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Methods for cerebellar imaging: cerebellar subdivision 
Carlos R Hernandez-Castillo*   

Despite its great importance for a variety of behavioral and 
cognitive domains, the cerebellum has been understudied using 
human imaging, thereby delaying the development of 
computational tools that allow us to analyze its anatomy and 
function. Owing to its homogeneous architecture, finding ways 
to subdivide the cerebellum into meaningful parcels is one of 
the major challenges in the field. Although functional 
parcellations have been developed, the anatomical subdivision 
of the cerebellum is an active topic of research. This review 
describes the recent evolution of the computational techniques 
for automatic subdivision of the human cerebellum. Then, the 
difference between anatomical and functional parcellations is 
discussed, highlighting the importance of choosing the right 
tool for the problem at hand. 
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Introduction 
Nestled underneath the tentorium in the posterior cranial 
fossa, the cerebellum is a remarkable brain structure. It plays 
an essential role in motor coordination [1] and cognitive 
function [2]. The cerebellum is divided into two hemi
spheres and a midline zone called the vermis. Further 
subdivision is based on hierarchical folds known as lobes 
(anterior, superior posterior, inferior posterior, and flocculo
nodular) and lobules (identified by Roman numerals I–X). 
Brodmann areas have been used to subdivide the cerebral 
cortex for more than a century [3]. However, unlike the 
cerebrum, the cerebellum has a rather homogeneous cy
toarchitecture, and although some evidence is increasingly 

challenging this assumption [4], the cerebellar lobules are 
still the preferred way to subdivide the structure. Different 
groups have advanced the application of computational 
techniques to segment the cerebellum with the objective of 
developing a fully automatic algorithm. From atlas-based 
approaches to the newest deep learning models, each novel 
software alternative becomes more accurate and requires 
less human intervention. In a data-driven world, such 
methods are essential for advancing our understanding of 
the cerebellum and its role in brain function and dysfunc
tion. It is worth noting that different methods have their 
advantages and limitations, requiring investigators to choose 
wisely to maximize the possible insights of their research. 

The early days 
Twenty years ago, if you were interested in analyzing 
the human cerebellum using magnetic resonance 
images, your options were limited to either whole-brain 
toolboxes or manually delineating the areas of interest 
for volumetric analysis. In either case, the available op
tions were either inaccurate or time-consuming. The 
Diedrichsen laboratory pioneered the development of a 
specialized atlas for the human cerebellum [5]. Spatially 
Unbiased Infra-tentorial template (SUIT) improved the 
accuracy of cerebellar imaging analysis, and although it 
may require some manual intervention, the process was 
fully automated. The success of SUIT derived from its 
ability to isolate the cerebellum from the rest of the 
brain and then normalize the subjects’ cerebellum into 
an unbiased template. The toolbox was upgraded with a 
probabilistic atlas of the cerebellar lobules and included 
in a variety of analysis packages [6]. Just a few years after 
SUIT was made available, other research groups pre
sented alternative options for cerebellar segmentation 
using a variety of methods. Powell et al. evaluated four 
different approaches: atlas-based, probabilistic, artificial 
neural networks, and support vector machines, and 
showed that the machine learning algorithms out
performed the template and probabilistic-based 
methods when examining the relative overlap [7]. 

