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A B S T R A C T

The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention,
working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of
the cerebellum is important in the study of several neurological diseases including cerebellar ataxia, autism, and
schizophrenia. Different structural subdivisions of the cerebellum have been shown to correlate with differing
pathologies. To further understand these pathologies, it is helpful to automatically parcellate the cerebellum at the
highest fidelity possible. In this paper, we coordinated with colleagues around the world to evaluate automated
cerebellum parcellation algorithms on two clinical cohorts showing that the cerebellum can be parcellated to a
high accuracy by newer methods. We characterize these various methods at four hierarchical levels: coarse (i.e.,
whole cerebellum and gross structures), lobe, subdivisions of the vermis, and the lobules. Due to the number of
labels, the hierarchy of labels, the number of algorithms, and the two cohorts, we have restricted our analyses to
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the Dice measure of overlap. Under these conditions, machine learning based methods provide a collection of
strategies that are efficient and deliver parcellations of a high standard across both cohorts, surpassing previous
work in the area. In conjunction with the rank-sum computation, we identified an overall winning method.

1. Introduction

The cerebellum is a structure of great importance in the neuro-
anatomy of humans. It plays an essential role in motor coordination (Ito,
1984; Manto et al., 2013), as well as cognitive function such as attention
(Schmahmann, 1991, 2004), working memory (Desmond and Fiez,
1998), and language (Silveri et al., 1994; Desmond and Fiez, 1998),
regulates emotional responses (Schutter and Van Honk, 2005) including
fear (Schmahmann and Caplan, 2006), and there is increasing under-
standing of perceptual processes in the cerebellum (Baumann et al.,
2015). Anatomically, the cerebellum is nestled underneath the cerebral
hemispheres behind the brainstem in the posterior cranial fossa. It is
separated from the cerebrum by the tentorium cerebelli, a dura structure,
and is connected to the brainstem at the pons. The cerebellum is divided
into two hemispheres, like the cerebrum, and also has a midline zone
which is known as the vermis. The cortical surface of the cerebellum is
made up of finely spaced branches that radiate outwards from the cere-
bellar white matter (WM), which is known as the corpus medullare (CM).
TheseWM branches conceal that the volume of the cerebellum is a tightly
folded layer of gray matter (GM). Anatomists differentiate regions of the
cerebellum hierarchically into groups of folds, known as lobes, and then
into individual folds, referred to as lobules. The lobes are the anterior,
superior posterior, inferior posterior, and the flocculonodular. The lob-
ules are identified by Roman Numerals I through X (Schmahmann et al.,
2000), however Lobules VII and VIII are further differentiated. This
nomenclature comes from Schmahmann et al. (2000), derived in part
from Larsell (1952); we refer to it as the Schmahmann nomenclature and
note the differences between it and the classical nomenclature (Mala-
carne, 1776; Henle, 1879) in Table 1. Fig. 1 shows the anatomical
structure of the cerebellum, including the hierarchical breakdown of the
lobes and lobules. Due to the importance of the cerebellum, any pa-
thology can have serious consequences; however, the tightly folded
structure of the cerebellum makes identifying specific structures chal-
lenging. Below we outline the clinical relevance of understanding the
structure of the cerebellum and the various effects of cerebellar pathol-
ogies; we then provide an overview of the fully automated parcellation
tools that exist in the literature.

Several anatomical studies have elucidated the view that the cere-
bellum is involved in more than just motor control (Baumann et al., 2015;
Schmahmann, 2004; Schmahmann and Caplan, 2006; Strick et al., 2009).
As such, the cerebellum projects to a diverse set of cortical areas via the
thalamus, which then close the circuitry loop by reciprocating back to the
cerebellum. It is now apparent that multiple cortical areas are the target
of cerebellar output, including not only the primary motor cortex, but
also subdivisions of premotor, oculomotor, prefrontal, and inferotem-
poral areas of cortex (Middleton and Strick, 2000); each of which form
cerebello-thalamo-cortical circuits. Moreover, several clinical studies
have shown that dysfunction in individual cerebellar loops with the ce-
rebral cortex may underlie the development of specific neurological and
psychiatric symptoms (Allen and Courchesne, 2003; Amaral et al., 2008;
Andreasen and Pierson, 2008; Gottwald et al., 2004). Furthermore,
clinical studies of cerebellum centric disorders, such as spinocerebellar
ataxia (SCA), have been previously shown to have cerebellar shape (Yang
et al., 2016a), clinical disability scores (Ying et al., 2006), and functional
scores (Yang et al., 2014; Kansal et al., 2016) that correlate with SCA
subtype in a region specific manner. More importantly, the cerebellum
has been shown to be affected in diseases ranging from attention-deficit
and hyperactivity disorder (ADHD) (Mostofsky et al., 1998b), schizo-
phrenia (Nopoulos et al., 1999; Parker et al., 2014), Alzheimer's disease
(Thomann et al., 2008; Colloby et al., 2014), Parkinson's disease (Lewis
et al., 2013), to chronic alcoholism (Victor et al., 1959; Torvik and Torp,
1986; Cavanagh et al., 1997; Baker et al., 1999; Fitzpatrick et al., 2008).
In patients with schizophrenia, a reduction in the volume of the vermis
has been observed in multiple studies (Nopoulos et al., 1999; Okugawa
et al., 2002, 2003) based on the manual parcellation of the cerebellum.
Moreover, when the vermis has been further subdivided into the anterior
and posterior portions, the volume differences are driven by changes in
the posterior vermis (Womer et al., 2016) with a significant
diagnosis-by-sex interaction. Several types of dementia exhibit correla-
tions with the cerebellum; Alzheimer's disease (AD) has shown a reduc-
tion in the volume of the posterior lobes (Thomann et al., 2008), whereas
dementia with Lewy bodies has shown greater GM loss in Lobule VII than
AD (Colloby et al., 2014). Several recent voxel based morphometry
(VBM) studies have shown regional patterns of atrophy between AD and
cerebellar GM and WM (M€oller et al., 2013) and correlations between
GM loss and the constructional praxis and constructional praxis recall test
in the CERAD test battery (Dos Santos et al., 2011). However, older
studies (Karas et al., 2003) that relied upon studying large regions—due
to the FWHM size used in the VBM—showed no significant GM loss in the
cerebellum suggesting that the effects of cerebellum/AD interaction can
only be identified when smaller regions of interest are used. We highlight
these studies and some of the other work done in improving our under-
standing, through neuroimaging, of the cerebellum and its role in health
and disease in Table 2. However, Table 2 is far from a complete list of
such studies, see Stoodley (2014) and Traut et al. (2018) for more
comprehensive lists. There are two key points to take from this past work:
1) in-vivo assessment of the cerebellum through magnetic resonance
(MR) imaging (MRI) is imperative to further our understanding and 2)
manual parcellation or delineation remains a widely used approach for
studying the cerebellum.

