consistency among the task-free 
parcellations (Supplementary Fig. 5g).

We then evaluated whether task-free parcellations could predict 
functional boundaries in our MDTB data. The average DCBC for 
the task-free 7-, 10- and 17-region parcellations was 0.109, 0.106 
and 0.097 respectively, substantially higher than the lobular par-
cellation (t23 = 16.849, P < 1 × 10−10; Fig. 4d). Thus, all of the task-
free parcellations are, to some degree, able to predict functional 
boundaries. However, the average task-free DCBC was significantly 
lower than the ‘lower bound’ for our MDTB 10-region parcellation 
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(t23 = 5.585, P < 1 × 10−5). This indicates that the MDTB parcellation 
outperformed the task-free parcellations in predicting functional 
boundaries on a novel set of task conditions.

Although the task conditions used for evaluation did not over-
lap with the tasks used for deriving the MDTB parcellation (see 
also Supplementary Fig. 6), we wanted to ensure that the superior 
performance of the MDTB parcellation would generalize to a com-
pletely separate data set. To this end, we evaluated the MDTB and 
task-free parcellations using data from 186 participants from the 
task-based Human Connectome Project (HCP; Fig. 4e) (ref. 16).  
Again, the MDTB 10-region parcellation significantly outper-
formed the three task-free parcellations (7-region: t185 = 22.671, 
P < 1 × 10−10; 10-region: t185 = 13.266, P < 1 × 10−10; 17-region: 
t185 = 28.09, P < 1 × 10−10).

To ensure that the higher predictive power of the MDTB par-
cellation was not solely driven by regions associated with motor 
control, we reevaluated the DCBC using only the three movie tasks 
(Fig. 4h). Even though these conditions did not demand any overt 
movement, the advantage of the MDTB over the 7-region (t23 = 2.7, 
P = 0.01), 10-region (t23 = 5.3, P < 1 × 10−5) and 17-region (t23 = 5.1, 
P < 1 × 10−5) task-free parcellation remained significant. Overall, 
these results demonstrate that the advantage of the MDTB over 
task-free parcellations extends to new data sets and to conditions 
that do not involve active tasks.

Characterizing activation by cognitive features. An important 
advantage of a task-based approach is that we can make infer-
ences about the processes that activate the cerebellar cortex. To 
characterize the functional profiles in each of the regions across 
tasks, we used predefined and non-orthogonal features17. We 
already successfully applied this approach when characterizing 
the activation patterns elicited by motor features (Fig. 1c), which 
could be directly operationalized as the number of finger and 
eye movements. To extend this approach, we needed to describe 
each task condition in terms of its underlying cognitive features. 
Therefore, we turned to the Cognitive Atlas, an online cognitive 
ontology18, which summarizes the current consensus in cognitive 
science of the processes associated with a large array of tasks. To 
construct a feature space, each of the task conditions was rated on 
each of the cognitive concepts (see Methods). We then estimated 
the feature weights for each region using non-negative regres-
sion. For visualization purposes, we depicted the top three feature 
weights for each region (Fig. 5).

The dominant features describing the three motor regions 
(regions 1, 2 and 3) were left-hand, right-hand and saccadic eye 
movements, respectively. The posterior associative motor region 
(region 4) was driven predominantly by action observation. For the 
remaining regions, the dominant features related to a range of cog-
nitive processes. Regions 5 and 6 in the mid-hemispheric aspects of 
Crus I/II, lateralized to the left and right hemisphere respectively, 
were associated with attention- and working memory-related fea-
tures such as divided attention and active maintenance.

More medially in both hemispheres were regions 7 and 8, best 
described by features associated with narrative (region 7) and word 
comprehension (region 8). Activity in right-hemispheric region 9, 
lateral to region 8, was best explained by features related to language 
processing (for example, verbal fluency and word comprehension). 
Finally, region 10, encompassing the most lateral aspects of Crus 
I/II was dominated by autobiographical recall. This region shows 
strong task-free correlations with the frontal pole and other areas 
related to the default mode network5. Overall, activity in the larger 
proportion of the cerebellum was explained by features related to 
cognitive, rather than motor, processes19.

Discussion
Summary. The aim of this study was to derive a comprehensive pic-
ture of the functional organization of the human cerebellum. To do 
this, a group of participants was scanned over the course of four 
fMRI sessions while performing a diverse MDTB. Task-evoked acti-
vation patterns were leveraged to derive a functional parcellation of 
the cerebellar cortex. Using a new technique to quantitatively evalu-
ate functional boundaries, we showed that the MDTB parcellation 
successfully predicted functional boundaries when tested with a 
novel set of tasks, outperforming existing parcellation based either 
on task-free fMRI data or on lobular structure.