However, the software developments continued in different 
directions. Multiple-object geometric-deformable model 
(MDGM) was proposed by Bogovic et al. [8]. This approach 
incorporated level sets, a computer vision model that can 
perform numerical computation on curves and surfaces. 
Bogovic demonstrated the performance of MDGM in cer
ebellar segmentation, reporting outperforming similar 
methods [8]. The Rapid Automatic Segmentation of the 
human Cerebellum And its Lobules (RASCAL) presented 
by Weier et al. incorporated a patch-based label fusion after 
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nonlinear registration [9]. Although good performance was 
assessed using leave-one-out cross-validation between 
manual and automatic segmentations, RASCAL was not 
compared with other algorithms. A different approach pre
sented by Park et al. created high-resolution multitemplates 
of the cerebellum [10] and adapted MAGeT segmentation  
[11] to test its performance. This multi-atlas-based approach 
yielded numerous independent segmentations that are 
fused using a voxel-by-voxel voting procedure. Further 
improvement using a multi-atlas approach was published by 
Price et al. with the Cerebellar Analysis ToolKit (CATK)  
[12]. CATK uses the Bayesian Active Appearance Modeling 
framework, which follows a deformable surface paradigm 
and includes a mechanism for incorporating contextual 
knowledge. Two more patch-based methods were devel
oped: Plassard et al. used a fusion technique that extends 
the ideas of the Selective and Iterative Method for Perfor
mance Level Estimation [13], and Romero et al. created 
CERES [14], which took inspiration from previous devel
opments such as multi-atlas, patch-based, and nonlocal label 
fusion. Initially, CERES used a library of manually seg
mented cases, however, given its implementation as an 
online-only resource, all new cases that are processed using a 
web browser are now included in the template library to 
increase the accuracy of the system. 

Each new method represented an improvement for 
lobular segmentation; however, it was not until 2018 
when Carass et al. evaluated some of the most popular 
algorithms for automatic lobular segmentation of the 
human cerebellum in a friendly competition [15]. Al
though the results were not outstanding, CERES2 
showed statistical improvement over the second- and 
third-place methods in a one metric and comparable 
performance in the rest of the evaluation. It is important 
to note that the second and third place were not any of 
CERES predecessors but new implementations that 
used machine learning models. 

The machine learning era 
Back in 2008, Powell et al. showed evidence that machine 
learning algorithms were promising tools for neuroimaging, 
and specifically for cerebellar segmentation [7]. Machine 
learning techniques use a training set of images to learn a 
predictive model that assigns class probabilities to each 
voxel [16]. Usually, the training set provides enough ex
amples to learn the underlying data structure and, at the 
same time, variability to generalize to new examples. In 
their report, Powell et al. evaluated two machine learning 
algorithms: artificial neural networks and support vector 
machines. At that time, the computational cost of training 
artificial neural networks was high, especially when working 
with high-resolution tridimensional images. However, ad
vances in computing power and availability propelled the 
use and development of artificial neural networks. In their 
approach, Powell et al. utilized a standard three-layer fully 

connected feed-forward network [7]. First, the images un
derwent a transformation into a set of vectors that were used 
as input. Each node in one layer is connected to all the 
nodes in the subsequent layer, defining this network as 
feed-forward due to the unidirectional flow of information. 
The weights of each node are adjusted through back
propagation, facilitating the training of the network. In 
comparison, the networks used by the teams that finished in 
the second and third place in the 2018 competition [15] are 
more advanced and specifically designed to work on images. 
In both cases (LiviaNET and DeepNet), the teams used 
convolutional neural networks. This type of network per
forms a series of filtering operations via convolution. This 
filtering creates new versions of the original image, in which 
certain features are passed over to the next layer. After a 
series of filters, the output of a convolution layer identifies 
features that are highly distinctive and that are used in the 
following layers to assign the label of a given voxel. In ad
dition of using convolutional layers, DeepNet presented a 
U-Net architecture. In this type of network architecture, a 
series of convolutional layers extract features and reduce the 
resolution of the image for the next layer, once this process 
is finished, a new number of layers restore the resolution of 
the images to present the result at full resolution. In other 
words, this architecture consists of a contracting path to 
capture context and a symmetric expanding path that en
ables precise localization [17]. The name DeepNet is re
lated to Deep Neural Networks (also called Deep Learning) 
and is given by the number of layers and complexity of the 
model. Currently, deep learning is being used in a number 
of applications, outperforming other approaches when there 
is plenty of data (several thousands of annotated examples) 
to train the model (please see Ref. [16] for a detail de
scription of artificial neural networks). In 2020, Han et al. 
presented the Automatic Cerebellum Anatomical Parcella
tion using U-net with Locally Constrained Optimization 
(ACAPULCO) [18••], which employs a cascade of two 
three-dimensional convolutional neural networks. One net
work is dedicated to locating the cerebellum and cropping 
the image, while the second network segments the structure 
into lobules. ACAPULCO outperformed CERES2 in sev
eral tests and demonstrated similar performance in others. 
The network complexity of ACAPULCO surpasses its 
predecessors, necessitating the use of data augmentation to 
enhance the results. As previously mentioned, deep learning 
models require a substantial amount of data to learn the 
underlying data structure and mitigate overfitting, which 
refers to classifying similar cases but failing to generalize to 
new instances. Data augmentation is employed when 
training data examples are limited. The original data un
dergo transformations through linear or nonlinear operations 
such as flipping, translation, rotation, scaling, and so on, to 
generate new examples and improve model performance. In 
their study, Han et al. compared the results of their network 
trained with and without data augmentation, highlighting 
how the network trained without data augmentation failed 
to accurately label certain parts of the cerebellum [18••]. 
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Additionally, ACAPULCO is the first freely available algo
rithm for cerebellar segmentation packaged within a singu
larity container. A singularity container allows researchers to 
download and use the software package without having to 
deal with dependencies, which often pose problems due to 
version upgrades and system incompatibilities. This also 
provides an advantage over CERES, which limits the 
number of cases that can be processed on their servers with 
a free account. 