Despite the continued use of manual delineation of the cerebellum in
various studies (Womer et al., 2016) there has been work on both
semi-automated (Pierson et al., 2002) and fully automated segmentation
and parcellation of the cerebellum. Automating the parcellation, and
consequently the volumetric analyses, of the cerebellum has benefits
outside of the obvious efficiencies of speed and cost. Automated parcel-
lation has been shown to remove manual bias, thus increasing

Table 1
A key to convert between the nomenclature of Schmahmann (Schmahmann et al.,
2000), derived from Larsell (1952), and the classical nomenclature (Malacarne,
1776; Henle, 1879) of common cerebellar structures.

Vermal Nomenclature Hemisphere Nomenclature

Schmahmann Classical Schmahmann Classical

Vermis I/IIa Lingula L/R Lobule I/II L/R Lingula (or Lingulae)
Vermis IIIa Centralis L/R Lobule III L/R Centralis
Vermis IVa Culmen I L/R Lobule IV L/R Quadrangularis
Vermis Va Culmen II L/R Lobule V L/R Quadrangularis
Vermis VI Declive L/R Lobule VI L/R Quadrangularis
Vermis VIIAf Folium L/R Lobule VIIAf (Crus

I)
L/R Semi-Lunaris
Superior

Vermis VIIAt Tuber I L/R Lobule VIIAt (Crus
II)

L/R Semi-Lunaris Inferior

Vermis VIIB Tuber II L/R Lobule VIIB L/R Semi-Lunaris Inferior
Vermis VIIIA Pyramis I L/R Lobule VIIIA L/R Biventer I
Vermis VIIIB Pyramis II L/R Lobule VIIIB L/R Biventer II
Vermis IX Uvula L/R Lobule IX L/R Tonsilla (or Tonsil)
Vermis X Nodulus L/R Lobule X L/R Flocculus

a It is widely acknowledged that there is no true vermis for the Anterior Lobe
(Lobules I–V). The division in our Pediatric Cohort differentiates the midline
portion of the Anterior Lobe from the body of the lobe.
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consistency and comparability across studies and sites (Buckner et al.,
2004; Hsu et al., 2002). We are only concerned with those methods that
provide at a minimum the lobes of the cerebellum; hence methods like
FreeSurfer (Dale et al., 1999; Fischl et al., 2004; Reuter and Fischl, 2011;
Fischl, 2012), BrainSuite (Shattuck et al., 2001, 2008; Shattuck and
Leahy, 2002), TOADS (Bazin and Pham, 2008; Shiee et al., 2010),
CRUISE (Tosun et al., 2006; Landman et al., 2013), CRUISEþ (Shiee
et al., 2014), MA-CRUISE (Huo et al., 2016a,b), and others (Carass et al.,
2017c; Desikan et al., 2006; Guo et al., 2017; Ledig et al., 2015; Liu et al.,
2012; Roy et al., 2015; Shao et al., 2018; Shiee et al., 2011; Tom-
as-Fernandez and Warfield, 2015; Van Leemput et al., 1999; Zhang et al.,

2001; Zhao et al., 2017) that only provide tissue classes or coarse par-
cellations of the cerebellum are not directly relevant unless used in
combination with other tools. The first published method that provided a
fully automated parcellation of the cerebellar lobules was SUIT (Die-
drichsen, 2006); the method used a spatially unbiased template of the
human cerebellum that when registered with a subject image provided
the parcellation. The method was later updated (Diedrichsen et al., 2009)
to include a probabilistic atlas. As powerful as SUIT is in identifying the
subdivisions of the cerebellum, it has primarily been used only for
identifying cerebellar GM as a normalizing factor in functional MRI
analysis. Prior to the introduction of the probabilistic version of SUIT,

Fig. 1. An illustration of a coronal view of one hemisphere of
the human cerebellum (with orientation axes inset in (a)).
Shown are the lobule labels for our (a) Adult and (b) Pediatric
Cohort with their corresponding lobe groupings, based on the
Schmahmann nomenclature (Schmahmann et al., 2000).
Table 4 has a complete list of the provided labels for both
cohorts. It is widely acknowledged that there is no true vermis
for the Anterior Lobe (Lobules I-V). Thus the distinction be-
tween vermis and body in the Anterior Lobe differentiates the
midline portion from the body of the lobe. Our Adult Cohort
does not use this differentiation, whereas our Pediatric Cohort
does.
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Powell et al. (2008) presented machine learning approaches for cere-
bellar parcellation that identified the lobes and vermis of the cerebellum.
Bogovic et al. (2013a) presented ACCLAIM, a multi-object geometric
deformable model (Bogovic et al., 2013c; Carass and Prince, 2016)
approach that provides a parcellation of 28 labels of the cerebellum and
included a comparison to SUIT. Price et al. (2014) presented the Cere-
bellar Analysis Toolkit (CATK) which used a Bayesian Appearance
Modeling (Patenaude et al., 2011) with prior knowledge of shape, image
intensity, and inter-shape relationships to provide five cerebellar labels.
Weier et al. (2014) described the Rapid Automatic Segmentation of the
human Cerebellum And its Lobules (RASCAL) which is a patch matching
based approach that improved on the multi-atlas segmentation fusion
technique presented in Coupe et al. (2011). Romero et al. (2017) pre-
sented CERES another patch-matching technique, that uses OPAL (Gir-
aud et al., 2016; Ta et al., 2014) for its label fusion. Yang et al. (2016b)
presented a multi-atlas labeling approach that used a graph-cut to help
regularize the final segmentation. Several other methods have been