Parcellations of the cerebellar cortex. The lobular architecture of 
the cerebellum has provided, both in neurophysiological and neu-
roimaging studies, the primary reference for defining subregions4,20. 
The macroanatomical folding into ten lobules is well conserved 
across species4 and under strong genetic control21. While the results 
from electrophysiological22 and neuroimaging studies5,7 have sug-
gested that lobular boundaries do not demarcate functional sub-
divisions, we present in this study the first quantitative evaluation 
of this hypothesis. Indeed, lobular boundaries appear to constitute 
only very weak boundaries in terms of functional organization.  
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The identified functional regions often spanned multiple lobules, 
with many of the boundaries traversing the cerebellar cortex along 
the parasagittal axis. The clear dissociation of anatomical and func-
tional organization of the cerebellum, as revealed in the present 
study, questions the value of summarizing functional and anatomi-
cal data in terms of lobular regions of interest.

As an alternative, we employed our task-related data to develop 
a parcellation that could comprehensively describe the functional 
organization of the cerebellar cortex. Critically, the group-based 
MDTB parcellation predicted functional boundaries for new tasks 
in the same data set, as well as for a completely separate data set 
(HCP task data). These findings provide a compelling demonstra-
tion of discontinuities in the functional specialization across the 
cerebellar cortex. Evidence from meta-analyses has suggested the 
existence of ‘motor’, ‘cognitive’ and ‘affective’ regions of the cerebel-
lum8. However, it has also been suggested that functional variation 
across the cerebellar cortex may be best understood in terms of 
smooth gradients7, without definable boundaries. If this were the 
case, our DCBC measure, reflecting the difference of within-region 
to between-region correlations, would have been near zero when 
tested on a novel task set. Instead, the values were positive, provid-
ing a rigorous demonstration of functional boundaries in the cer-
ebellar cortex.

An open question is whether the boundaries defined through 
our task-based approach relate systematically to anatomical features 
of the cerebellum identified by molecular techniques22. Specifically, 
studies investigating aldolase C (zebrin II) expression in Purkinje 
cells in the rodent23 and primate brain24 have revealed a series of 
parasagittal zones across the cerebellar cortex. Olivocerebellar pro-
jections respect this zonal organization, with single climbing fiber 
inputs synapsing onto Purkinje cells that lie within a zone23. The 
organization of zebrin II zones remains to be established in the 
human cerebellar cortex. However, we suspect that the alignment 
with the organization observed in this study may not be very tight 
given that the cerebellar hemodynamic signal is primarily reflec-
tive of mossy fiber input25. Relative to climbing fibers, mossy fiber 
innervation patterns are likely to be patchier and more diffuse, 
potentially spanning multiple zonal regions26.

The boundaries identified from task-free fMRI data were also 
able to predict task-based discontinuities. This finding is in accord 
with similar analyses of the cerebral cortex, demonstrating that task-
based activation patterns in the neocortex can be predicted to some 
degree by parcellations obtained from the spontaneous fluctuations 
in the fMRI signal during rest27. However, our MDTB parcella-
tion outperformed alternative task-free parcellations5,6 in predict-
ing functional boundaries for completely different tasks within the 
MDTB and HCP data sets. While the MDTB parcellation was based 
on fewer participants than the other parcellations (24 versus 1,000), 
our data set entailed considerably longer scanning time per partici-
pant. One notable difference between the task-free parcellations and 
our MDTB parcellation was that the latter assigned homologous 
areas in the left and right hemispheres to different regions. This was 
the case for regions associated with hand movements (regions 1 and 
2), working memory (regions 5 and 6) and narrative comprehen-
sion (regions 7 and 8). While the parcellation suggests some degree 
of hemispheric asymmetry within the cerebellum, the task activity 
profiles between homologous regions also shared many similarities 
(Supplementary Fig. 7). Second, the MDTB parcellation also indi-
cated that the areas correlated with the default mode network in 
task-free data could be subdivided into regions related to narrative 
comprehension (regions 7 and 8), language functions (regions 8 and 
9) and autobiographical recall (region 10).

While our group-based map could predict functional boundaries 
in individual participants, the finer spatial details of the functional 
organization were idiosyncratic for each individual. Consistent with 
this, the individual parcellation outperformed the group parcel-

lation in predicting functional boundaries in that individual. Of 
course, individual parcellations require data collection for each par-
ticipant using at least a subset of our task battery. It is worth noting 
that each individual parcellation was obtained on almost 3 h of data 
per participant, an amount of scanning time that is usually not feasi-
ble or practical. In future studies, we aim to determine the required 
amount of data per participant, identify the best subset of tasks and 
explore the possibility of combining individual and group data to 
derive an optimal parcellation.

Insights about functional topography. An additional advantage of 
a multi-domain task-based approach for mapping the cerebellum is 
that we can not only identify functional boundaries, but relate the 
activation patterns to the task requirements. For many of the tasks 
in our battery, the activation patterns were in accord with the results 
obtained in previous fMRI studies that have examined a single or lim-
ited set of task domains. Examples in the present study include work-
ing memory, hand movement, language and theory of mind tasks.

By using a rich MDTB, we also identified functional regions that 
had not been observed or well described in previous work. A large and 
extended region of the cerebellar cortex was activated during action 
observation (region 4), surrounding the anterior, but to a much larger 
extent, posterior hand motor region. Interestingly, the action observa-
tion region was also activated during complex movement, as shown 
by the sequence production task. Taken together, these results suggest 
that anterior motor regions are more related to primary action execu-
tion, whereas posterior motor regions are more akin to a ‘premotor’ 
area, perhaps associated more with action planning and action com-
prehension. Notably, lesions limited to the posterior cerebellum rarely 
lead to lasting symptoms of ataxia28.