The latest algorithm for cerebellar segmentation is 
CerebNet [19•]. In their report, Faber et al. describe Cer
ebNet as an adaptation of fastsurfer [20], an advanced deep 
learning architecture originally designed to segment the 
entire brain into 95 classes. CerebNet employs a U-Net 
architecture composed of three two-dimensional convolu
tional neural networks, each dedicated to a specific axis 
(axial, sagittal, and coronal). These networks are later com
bined in an aggregation step that compares the label prob
ability of each position. Faber et al. utilized various data 
augmentation techniques, including linear, nonlinear, and 
intensity deformations, to train the network. Their results 
demonstrate improved performance compared with ACAP
ULCO and SUIT. The authors claim that no data pre
processing is necessary before using their algorithm, and the 
run time is faster than that of previous methods. It is im
portant to note that CerebNet is the first algorithm eval
uated using data from a clinical population. In this regard, 
the authors state that CerebNet achieves a high level of 
detail, particularly noticeable at the intricate boundary be
tween cerebellar white and gray matter. 

The developing cerebellum 
Segmentation of the cerebellum in neonates and infants 
is a critical task in neuroimaging analysis. It aids in the 
understanding of early brain development, as well as 
neurodevelopmental disorders. Compared with the adult 
brain, the segmentation of the neonatal brain poses un
ique challenges [21]. The neonatal brain undergoes 
rapid growth and structural changes that limit the us
ability of software designed for adults. In 2019, an ex
tension of SUIT was fine-tuned to work on neonates by 
creating a neonate-specific template [22]. SUIT-N uses 
the same approach than SUIT, providing tools for nor
malization and volume calculation. However, the low 
tissue contrast due to low myelinization in newborns, 
limited its ability to accurately segment between gray 
and white matter [22]. To overcome this problem, Sun 
et al. used machine learning and a dataset of infants aged 
between 6 and 24 months from the UNC/UMN Baby 
Connectome Project [23]. In their approach, the reliable 
segmentation of the two-year-old cerebella is gradually 
propagated to the younger subjects using semi
supervised transfer learning [24]. This approach was 
recently updated from semisupervise to self-supervise 
learning, meaning that less manual intervention is 

required during training, tissue probability maps were 
included, and their validation was done in multisite data  
[25•]. It is important to note that cerebellar segmenta
tion on newborns is still work in progress. Currently, the 
biggest limitation falls on the image quality, to allow us 
differentiate tissue types, and data availability to train 
deep learning models. 

Functional parcellations 
A plethora of functional Magnetic Resonance Imaging stu
dies investigating the role of the cerebellum in motor, cog
nitive, and affective processes have showed cerebellar 
activity patterns that extend across lobules. Similarly, clinical 
studies have shown that cerebellar degeneration patterns are 
not contained within specific anatomical regions. Finally, the 
development of functional parcellations for the cerebral 
cortex stimulated the exploration of similar ideas in the 
cerebellum. 