reported in the literature (van der Lijn et al., 2009; Park et al., 2014;
Plassard et al., 2016). A more detailed description of several of these
methods is provided in Appendix A to help describe the approaches
presented in this paper. To summarize, the previous work in this area
includes: single and multi atlas registration, level sets, graph methods, a
Bayesian framework, neural networks, support vector machines, and
patch matching. Table 5 presents an overview of the methods presented
and evaluated in this paper. It can be seen that deep learning, an
important new class of algorithms in medical imaging, are represented
among the methods tested in this paper.

There has been an increasing movement towards Grand Challenges
(Styner et al., 2008; Schaap et al., 2009; Heimann et al., 2009; Menze
et al., 2015; Mendrik et al., 2015; Maier et al., 2017; Carass et al., 2017a)
in themedical imaging community in recent years. These challenges have
helped to develop standards for evaluating the performance of different
categories of medical imaging problems and for helping those on the
peripheral of the community to understand the state-of-the-art and the
general direction in which the technology is moving. In particular, the
2008 MICCAI MS Lesion challenge (Styner et al., 2008) was a significant
step forward in the sharing of clinically relevant data. More recently, the
2015 Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)
(Menze et al., 2015) has been a disruptive step forward, having allowed
groups without access to high-quality data with delineations to
contribute innovative new solutions for segmenting brain tumors (Sau-
wen et al., 2015; Banerjee et al., 2016; Kamnitsas et al., 2017).

Thus in the spring of 2017, we invited colleagues from around the
world to participate in a Cerebellum Parcellation Challenge as part of
MICCAI 2017. As only eight groups responded to this call, it was decided
that the workshop itself would not go forward due to lack of broad in-
terest. Coming out of the discussions for this Cerebellum Parcellation
Challenge (hereafter the Comparison), it was agreed that we would
present the performance findings from seven of the research teams who
participated in the Comparison (hereafter the Participants). In Section 2,
we outline the two cohorts of data that were provided to the Participants
and the evaluation used in comparing the submitted results from each of
the Participants. One of the Participants submitted two methods, how-
ever two of the Participants contributed no results for our first cohort.
Thus, that cohort has results from six algorithms, while our other cohort
was processed by eight algorithms. Both cohorts are imaged using stan-
dard clinical protocols with an approximately 1mm isotropic resolution,
with complete details of the acquisition in Section 2. In our examination
of these data and methods, we restrict our analyses to the Dice overlap;
we outline our rationale behind this decision in Section 2.2. Section 3
provides a brief description of the methods contributed by the Partici-
pants for the Comparison, with a complete description of the presented
methods in Appendix A. Section 4 includes the Comparison between the
manual delineations for our two cohorts and the algorithms; it is broken
down into hierarchical levels: 1) Coarse level including the whole cere-
bellum, whole vermis, and CM (3 labels); 2) Lobe level including the left
and right of the four lobes (8 labels); 3) Vermis level which included the
vermal subdivisions of the vermis (5 labels for our Adult Cohort, 3 labels
for our Pediatric Cohort); 4) Lobule level (22 labels for our Adult Cohort,
14 labels for our Pediatric Cohort); and a 5) Consolidated level, with
further details in Sec. 4. In general the methods show agreement with the
manual delineations of the cerebellar structures. However, the size of our
cohorts restricted our statistical analyses, with rank-sum computations
being used to determine an overall highest ranked method.

2. Materials and metrics

2.1. Data

The Participants were given data from our Adult and Pediatric Co-
horts. Our Adult Cohort is an expertly labeled data set collected by the
Image Analysis and Communications Laboratory (IACL) at Johns Hop-
kins University (PI: J.L. Prince), complete details of the delineation

Table 2
A summary of some cerebellar focused imaging studies exploring various pa-
thologies. We include whether the study used manual delineations (MD) and the
key cerebellar related findings. N ðM=FÞ denotes the number of patients and the
male/female ratio. Abbreviations: ADHD - Attention-deficit and hyperactivity
disorder; AD - Alzheimer's disease; AS - Asperger syndrone.

Disease Citation N ðM=FÞ MD Observations

ADHD Mostofsky
et al. (1998b)

35 (35/0) Y Decreased inferior
posterior vermis

Durston et al.
(2004)

90 (90/0) N Reduced right cerebellar
volume

Alcoholism Torvik and
Torp (1986)

65 (65/0) Y Decreased vermis
segments

Baker et al.
(1999)

19 (14/5) Y Non-significant loss in
vermis and flocculus

AD Thomann
et al. (2008)

60 (29/
31)

Y Decreased superior and
inferior posterior lobes

M€oller et al.
(2013)

344 (175/
169)

–a Reduced GM throughout
the cerebellum

Colloby et al.
(2014)

127 (84/
43)

–a Bilateral reduction of
Lobule VI

AS Catani et al.
(2008)

31 (31/0) Y Reduced cerebellar
fractional anisotropy

Autism Courchesne
et al. (1994)

103 (84/
19)

Y Reduced area in the
vermis of Lobule VI and
VII

Cleavinger
et al. (2008)

65 (65/0) Y No significant differences

Webb et al.
(2009)

71 (56/
15)

Y Reduced area in various
vermal labels

D'Mello et al.
(2015)

70 (51/
19)

N Reduced GM in Lobule VII

Dyslexia Brambati et al.
(2004)

21 (10/
11)

–a Reduced cerebellar GM
volume

Jednor!og
et al. (2013)

81 (39/
42)

–a Reduced GM volume in
left Lobule I/II

Fragile X Mostofsky
et al. (1998a)

188 (98/
90)

Y Decreased posterior
vermis in males and
females, though less
significant in females.