A second example comes from our motor feature model, which 
revealed a region around vermis VI that was strongly associated with 
saccadic eye movements (region 3). This finding is consistent with 
neurophysiological data from non-human primates showing that this 
region is associated with oculomotor control11. However, prior neuro-
imaging studies of the cerebellum have proven controversial regarding 
this issue. Some studies have also linked this area with eye move-
ments12, but other studies have argued for a functional role of this 
region in more complex cognitive and/or affective processes7. Based 
on pilot work for this study and other unpublished observations, we 
have found it difficult to elicit any cerebellar activation with a simple 
saccadic eye movement task. In contrast, we observed robust activa-
tion in this area during the visual search task, even when accounting 
for the average number of saccades made during a 30 s block. Thus, 
our results offer a fresh perspective on the functional role of this 
region, indicating that the hemodynamic signal is driven by eye move-
ments performed under high attentional demands.

The identification of this oculomotor region is also of interest 
given that prior studies have suggested that vermal activation in 
lobule VI is associated with emotional processing7. Conditions in 
our battery designed to engage emotional and affective processing 
(for example, static images of unpleasant and pleasant scenes, sad 
and happy faces) only weakly activated this region. Given the strong 
association of this region with eye movements, it may be that prior 
activations were more related to differences in saccadic eye move-
ments between conditions, rather than the emotional and affective 
processing demands of the tasks. Further support for this hypoth-
esis comes from task-free fMRI studies showing that the oculomo-
tor vermis is functionally connected to visual regions of the cerebral 
cortex5,7. An obvious challenge for future research is to explore how 
variation in eye movements, affective processing and attentional 
demands interact in driving activation within this region.

Conclusions
This article presents a comprehensive MDTB for the human cerebel-
lum, which is unique in its functional diversity and amount of data 
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per individual. The group and individual task contrast maps and the 
group parcellations can be viewed at diedrichsenlab.org/imaging/
mdtb.htm. We anticipate this resource will be useful for two impor-
tant applications. First, the data, combined with our evaluation 
criterion, provide a quantitative assessment of functionally defined 
boundaries, something that has been absent in prior studies. Given 
that our acquisition parameters covered the entire brain, the meth-
ods presented in this study can be used to evaluate parcellations of 
the neocortex and other brain structures. Second, the novel MDTB 
parcellations provide an important tool to define functional regions 
of the cerebellum. Our analyses clearly show that the MDTB parcel-
lations predict functional boundaries in a novel set of tasks better 
than existing task-free parcellations. Moreover, each region can be 
characterized by a rich functional task profile, allowing for a charac-
terization of the associated cognitive processes. For future research, 
the parcellation and associated features can provide a useful guide 
in designing studies to test specific functional hypotheses and pro-
vide a reference for interpreting the results. The MDTB functional 
parcellation should also be of considerable utility for translational 
work, given the hypothesized involvement of cerebellar dysfunction 
in a range of neurological and psychiatric disorders29. A function-
ally defined parcellation can help reveal dysfunction in specific cer-
ebellar regions and cerebro-cerebellar circuits30, providing further 
insight into the interaction between the cerebellum and neocortex.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41593-019-0436-x.
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Methods
Participants. All participants gave informed consent under an experimental 
protocol approved by the institutional review board at Western University. A 
total of 31 participants were scanned performing set A; 26 of this original cohort 
returned to perform set B (mean break between sessions = 166 d; s.d. = 153 d, with 
half returning about a year later and the other half having sessions separated by 
2–3 weeks). The five participants who did not return for set B were not included in 
the analyses. Two additional participants were excluded from the analyses because 
they failed to complete all 32 scanning runs. Therefore, the final sample for the 
MDTB consisted of 24 healthy individuals (16 women, 8 men; mean age = 23.8 
years, s.d. = 2.6) with no self-reported history of neurological or psychiatric 
illness. All participants self-reported as right-handed (Edinburgh Handedness 
Inventory > 40). The sample size was chosen to allow for an accurate assessment of 
inter-participant variability of the functional organization of the cerebellum (see 
also Life Science Reporting Summary).

Experimental tasks. The experimental tasks included in set A were chosen to 
engage a wide range of processing domains (cognitive, motor, affective, social), 
in many cases drawing on tasks that had previously been shown to engage the 
cerebellum. While recognizing that our selection process was somewhat arbitrary 
and that the tasks would differ on a number of different dimensions, our main 
criterion was to use a large battery that broadly sampled different functional 
domains. A full description of the tasks, along with the accompanying references, is 
provided in Supplementary Table 1.