Buckner et al. presented the first cerebellar parcellation 
based on resting-state fMRI [26]. In their seminal paper, 
Buckner et al. argue that the cerebellum is connected to 
the cerebral cortex via polysynaptic circuits and those 
relationships can be explained with fMRI. To test this 
idea, the authors compared the signal of each cerebellar 
voxel with the signal of 17 different networks in the 
cerebral cortex. The results showed that the cerebellar 
area dedicated to each network is proportional to the 
network’s area in the cerebrum (with a few exceptions 
such as the visual cortex). This research group presented 
an upgraded version of this approach in Xue et al. [27•]. 
In this paper, they show a completely novel network 
map revealing a new cerebellar subdivision that does not 
seems to align with anatomical landmarks. Using a larger 
dataset and a similar approach, Marek et al. showed that 
cerebellar networks are reliable, and that at the in
dividual level, cerebellar networks are more variable 
compared to those in the cerebral cortex [28]. 

Ren et al. applied a different approach [29], instead of 
relying on the intrinsic activity of the cerebral cortex, the 
authors used a clustering algorithm to group voxels with 
similar activity, following the idea that voxels with si
milar activity should be part of the same network. Ren 
et al. used normalized cut spectral clustering [30] to as
sign labels to each cerebellar voxel, creating a set of 
parcellations with different number of clusters. Their 
results show that their approach outperformed previous 
parcellations when selecting the same number of clus
ters. A new improvement was presented by King et al.  
[31••] with a parcellation that was based on task-fMRI 
data. In their report, King et al. argue that during task 
execution, the brain activity is richer than during rest, 
hence using task-related fMRI leads to improved iden
tification of functional regions of the cerebellum. To this 
end, the authors acquired the Multi Domain Task 
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Battery (MDTB) that consisted of 47 different task 
conditions [31••]. Then, they used regularized regres
sion, and a winner-takes-all approach to define the label 
of each cerebellar voxel. Additionally, they developed a 
metric to evaluate the performance of a functional par
cellation based on the fMRI signal characteristics [32] 
instead of only geometric features. Their results showed 
that the MDTB parcellation outperformed previous 
resting-state approaches and confirmed that lobular 
segmentation is not suitable to explain fMRI data. It is 
important to note that in all the reviewed methods, some 
boundaries are weaker than others and those definitions 
depend on the parameters defined by the researchers. In 
fact, the probability of a voxel being a member of a 
specific cluster can be described as a gradient (see Ref.  
[33] for a review). However, the discussion of functional 
gradients is out of the scope of this review. 

Conclusion 
Algorithms for the automatic segmentation of the human 
cerebellum have evolved significantly over the years 
(Table 1). From the first high-resolution atlas, a variety 
of statistical and machine learning approaches have im
proved the performance of our analytic tools. Currently, 
Convolutional Neural Networks and U-Net archi
tectures are leading the competition for the most accu
rate and fast algorithms for segmentation. While 
computational power becomes more accessible and our 
datasets are increasing in the number of examples, one 
can expect that more complex deep learning models will 
be developed. Without a doubt, this trend will subse
quently be translated into functional parcellations. It is 
important to remember that many of the algorithms re
viewed here, use stochastic processes that can result in 
differences even when analyzing the same dataset [34]. 
The assessment of replicability (one subject, one da
taset) and reproducibility (one subject, two datasets) of 
an algorithm should be a common practice before se
lecting your analysis pipeline. Finally, based on the 
evidence showing that anatomical landmarks are un
related to functional profiles and degeneration patterns, 

the use of lobular definitions, especially as a processing 
step (e.g. extracting values or averaging signals) should 
be reconsidered and justified. We will always be able to 
go back to lobular definitions for reporting the results in 
a familiar nomenclature, however, functional definitions 
in the cerebellum, eventually might be as common as 
the default mode network is for the cerebral cortex. 
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