Syndrome
Schizophrenia Nopoulos

et al. (1999)
130 (130/
0)

Nb Smaller vermis area and
smaller anterior lobe

Okugawa
et al. (2002)

30 (30/0) Nb Reduced posterior
superior vermis

Okugawa
et al. (2003)

116 (73/
43)

Nb Reduced anterior vermis,
posterior superior vermis,
and posterior inferior
vermis volumes

Womer et al.
(2016)

104 (48/
56)

Y Decreased posterior
vermis volumes in males

a The studies did not differentiate regions of the cerebellum and based
assessment on an anatomists interpretation of the areas of change.

b Automated processing for cerebellar volumes based on registration to a
Talairach Atlas, augmented by manual tracings of the vermis.
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protocol and the inter-rater variability are in Bogovic et al. (2013b). Our
Pediatric Cohort comprises data collected at the Center for Neuro-
developmental Medicine and Imaging Research at the Kennedy Krieger
Institute (PI: S.H. Mostofsky). The Pediatric Cohort was labeled using a
cerebellar atlas developed at the Center for Neurodevelopmental Medi-
cine and Imaging Research. The cerebellar atlas is based on a highly
reliable manual parcellation protocol with interclass correlation co-
efficients ranging from 0.86 to 0.99 across anatomically defined sub-
divisions as outlined in Table 4. The Participants were also encouraged to
take advantage of other available data sets; in particular, they were made
aware of data provided by J€orn Diedrichsen of the University of Western
Ontario.2 The Diedrichsen data comprises 20 normal adult subjects, each
of which have 30 labeled cerebellar components.

Our Adult Cohort contains 20 subjects, a mix of healthy controls and
ataxia patients, each with 28 labeled cerebellar components (complete
demographic information is provided in Table 3; see Fig. 2 for an
example image and corresponding manual labels). Fifteen training ex-
amples were provided to the Participants, and the remaining five data
sets were used for testing, with the goal being to label the cerebella of the
test subjects to best agree with the expert labels. Magnetization prepared
rapid gradient echo (MP-RAGE) images using a 3.0 TMR scanner (Intera,
Phillips Medical Systems, Netherlands) were acquired with the following
parameters: 1.1mm slice thickness, 8∘ flip angle, TE¼ 3.9ms,
TR¼ 8.43ms, FOV 21.2 % 21.2 cm, image matrix of 256 % 256. The
images were resampled to have a 1.0 mm isotropic voxel; subsequently
they were defaced using mri_deface from FreeSurfer (v5.3) (Fischl,
2012), a skull stripping mask was generated using SPECTRE (Carass
et al., 2007, 2010), and the skull-stripped image was white matter (WM)
peak normalized so that all images have a consistent WM peak intensity
(Nyúl and Udupa, 1999a). For the training data, the defaced MR image,
the WM peak skull stripped image, and the expert manual cerebellar
parcellations were provided to the Participants. For the test subjects only
the defaced MR image and the WM peak skull-stripped image were
provided. All images in this cohort were acquired in an axial orientation.
An example of both the defaced and WM peak skull stripped image for a
data set are shown in Fig. 2 with the corresponding manual delineation.

Our Pediatric Cohort comprises data collected at the Center for

Neurodevelopmental and Imaging Research at the Kennedy Krieger
Institute (PI: S.H. Mostofsky). These 30 expertly labeled data sets, with
18 labeled cerebellar components, are from 8 to 12 year old boys and
girls with a mix of healthy controls, ADHD and high-functioning Autism
(HFA) patients (complete demographic information is provided in
Table 3). 20 of these were provided as training and 10 were reserved for
testing. The objective was to label these cerebella to best agree with the
expert labels. The provided MR images were MP-RAGE, acquired on a 3T
Philips Gyroscan NT (Royal Philips Electronics) system with the
following parameters: 1 mm slice thickness, 8∘ flip angle,
TE¼ 3.0ms TR¼ 7.0ms, image matrix of 256 % 256. The Pediatric
Cohort was preprocessed in an identical manner to our Adult Cohort;
specifically, the images were defaced using mri_deface, skull-stripped
using SPECTRE, and the skull-stripped image was WM peak

Table 3
Demographic details for the training and test data for both cohorts. The top line is
the information of the entire data set, while subsequent lines within a section are
specific to the patient diagnoses. N (M/F) denotes the number of patients and the
male/female ratio, respectively. The Age column lists the mean, standard devi-
ation, min, and max, in years, at scan time. The codes for the patient groups are:
HC – Healthy controls; CB – Symptoms of cerebellar dysfunction without genetic
diagnosis; SCA6 – Spinocerebellar ataxia type 6; ADHD – Attention-deficit and
hyperactivity disorder; HFA – High-functioning Autism.