Set B included eight tasks that had been included in set A (shared tasks, for 
example, theory of mind, motor sequence) and nine unique tasks. The shared tasks 
provided a means to establish a common baseline across the two task sets. This 
enables between-task comparison across task sets, which is done by subtracting the 
mean activation pattern of the shared tasks from each task set. Only tasks that were 
successful at eliciting activation in the cerebellar cortex in set A were included as 
shared tasks in set B. For some of the novel tasks, we selected conditions that are 
thought to assay similar processing domains as in task set A. For example, both 
sets included working memory tasks, but the tasks involved different stimulus 
dimensions (for example, verbal working memory in set A and spatial mapping in 
set B). Other tasks (for example, the naturalistic movie-viewing tasks) were novel 
in task set B.

Experimental design. Each set consisted of 17 tasks. In every imaging run, each 
task was performed once for 35 s. The 35 s block was divided into a 5 s instruction 
period, where the task name (for example, ‘theory of mind task’), the response 
effector (‘Use your LEFT hand’) and the button-to-response assignment (‘1 = false 
belief, 2 = true belief ’) were presented on the screen. This was followed by a 30 s 
period of continuous task performance. In general, novel stimuli were introduced 
across imaging runs to prevent participants from learning specific stimulus–
response associations. The one exception was the motor imagery task where 
participants were required to imagine playing a game of tennis. The number of 
trials within the 30 s block varied from 1 (for example, the movie-viewing and 
mentalizing tasks) to 30 (for example, go/no-go task). Most tasks involved 10–15 
trials per block. The motivation for testing all tasks within a scanning run, as 
opposed to testing one task in each run, was to ensure a common baseline for all 
tasks, enabling between-task comparisons.

Three of the shared tasks (object 2-back, visual search, semantic retrieval) 
had a rapid, discrete trial structure (15 per block), whereby each unique stimulus 
(picture, letter, noun) was presented for 1.6 s, with the response required to be 
completed within this window, followed by an intertrial interval (ITI) of 400 ms. 
Three of the shared tasks had a slower discrete trial structure: motor sequence 
task (trials = 8; trial duration = 4.6 s; ITI = 400 ms); theory of mind (trials = 2; 
duration = 14.6 s; ITI = 400 ms); and action observation (trials = 2; duration = 14 s; 
ITI = 1 s). The remaining two shared tasks, spatial imagery and rest, did not have a 
discrete trial structure (duration = 30 s).

Of the nine unique tasks in set A, six had the rapid discrete trial structure 
(interval timing, International Affective Picture System (IAPS) affective, 
IAPS emotional, verbal 2-back, motor imagery, stroop, math, passive viewing: 
trial = 15, duration = 1.6 s, ITI = 400 ms; go/no-go: trials = 30; duration = 800 ms; 
ITI = 200 ms). The math task was comprised of 10 trials (duration = 2.6 s; 
ITI = 400 ms). The motor imagery task did not have a discrete trial structure 
(duration = 30 s).

Of the nine unique tasks in set B, six had a discrete trial structure: the 
prediction, spatial map, and response alternatives tasks entailed 6 trials per 
block (duration = 4.8 s; ITI = 200 ms), the mental rotation task 9 trials per block 
(duration = 3 s; ITI = 300 ms), the biological motion task 10 trials per block 
(duration = 3 s; ITI = 0 s) and the concrete permuted rules operations (CPRO) 
task 4 trials per block (duration = 7.3 s; ITI = 200 ms). The three movie-viewing 
tasks (landscape, animated and nature) did not have a discrete trial structure 
(duration = 30 s).

Hand assignment across tasks. For each task requiring responses, the responses 
were made with either the left, right or both hands using four-key button boxes. 
Hand assignment was consistent for sets A and B for the shared tasks. For tasks 

requiring two-choice discrimination, responses were made with the index or 
middle finger of the assigned hand, while responses for tasks requiring four-choice 
discrimination were made with the index and middle fingers of both hands. By 
including a motor feature model in our analysis, we could account for the motor 
requirements across the tasks.

Behavioral training. For each task set, participants completed 3 d of training 
before the first scanning session. Training included all of the tasks with the 
exception of the rest condition and the three movies (set B). For each set, the 
three training sessions took place over the course of 4–7 d (set A: mean number of 
days = 5.2, s.d. = 3.5; set B: mean number of days = 4.4, s.d. = 1.8).

The first day was used to familiarize participants with the requirements for 
each of the 17 tasks. Participants were instructed to carefully read the instructions. 
When ready, they initiated a 35 s training block. The number of training blocks 
differed depending on the perceived level of difficulty of the task. For example, the 
two-alternative forced choice picture-based tasks (IAPS affective, IAPS emotional) 
were practiced for three blocks, while the stroop task was practiced for seven 
blocks. During this training session, a run consisted of consecutive blocks of the 
same task. Online feedback was provided for response-dependent tasks (green or 
red squares to indicate correct or incorrect responses, respectively). At the end of 
each run, an overall accuracy score was provided concerning performance on the 
tasks requiring a button response.

On the second training day, switching between tasks was introduced. 
Participants were given 6 runs of training, with each run composed of 1 block for 
each of 11 tasks that required manual responses. As on day 1, the timing for the 
first four runs was self-paced, with the participants allowed to read the instructions 
at their own pace before initiating the 30 s block. For the final two practice runs, 
the instruction phase was limited to 5 s, thus introducing the protocol that would 
be used in the scanner. Training on this day only included tasks that required overt 
responses. On the third training day, participants practiced all 17 tasks in four 
10-minute runs (35 s per task), emulating the protocol to be used in the scanner 
sessions.

This training program ensured that participants were familiar with the 
requirements for each task and had considerable experience in switching between 
tasks. In this manner, we sought to minimize the impact of learning during the 
scanning sessions. On the third training day, performance was asymptotic, with 
participants correct on at least 85% of the trials for all of the tasks (range = 85–98%; 
see Supplementary Fig. 3).

Eye tracking. Eye tracking data were recorded on the third training session to 
obtain an estimate of saccadic eye movements for each of the tasks. An algorithm 
implemented in the Eyelink Toolbox (v. 1.5.0)31 identified saccadic eye movements 
as events where eye velocity briefly exceeded a threshold of 30 degrees s−1. These 
data, tabulated as the mean number of eye movements per task, were included 
as a motor feature in the second-level feature model. Eye tracking data from two 
participants in set A and three participants in set B were not obtained due to 
technical problems. However, since eye movement behavior was consistent across 
participants, we used group-based estimates.

Scanning sessions. Participants completed four scanning sessions in total, 
two with set A and two with set B. The first scanning session for each set was 
conducted within a few days of the final training session (set A: mean = 2.0 d, 
s.d. = 1.6 d; set B: mean = 2.2 d, s.d. = 1.7 d) and the second scanning session was 
completed no more than 7 d after the first scanning session (set A: mean = 3.1 d, 
s.d. = 2.5 d; set B: mean = 2.7 d, s.d. = 2.3 d). Each scanning session consisted of 
eight imaging runs (10 min per run). Each of the 17 tasks was presented once for 
35 s in each imaging run, producing 16 independent measurements per task. The 
task order was randomized across runs. To reduce order effects within each set, no 
two tasks were presented in the same order in two different runs. The order within 
each run, as well as the order of the runs, was kept constant for all participants. 
This procedure was chosen to allow for across-participant analyses on the time 
series level (results not presented in this article). As noted earlier, when possible, 
novel stimuli were used in each run to reduce the recall of specific stimulus–
response associations.

Image acquisition. All fMRI data were acquired on a 3T Siemens Prisma at the 
Centre for Functional and Metabolic Mapping at Western University. Whole-brain 
functional images were acquired using an echo-planar imaging sequence with 
multi-band acceleration (factor 3, interleaved) and in-plane acceleration (factor 
2), developed at the Center for Magnetic Resonance Research at the University of 
Minnesota. Imaging parameters were: repetition time = 1 s; field-of-view = 20.8 cm; 
phase encoding direction P to A; 48 slices; 3 mm thickness; in-plane resolution 
2.5 × 2.5 mm2. Gradient echo field maps were acquired for distortion correction of the 
echo-planar imaging images due to B0 inhomogeneities (repetition time = 0.5 s, field-
of-view = 24 cm, 46 slices with in-plane resolution of 3 × 3 × 3 mm3). We also acquired 
online physiological recordings of both heart and respiration during each functional 
run. For anatomical localization and normalization, a 5 min high-resolution scan of 
the whole brain was acquired (magnetization-prepared rapid acquisition gradient 
echo; field-of-view = 15.6 × 24 × 24 cm3, at 1 × 1 × 1 mm3 voxel size).
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Image preprocessing. Data preprocessing was carried out using tools from 
SPM12 (ref. 32), Caret (v. 5.65)33 and spatially unbiased infratentorial template 
(SUIT v. 3.3)20, as well as custom-written scripts written in MATLAB 2015b. 
For all participants, the anatomical image was acquired in the first scanning 
session. Functional data were realigned for head motion within each session, 
and for different head positions across sessions using the six-parameter rigid 
body transformation. The mean functional image was then co-registered to the 
anatomical image and this transformation was applied to all functional images.  
No smoothing or group normalization was applied.

General linear model (GLM). A GLM was fitted to the time series of each 
voxel separately for each imaging run. The 5 s instruction phase for all tasks was 
modeled using a single regressor, but was not included in later analyses. Each 
task was modeled using a boxcar regressor of 30 s, or a combination of multiple 
regressors if the block contained sub-conditions. These regressors could be 
2 boxcar regressors of 15 s each (for example, the verb generation task where 
one sub-condition is word reading and the other is verb generation), 3 boxcar 
regressors of 10 s each (for example, visual search, display sizes of 4, 8 or 12) or 
2 event-related regressors (for example, the stroop task, where each trial was 
congruent or incongruent). The rest condition was not modeled explicitly, but 
rather used as an implicit baseline in the model.