Data Set N (M/F) Age

Mean (SD) [Min, Max]

Adult Cohort
Training 15 (5/10) 54.7(&11.97) [30.0, 71.0]
HC 6 (2/4) 54.3(&14.69) [30.0, 71.0]
CB 3 (1/2) 54.3(&8.02) [46.0, 62.0]
SCA6 6 (2/4) 55.3(&12.60) [35.0, 70.0]
Testing 5 (5/0) 69.2(&5.81) [62.0, 78.0]
CB 5 (5/0) 69.2(&5.81) [62.0, 78.0]
Pediatric Cohort
Training 20 (7/13) 10.1(&1.36) [8.3, 13.2]
HC 10 (4/6) 10.2(&1.33) [8.4, 13.2]
ADHD 7 (0/7) 10.4(&1.61) [8.3, 12.2]
HFA 3 (3/0) 9.2(&0.65) [8.5, 9.7]
Testing 10 (3/7) 10.1(&1.29) [8.4, 12.6]
HC 5 (1/4) 9.9(&1.04) [8.4, 11.2]
ADHD 3 (0/3) 10.2(&1.06) [9.2, 11.3]
HFA 2 (2/0) 10.6(&2.76) [8.7, 12.6]

Table 4
The labeled cerebellar structures of both cohorts. For reference, we include a key
to convert between the Schmahmann and classical nomenclature in Table 1.

Adult Cohort (Healthy Controls and Ataxia Patients)

Major Structure Cerebellar Sub-components

Corpus Medullare
Vermis Vermis of Lobule VI

Vermis of Lobule VII
Vermis of Lobule VIII
Vermis of Lobule IX
Vermis of Lobule X

L/R Anterior L/R Lobule I/II/III
L/R Lobule IV
L/R Lobule V

L/R Superior Posterior L/R Lobule VI
L/R Lobule VIIAf (Crus I)
L/R Lobule VIIAt (Crus II)
L/R Lobule VIIB

L/R Inferior Posterior L/R Lobule VIIIA
L/R Lobule VIIIB
L/R Lobule IX

L/R Flocculonodular L/R Lobule X

Pediatric Cohort (Healthy Controls, ADHD & HFA Patients)
Major Structure Cerebellar Sub-components

Corpus Medullare
Vermis Vermis of Lobule I–V

Vermis of Lobule VI-VII
Vermis of Lobule VIII-X

L/R Anterior L/R Lobule I–V
L/R Superior Posterior L/R Lobule VI

L/R Lobule VIIAf (Crus I)
L/R Lobule VIIAt (Crus II) & VIIB

L/R Inferior Posterior L/R Lobule VIII
L/R Lobule IX

L/R Flocculonodular L/R Lobule X

Table 5
An overview of the methods used in our comparison, with details of each method
listed in the remainder of this Section.

Name Approach

SUITa Default SUIT v3.2
C-SUITa C-SUIT is a customized SUIT, with Correction and

Customized Atlas based on the Pediatric Cohort
FS-SUIT FreeSurfer and SUIT in collaboration
LiviaNET A thirteen layer fully convolution network (FCN)
ConvNet Convolution neural network
CERES2 Updated version of CERES with improved intensity

normalization and a new error correction method based
on an ensemble of boosted patch-based neural networks

RASCAL Updated patch-matching technique with cohort specific
templates, improved intensity normalization,
and non-linear registration

DeepNet A U-net based FCN with ten layers

a Denotes methods that only contributed results for the Pediatric Cohort.

2 Available from: http://www.diedrichsenlab.org/imaging/propatlas.htm.
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normalized. For each of the 20 training images, the defaced MR image,
the WM peak skull stripped image, and the expert manual cerebellar
parcellation were provided to the Participants. For the test subjects only
the defaced MR image and the WM peak skull stripped image were
provided. All images in this cohort were acquired in a coronal orienta-
tion. An example of both the defaced and WM peak skull stripped image

for a training data set are shown in Fig. 3 with the corresponding manual
delineation. A complete list of the labels provided for the two cohorts is
available in Table 4 and a key is provided in Table 1 to convert between
the Schmahmann (Schmahmann et al., 2000) and classical (Malacarne,
1776; Henle, 1879) nomenclature.

Fig. 2. For our Adult Cohort, we show a cropped portion of a typical axial slice of (a) the defaced MP-RAGE, (b) the skull-stripped MP-RAGE, and (c) the manual labels
with a corresponding color key for the prominent labels. The images are shown in radiological convention. A complete list of all the labels for the Adult Cohort is
provided in Table 4. Results of the methods on the same data are shown in Fig. 4.

Fig. 3. For our Pediatric Cohort, we show a cropped portion of a typical coronal slice of (a) the defaced MP-RAGE, (b) the skull-stripped MP-RAGE, and (c) the manual
labels with a corresponding color key for the prominent labels. The images are shown in radiological convention. A complete list of all the labels for the Pediatric
Cohort is provided in Table 4. Results of the methods on the same data are shown in Fig. 9.

A. Carass et al. NeuroImage 183 (2018) 150–172

155



2.2. Comparison metric

To compare the results from the available methods with our expert
delineations, we used the Dice overlap (Dice, 1945). The Dice overlap is a
commonly used volume metric for comparing labels masks. If M G is the
gold standard mask of a human rater and M A is the mask generated by a
particular algorithm, then the Dice overlap for binary objects is computed
as

DiceðM G;M AÞ ¼ 2
jM G \ M Aj
jM Gjþ jM Aj

;

where j 'j is the cardinality (number of voxels). This overlap measure has
values in the range ½0;1), with 0 indicating no agreement between the
two masks, and 1 meaning the two masks are identical. We have chosen
to explicitly restrict our analysis to the Dice overlap for two reasons: 1) it
is a widely reported and understood measure; 2) due to the large number
of labels, the hierarchy of labels (from coarse to fine), the number of
algorithms, and the two cohorts that we report on would make reporting
multiple measures very lengthy. We note that in two recent challenge
papers (Carass et al., 2017b; Maier et al., 2017) the final rankings of the
methods—which used multiple metrics—were well correlated with the
Dice overlap; see Table 7 in Maier et al. (2017) for example. A benefit of
using a single measure in this manner is the clarity that is afforded in

declaring a best method. We comment more on the pros and cons of this
evaluation in Section 5.