The quality of the GLM in modeling the blood-oxygen-level dependent signal 
response was determined by measuring the consistency of the activation patterns 
in the cerebellum across runs. This measure indicated that it was advantageous to 
omit the traditional high-pass filtering operation before the linear model (default 
operation in SPM). Instead, we opted to rely on the high-dimensional temporal 
autocorrelation model (the FAST option in SPM) to determine the optimal 
filtering, implemented in the GLM estimation. The beta weights from the first-level 
GLM were univariately pre-whitened by dividing them by the square root of the 
residual mean-square image. To include rest as a task condition in all subsequent 
analyses, we added a zero as an estimate for the rest condition and then removed 
the mean for each voxel across all conditions. As such, the beta weights expressed 
the amount of activation elicited by each condition relative to the mean of all 
conditions.

To combine activation estimates across the two tasks sets, the mean of the 
shared tasks was removed separately for each set. Both sets were then combined, 
retaining the repeated estimates for the shared task. This resulted in a total of 
61 estimates (set A = 29; set B = 32) for the 47 unique conditions. The activation 
patterns were re-centered by removing the overall mean across all 61 conditions.

Cerebellar spatial normalization. The SUIT toolbox (v.3.3) in SPM12 was used 
to isolate the cerebellum from the rest of the brain and provide a normalization to 
a spatially unbiased template of the cerebellum34. The resulting cerebellar isolation 
mask was hand-corrected to ensure that it did not contain any shared voxels 
between the superior cerebellum and the directly abutting cerebral cortical regions 
of the inferior temporal and occipital cortex.

The probabilistic maps for the cerebellum were normalized into SUIT space 
using the diffeomorphic anatomical registration through exponentiated lie 
algebra algorithm35. This algorithm deforms the cerebellum to simultaneously 
fit the probability maps of cerebellar gray and white matter onto the SUIT atlas 
template. This non-linear deformation was applied to both anatomical and 
functional data. The activation estimates (that is, the beta weights) and residual 
mean-square images from the first-level GLM were resliced into SUIT space. 
All images were masked with the cerebellar mask to avoid activation influences 
from the inferior occipital cortex. All data were visualized on a surface-based, 
flat-map representation of the cerebellar cortex in the SUIT toolbox. The flat-map 
representation allows the spatial extent of task-evoked activation patterns to be 
fully visualized. Note that this flat map is not a true unfolding of the cerebellar 
cortex, but averages over a substantial number of folia. Therefore, it is meant for 
display purposes only14.

Motor feature model. Our primary goal was to study task-evoked activation 
patterns in the cerebellum beyond the well-known domain of motor function. 
Although not designed explicitly to measure motor-related activation, the 61 task 
conditions differed in the number of manual responses, as well as eye movements. 
To account for these motor-related activations, we generated a motor feature model 
(task conditions × three motor features). For the hand movements, we entered the 
number of left- and right-hand presses for each task during the scanner runs. For 
eye movements, we used the group-averaged eye movement data from the third 
training day to estimate the number of saccades for each task condition. All motor 
features were encoded in terms of movements s−1 and z-normalized.

To extract and remove the motor-related activation across tasks, the 3 motor 
features were combined with an indicator matrix that had a 1 for each of the 61 
task conditions. To estimate and subsequently remove the influence of the motor 
features, we estimated the linear model with L2-norm regression (fixed λ of 0.01) 
from the beta estimates of each participant (task conditions × voxels × participant). 
The average of all task conditions was used as a baseline measure and subtracted 
from the motor-corrected activation estimates. The activation estimates for the 
shared tasks were first averaged; then a group average was computed for the 
purposes of visualization on the cerebellar flat map14.

Reliability of activation patterns. To determine intra-participant reliability across 
the entire cerebellar cortex, we calculated the correlation between the average 
activation estimates for the first and second session for each task set, separately for 
each participant. To obtain an overall reliability, we stacked the 29 (A) or 32 (B) 
activation estimates for all cerebellar voxels into a single vector and calculated the 
Pearson correlation between the two estimates. For Fig. 1e, this analysis was also 
performed for each voxel separately. The group-averaged correlations were then 
visualized on the cerebellar flat map.

Spatial frequency of activation patterns. To determine how much of the variance 
of the activation patterns was common to the group relative to how much was 
idiosyncratic to the individual participants, we calculated two correlations, one 
between task-activity maps between two sessions for the same participant (as for 
reliability) and the second between sessions of different participants. Correlations 
were computed on all gray matter voxels in SUIT space. To determine the spatial 
scale of these common activation patterns, we decomposed the volume image 
for each task condition into five spatial frequency bands ranging from 0 to 5 
cycles cm−2. This decomposition was done separately for each participant, study, 
session and task condition. The within- and between-participant correlations were 
then computed for each spatial frequency band.

Evaluating functional boundaries. We developed a method to evaluate functional 
boundaries from fMRI data. The rationale of the method is that, if a boundary is 
dividing two functionally heterogeneous regions, then two voxels that lie within the 
same region should have more similar functional profiles than two voxels that are 
in different regions (Fig. 2a; equation (1)). Because functional organization tends 
to be smooth, the correlation between two voxels will be higher for two adjacent 
voxels and fall off as the spatial distance increases10. To control for distance, we 
calculated the activation pattern correlations for all pairs of voxels separated by a 
specific Euclidean distance, using spatial bins ranging from 4 to 35 mm. Of course, 
it would have been preferable to measure the distance on the cerebellar cortical 
sheet, rather than in the volume. However, a veridical surface reconstruction of 
the cerebellar folia is only possible for resolutions higher than 0.2 mm36. The use of 
volumetric distances will slightly favor lobular boundaries, since two voxels within 
the same lobule will tend to be closer on the cerebellar cortex than two voxels 
separated by a fissure, even if their distance in the volume is matched. To exclude 
spatial correlations that were driven by noise, we used a cross-validated  
correlation. Using ui,1 to represent the functional profile (zero-meaned) of voxel 
 i from one session, and uj,2 the functional profile of voxel j from the other session, 
the correlation was calculated as:
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where the sum was done on all voxel pairs i,j in the corresponding 5 mm bin. 
Separate correlations were calculated for voxel pairs from the same region (within) 
and those where the voxel pairs came from different regions (between). We 
excluded voxels where the term u ui i,1

T
,2 was negative, since it indicated the absence 

of any reliable tuning across the two sessions. The difference between the within-
region and between-region correlations defined the DCBC. A positive DCBC value 
indicates that voxel pairs originating from the same region are more functionally 
related than voxel pairs that lie across boundaries. The DCBC was calculated for 
each participant and spatial bin separately, and then averaged.

The DCBC can serve not only as a global measure of a parcellation (averaging 
across the cerebellum and spatial bins), but also as a measure to evaluate the 
strength of individual boundaries. For the latter, we first identified boundaries 
using an edge-based connectivity scheme37. The strength of a given boundary is 
defined by the DCBC calculated only on the voxel pairs from the two regions that 
are separated by that boundary. To visualize boundary strength, the thickness of 
the boundary on the flat map was based on its DCBC value.

We applied this boundary evaluation procedure to MDTB parcellations, as well 
as parcellations based on lobular boundaries or task-free fMRI data. The lobular 
parcellation was obtained from a probabilistic atlas of the human cerebellum20 
that includes regions for lobules I–IV, V, VI, Crus I, Crus II, VIIb, VIIIa, VIIIa, IX 
and X. To ensure that that poor performance of the lobular parcellation was not 
due to inaccuracies in detecting the lobular boundaries, we repeated the analysis 
using a manual lobular parcellation in five participants. The parcellation from this 
sample predicted functional boundaries about as well as the one derived from the 
probabilistic atlas (DCBC: 0.022 versus 0.025; t5 = 1.441, P = 0.209). The task-free 
10-region parcellation6 was based on data archived as part of the HCP, while the 
other two were based on a large 1,000-person data set collected at Harvard and 
Massachusetts General Hospital5. All parcellations were sampled into SUIT space 
and evaluated using our MDTB.

MDTB data set parcellation. To derive a parcellation from the MDTB, we used the 
activation profiles of gray-matter voxels averaged in SUIT volumetric space across 
participants. We used convex non-negative matrix factorization38 to decompose 
the N (tasks) × P (voxels) data matrix into a product of an N × Q (regions) matrix 
of task profiles and a Q × P matrix of voxel weights. The voxel weights, but not the 
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task profiles, are constrained to be non-negative. Furthermore, the task profiles are 
convex combinations of the raw data. Compared to other decomposition methods, 
such as independent component analysis, this method has the advantage that 
voxels cannot be explained by an inverted or negative regional task profile. This 
constraint is also reasonable given that mossy fiber input, the main neural signal 
driving the blood-oxygen-level dependent signal response in the cerebellum, is 
excitatory25. To ensure convergence, we started the decomposition with random 
initializations and selected the iteration with the best reconstruction of the original 
data. A winner-takes-all approach was adopted to assign each voxel to the region 
with the highest weight.

To allow for a direct comparison with existing task-free parcellations5,6, we used 
parcellations with 7, 10 and 17 regions (Supplementary Fig. 5d–f). Parcellations 
involving regions within this range achieved similar reconstruction accuracy and 
quality of functional boundaries.

We also derived separate parcellations for each participant to determine 
whether boundaries could be predicted better using an individual approach. An 
advantage of the individual parcellation is that idiosyncrasies of within-participant 
organization are captured. The disadvantage is that individual parcellations are 
derived on substantially fewer data than the group.

Bootstrap analysis. To obtain a measure of boundary uncertainty, we performed 
bootstrap analyses across both participants and task conditions. For participants, 
we repeatedly drew 24 participants (with replacement) from our sample, 
averaged the data and derived a new functional parcellation. To be able to relate 
the parcellations to each other, each parcellation used the original solution as a 
starting value. For the task conditions, we repeatedly drew 47 task conditions (with 
replacement) from our data, again deriving a new parcellation each time. For each 
analysis, we repeated this process 100 times.

To evaluate the consistency of the parcellations globally, we calculated 
the adjusted Rand index, which measures the correspondence between two 
parcellations (0 = overlap not different from chance, 1 = perfect overlap). For a 
regionally specific analysis, we counted the number of times that each voxel was 
assigned to the same (most frequent) region. For visual display (Fig. 3d), we then 
used this assignment certainty to determine the transparency of the region coloring 
(<50% = fully transparent, 100% = fully opaque).