3. Methods overview

We introduce each method with a three line summary: the first line
includes a colored square (that is used in subsequent plots and figures for
quick reference) and the name of the method; second is a one line
summary of the method; and finally in parentheses is the Participant(s)
that contributed the method. Following each of the summaries is a brief
overview of the respective method, a complete description of each
method is available in Appendix A. A brief summary of each of the
methods is provided in Table 5.

SUIT.
Default SUIT v3.2.
(Carlos H. Castillo).
Cerebellar isolation is performed using the unified segmentation

(Ashburner and Friston, 2005) of SPM12. Then the cerebellar cortex is
normalized into the spatially unbiased atlas template of the human cer-
ebellum (SUIT) toolbox v3.2 (Diedrichsen et al., 2009), using a
fast-diffeomorphic normalization algorithm (DARTEL) (Ashburner,
2007). The probabilistic atlas included in the SUIT toolbox identify the
cerebellar lobular boundaries. Then the inverse warp deformation field
was calculated and then applied to map the SUIT atlas into a subject's

Fig. 4. Shown for a test data set in the Adult Cohort are the (a) manual delineation, and the results for each of the methods: (b) CERES2; (c) LiviaNET; (d)
DeepNet; (e) ConvNet; (f) RASCAL; and (g) FS-SUIT, for the same axial slice shown in Fig. 2. The methods are ranked based on their mean whole cerebellum
parcellation, see Fig. 5 for details.
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native space.
C-SUIT.

Customized-SUIT (C-SUIT) with Corrections and Customized Atlas
based on the Pediatric Cohort.

(Paul Rasser).
The Pediatric training data is preprocessed using FreeSurfer (v5.3).
(FS) (Fischl, 2012) and then mapped into the SUIT space. In this

space, a customized pediatric atlas, mask and parcellation were con-
structed. The ten test subjects from the Pediatric Cohort were pre-
processed with FreeSurfer, followed by applications of ANTs (Avants
et al., 2008) and SUIT to apply the customized pediatric parcellation.

FS-SUIT.
FreeSurfer and SUIT in collaboration for Cerebellar Segmentation.
(Melanie Ganz & Vincent Beliveau).
Whole brain and cerebellar GM and WM segmentation of structural

MRI data was performed with FreeSurfer. FS-SUIT augments FreeSurfer

with SUIT (v2.7) (Diedrichsen et al., 2009) to identify cerebellar lobules.
To unify the results from FreeSurfer and SUIT into a coherent cerebellum
lobule parcellation, a final segmentation is created by limiting the SUIT
lobule parcellation to their intersection with the FreeSurfer cerebellar
GM.

LiviaNET.
Cerebellum parcellation from a deep learning perspective
(Jose Dolz, Ismail Ben Ayed, & Christian Desrosiers).
LiviaNET is built on the FCN described in Dolz et al. (2018) which had

state-of-the-art performance for subcortical brain segmentation. To
ensure that the network contains only convolutional layers,
fully-connected layers are converted to a collection of 1 % 1 % 1 con-
volutions (Kamnitsas et al., 2017). As the structures in the cerebellum are
often thinner than subcortical structures, to avoid losing small details
when passing the target structures through several convolutional blocks,
LiviaNET embeds the feature maps from all layers into the
fully-connected layers.

ConvNet.
Cerebellum segmentation using convolutional neural networks.
(Benjamin Thyreau).
ConvNet learns to segment the MRI using the expert labels as training

data. ConvNet was intended to investigate whether whole-image input,
as opposed to patch-based, could better capture high-level structure and
human-expert variation. ConvNet took advantage of the overlap between
the labeling schemes in both cohorts, which provided for data augmen-
tation to train a base network that is then refined for the two cohorts
separately.

CERES2.
Cerebellum multi-atlas patch-based segmentation with a patch-based

boosted neural network error corrector.
(Jos!e E. Romero, Pierrick Coup!e, & Jos!e V. Manj!on).
A new version of CERES (Romero et al., 2017), which is a cerebellum

lobule segmentation algorithm that is based on a recent method called
Optimized PatchMatch Label fusion (OPAL) (Giraud et al., 2016; Ta et al.,
2014) is presented. The method consists of a multi-atlas patch-based
(Rousseau et al., 2011; Coupe et al., 2011) non-local label fusion tech-
nique that produces segmentations using a library of manually annotated
cases. CERES2 improves on CERES by using a different intensity
normalization method and by adding a systematic error correction step
based on an ensemble of patch-based boosted neural networks.

RASCAL.
Patch-based label fusion.
(Vladimir S. Fonov and D. Louis Collins).
The previously published RASCAL (Rapid Automatic Segmentation of

the Human Cerebellum and its Lobules) (Weier et al., 2014) was adapted
for use with the two cohorts. The data was preprocessed as follows: 1)
linear registration to MNI-ICBM152 2009c stereotaxic space (Fonov
et al., 2010); 2) linear intensity normalization based on quantile

Table 6
A summary of the rank-sum calculation for each of the hierarchies. The Coarse hierarchy includes three labels: whole cerebellum, whole vermis, and CM; the Lobe
hierarchy includes eight labels: Left/Right Anterior Lobe, Left/Right Superior Posterior, Left/Right Inferior Posterior, and Left/Right Flocculonodular; the Vermis
hierarchy is five labels for the Adult Cohort and three labels for the Pediatric Cohort (see Table 4 for details); the Lobule hierarchy contains 22 labels for the Adult Cohort
and 14 labels for the Pediatric Cohort (see Table 4 for details). Complete rank-sum calculation is included in the supplemental material.