Evaluation of functional parcellations. To evaluate the group and individual 
MDTB parcellations, we wanted to know how well functional boundaries could 
be predicted for each participant using a completely novel set of tasks. Because we 
did not acquire data with a third, independent task set, we used the existing data to 
estimate lower and upper bounds of predictability. For the lower bound, we derived 
the parcellation using the data from set A and evaluated it with the data from set 
B, using the unique tasks only. This procedure was then repeated with the task sets 
reversed and the results were averaged across the two cross-validation folds. Note 
that the outcome of this analysis will probably result in a lower value than would 
be obtained with the final segmentation, since each parcellation is based on half of 
the available data. As such, we used this estimate as an approximate lower bound. 
We also evaluated a parcellation derived from both sets A and B. We evaluated 
this parcellation as before, excluding the shared tasks from both task sets to make 
the estimate consistent with the lower-bound estimate. Because there is overlap 
between the data used for training and evaluation, the performance measure is 
overfitted and, therefore, was taken as an approximate upper bound. The true 
performance of the full parcellation, if applied to a completely new task set, would 
probably fall between these lower and upper bounds.

The anatomical and task-free parcellations could be directly evaluated on 
the MDTB data since each parcellation was derived from independent data. For 
consistency, we excluded the data from the shared tasks in the evaluation set.

To evaluate the degree to which the results depended on the similarity of the 
tasks in the training and test sets, we repeated the analysis, this time selecting the 
seven most distinct task conditions in each test set (Supplementary Fig. 6). The 
conditions were selected by computing the distance between activity patterns for 
each test condition to each training condition (Supplementary Fig. 4a). Then, we 
identified for each test condition the closest match in the training set and selected 
the seven test conditions for which this closest match was most dissimilar.

To further validate our results, we evaluated the MDTB and task-
free parcellations on the task-based data from the HCP data set (https://
db.humanconnectome.org)16. We used data from the 214 most recently added 
participants (scanned at 3T). Of the 214, 186 participants had complete data sets 
and these constituted our final sample. For each participant, we evaluated the 
parcellations on a set of 22 contrast maps from 7 tasks (all against rest).

Representational structure of task-related activation patterns. Representational 
similarity analysis17 was used to investigate the representational structure of task-
related activation patterns from the MDTB cerebellar data. The dissimilarity 
between the motor-corrected activation patterns was measured for each pair of 
task conditions using the cross-validated Mahalanobis distance, using the imaging 
runs as independent partitions39. To calculate the distances between conditions 

across the sets, we first subtracted the mean of the shared task conditions from 
each imaging run. Cross-validation ensures that the average (expected) value of the 
dissimilarity measure is 0 if the two activation patterns only differ by noise. This 
allowed us to test for significant differences between activation patterns using a 
one-sample t-test against 0.

Classical multidimensional scaling was employed to visualize the distances 
between all possible pairs of task conditions. For the purposes of visualization, 
the pairwise distances for the shared tasks were averaged so that there were 47 
(rather than 61) task conditions in the representational dissimilarity matrix. 
Multidimensional scaling projects the N-dimensional representational dissimilarity 
matrix into a lower-dimensional space so that distances from the higher space 
are preserved with as much integrity as possible. Multidimensional scaling was 
performed on the group-averaged representational dissimilarity matrix and the 
first three dimensions were visualized in a three-dimensional space.

Feature-based approach. The power of our task-based approach in studying the 
cerebellum is that we can identify the involvement of each region across functional 
domains and different task variations. To summarize the task activation profiles 
for each region, we used a feature-based encoding model. The features included 
the three motor features (see earlier) and cognitive features, selected to capture the 
hypothetical mental processes involved in each task. To derive these features, we 
used an online cognitive ontology18, an atlas of tasks and the concepts associated 
with those tasks. Of the 815 concepts currently included in the atlas, 46 were 
judged to provide an appropriate and sufficient characterization of the tasks in our 
battery, creating a feature matrix (47 task conditions × 46 features). For example, 
features such as semantic knowledge and lexical processing were associated with 
tasks such as verb generation and semantic prediction; emotion recognition was 
associated with the IAPS emotional processing task and the biological motion 
task. As with the motor feature model, each feature was z-standardized and 
feature weights for each region were estimated with non-negative regression. For 
visualization purposes, the three highest weights for each region were computed.

Statistical analysis and inference. Unless otherwise noted, all statistical tests 
were based on the n = 24 participants of our sample, considering participant as a 
random effect. Therefore, all t-tests were repeated measures with 23 d.f. Only the 
analysis presented in Fig. 4e is based on the HCP task data and was therefore based 
on n = 186 participants. All t-tests were two-sided. Data distribution was assumed 
to be normal, but this was not formally tested.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The activation maps and functional parcellations are available from http://
www.diedrichsenlab.org/imaging/mdtb.htm. The raw behavioral and imaging 
data for the cerebellum are also available on the data sharing repository https://
openneuro.org/.

Code availability
The experimental code is available at https://github.com/maedbhk/MDTB-
Cerebellum.
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