1st 2nd 3rd 4th 5th 6th 7th 8th

Adult Cohort Coarse CERES2 LiviaNET DeepNet RASCAL ConvNet FS-SUIT
Lobe CERES2 LiviaNET ConvNet DeepNet RASCAL FS-SUIT
Vermis CERES2 LiviaNET DeepNet RASCAL ConvNet FS-SUIT
Lobule CERES2 DeepNet LiviaNET RASCAL ConvNet FS-SUIT
Consolidated CERES2 DeepNet LiviaNET RASCAL ConvNet FS-SUIT

Pediatric Cohort Coarse LiviaNET CERES2 DeepNet RASCAL ConvNet C-SUIT FS-SUIT SUIT
Lobe CERES2 LiviaNET DeepNet RASCAL C-SUIT ConvNet SUIT FS-SUIT
Vermis CERES2 LiviaNET DeepNet RASCAL ConvNet C-SUIT SUIT FS-SUIT
Lobule CERES2 DeepNet LiviaNET RASCAL C-SUIT ConvNet SUIT FS-SUIT
Consolidated CERES2 LiviaNET DeepNet RASCAL C-SUIT ConvNet SUIT FS-SUIT

Table 7
For the Adult Cohort, we show the p-value for the two-sided Wilcoxon paired
signed-rank test comparing the second ( LiviaNET) and third ( DeepNet)
placed teams to the top ( CERES2) ranked team across the four hierar-
chies (Coarse, Lobe, Vermis, Lobule) of labeling and also the combination of all
38 labels (Consolidated). The mean Dice overlap for each method, at the
respective hierarchy, is shown underneath the method's name.

Hierarchy Method p-value

Mean Dice Overlap

Coarse CERES2
0.9118

vs. LiviaNET 6:9% 10*3y

0.8967
vs. DeepNet 6:1% 10*5z

0.8908

Lobe CERES2
0.8395

vs. LiviaNET 2:2% 10*1

0.8289
vs. DeepNet 1:9% 10*4y

0.8021

Vermis CERES2
0.8302

vs. LiviaNET 1:2% 10*2

0.8012
vs. DeepNet 5:6% 10*4y

0.8003

Lobule CERES2
0.7657

vs. LiviaNET 5:5% 10*5z

0.7168
vs. DeepNet 1:2% 10*5z

0.7382

Consolidated CERES2
0.8013

vs. LiviaNET 3:0% 10*7z

0.7657
vs. DeepNet 3:1% 10*12z

0.7719

yDenotes weak statistical significance (p-value < 0:001).
zDenotes strong statistical significance (p-value < 0:0001).
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matching to normalize the intensity range to the MNI-ICBM152 2009c
template; 3) extracted brain mask using thresholding of the provided
SPECTRE brainmask; 4) created an unbiased population specific template
(Fonov et al., 2010), the resultant template was used as a reference
template for RASCAL.

DeepNet.
U-Net Parcellation of the Cerebellum.
(Vladimir S. Fonov and D. Louis Collins).
DeepNet is an exploration of the potential of using an FCN based on U-

net (Ronneberger et al., 2015; Çiçek et al., 2016) to parcellate the
cerebellum.

4. Results

We present results using the Dice overlap measure to characterize the
performance of the methods applied to both cohorts in our Comparison.
Each Participating group provided a parcellation of the test data sets into
lobules respecting the labeling scheme used in the respective cohort. To
better characterize performance, we broke down the analysis using a
hierarchical scheme. At the coarsest level we have the gross structures of
the whole cerebellum, the whole vermis, and the corpus medullare (CM).
We then have the subdivisions of the cerebellum into its left and right
lobes; see Table 4 for the definitions of these structures for each cohort.
The final two levels are the subdivisions of the vermis and the individual
lobules, these are different for both cohorts—as the delineations draw
distinctions between the vermis and the granularity with which the
cerebellum compartments are identified. Specifically, for the Adult
Cohort there are five subdivisions of the vermis and 22 lobule labels (11
per hemisphere), whereas for the Pediatric Cohort there are three vermal
subdivisions and 14 lobule labels (seven per hemisphere). These levels
are identified and defined as: 1) Coarse level which includes the whole
cerebellum, whole vermis, and CM (3 labels); 2) Lobe level including the
left and right of the four lobes (8 labels); 3) Vermis level which includes
the vermal subdivisions of the vermis (5 labels for our Adult Cohort, 3
labels for our Pediatric Cohort); 4) Lobule level (22 labels for our Adult
Cohort, 14 labels for our Pediatric Cohort); and a grouping listed as 5)
Consolidated, which is a union of all the available labels (38 labels for the
Adult Cohort, 28 labels for the Pediatric Cohort). These hierarchies have
been generated (where necessary) based on the supplied parcellation of
each algorithm bymerging the appropriate labels; for example, the whole
cerebellum label is given by merging all the labels. In Subsection 4.3, we
summarize the Dice overlap results using the rank-sum to compare the
performance of the various methods in a succinct manner. The rank-sum
scoring assigns a score of 1 to the method with the highest mean Dice
overlap measure, 2 to the second highest mean Dice overlap measure, et
cetera, for each label. Table 6 provides a summary of the rank-sums for
each of the hierarchies. The supplemental material includes details of the
rank-sum calculation.

4.1. Adult Cohort

Fig. 4 shows the results of the six methods on a typical axial slice from
a test data set in the Adult Cohort: Fig. 2 shows the underlying MR data.
Figs. 5–8 show the Dice overlap for each of the methods across the
various hierarchies; these plots show the individual data point for each of
the five test data sets as well as showing the mean Dice overlap as a
horizontal bar. Specifically, Fig. 5 shows the Dice overlap for the whole
cerebellum, the whole vermis, and the CM. The mean Dice overlap of the
methods on whole cerebellum was used to order the methods in Fig. 4.
We can see that CERES2 has the highest mean Dice overlap for each of the
Coarse labels; however, for the whole cerebellum label the difference
between CERES2 and LiviaNET is quite small (0.950 vs. 0.949), though
this is not the case for the other two Coarse Labels. This result sets the
tone for many of the other labels in the Adult Cohort; in general for a
given label the mean Dice overlap of CERES2 is the highest of the
methods, with LiviaNET typically coming in second and on occasion the
difference is negligible. Typical examples of this behavior are the Left and
Right Anterior Lobe (Fig. 6), the Left and Right Superior Posterior Lobe
(Fig. 6), Vermis of Lobules VIII through X (Fig. 7), and several cases in the
Lobule hierarchy shown in Fig. 8. There are of course example of labels
on which CERES2 does not achieve the maximummean Dice overlap. See
the Left and Right Inferior Posterior Lobe in Fig. 6, and the Vermis of
Lobule VI in Fig. 7 for examples. In all 38 labels under consideration,
there are 11 labels on which CERES2 is not ranked first; these 11 cases are
split between LiviaNET (3 times), ConvNet (5 times), and DeepNet (3
times); see the supplemental material for complete details. We also
observe in Figs. 6 and 8 that each algorithm has similar performance on
both the left and right for each label. We make the observation that most
of the methods have a mean Dice overlap above 0.8 for all the lobes
except the Flocculonodular Lobe. For the vermal subdivisions, we see a
slight degradation in results (mean Dice overlap in the range 0.7–0.9). Of
course we see a further drop in performance when considering the lobe
subdivisons, particularly for Lobules V, VIIB, and VIIIA. In fact, these
lobules appear to be the most difficult to parcellate for all the methods; as
each method has a large range of Dice overlap values for these regions.

4.2. Pediatric Cohort

Fig. 9 shows the results of the eight methods on a typical coronal slice
from a test data set in the Pediatric Cohort, Fig. 3 shows the underlying
MR data. Figs. 10–13 show the Dice overlap for each of the methods
across the various hierarchies; these plots show the individual data point
for each of the ten test data sets as well as showing the mean Dice overlap
as a horizontal bar. Specifically, Fig. 10 shows the Dice overlap for the
whole cerebellum, the whole vermis, and the CM. The mean Dice overlap
of the methods on the whole cerebellumwas used to order the methods in
Fig. 9. We can see that LiviaNET has the highest mean Dice overlap for

Fig. 5. The Dice overlap for the three labels associated
with the Coarse hierarchy is shown for the Adult
Cohort. Each column includes five data points, for the
five test data sets in the Adult Cohort, showing the
Dice overlap for a method-label pair (some of the data
points are on top of one another and are thus occluded
from view). The horizontal line in each column shows
the mean Dice overlap for that particular method and
label. We note that the scale has been zoomed to help
appreciate the differences between the algorithms.
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the whole cerebellum and CM labels with CERES2 in second place;
however, for the other coarse label the order of these two methods is
reversed. In fact, unlike the Adult Cohort, where CERES2 was on top but
definitely not unopposed, in the Pediatric Cohort CERES2 is quite
dominant. The only labels for which it is not ranked first are the whole
cerebellum and the CM. Similar to the Adult Cohort, we observe in
Figs. 11 and 13 for the Pediatric Cohort that each algorithm performs
consistently on both the left and right for each label.

4.3. Summary and further analysis

To create a readily interpretable representation of these results we
computed the rank-sum for each method over the various hierarchies and
both cohorts. These rank-sum results are presented in Table 6, with the
details of the computation included in the supplemental material. Over
both cohorts, we can easily discern some patterns in Table 6: clearly
CERES2 is the overall winner, with LiviaNET and DeepNet trading back
and forth between second and third place. We also see RASCAL is quite
consistently fourth in both cohorts. Given the outcome of our rank-sum
analysis, we identify the top three methods as CERES2, LiviaNET, and
DeepNet. We next want to determine if there is a statistically significant
difference between these top three methods. To this end, we use a two-
sided Wilcoxon paired signed-rank test (Wilcoxon, 1945) between
CERES2 & LiviaNET, and between CERES2 & DeepNet, to establish sta-
tistical significance. The Wilcoxon test is a nonparametric test of the null
hypothesis that the two samples come from the same population against

an alternative hypothesis. We tested using all the available Dice overlap
values for a particular hierarchy; thus for the Coarse level on the Adult
Cohort there are 15 values for each method (3 labels % 5 data sets). For
the statistical comparisons we use an α level of 0.001 to note weak sta-
tistical significance and an α level of 0.0001 to denote strong statistical
significance; we use these α values as we do not employ any multiple
comparison correction techniques. The p-values for the Wilcoxon test and
the mean values for the Dice overlap (for our top three methods) are
shown in Table 7 for the Adult Cohort and Table 8 for the Pediatric
Cohort. For the five hierarchies (Coarse, Lobe, Vermis, Lobule, and
Consolidated) on the Adult Cohort CERES2 has the highest mean Dice
overlap on all five hierarchies and is statistically significantly different on
eight of the ten comparisons (with strong significance in five instances).
The two cases where there is no statistically significant difference are
between CERES2 and LiviaNET for the Lobe and Vermis hierarchies. For
the Pediatric Cohort CERES2 has the highest mean Dice overlap on all
five hierarchies and is statistically significantly different on nine of the
ten comparisons (with strong significance in all nine cases). The single
comparison for which there is not significance is between CERES2 and
LiviaNET on the Coarse hierarchy.

To understand the inherent bias of any of the presented methods we
have generated two bias plots (similar to Bland-Altman plots (Bland and
Altman, 1986)), which are included in the supplemental material.
Traditional Bland-Altman plots show the difference of twomeasurements
vs. The mean for the same two measurements. To allow us to present the
various methods on a single plot and to reflect our higher confidence in

Fig. 6. The Dice overlap for the eight labels associated with the Lobe hierarchy is shown for the Adult Cohort, see Table 4 for the list of lobe labels. We note that the
scale has been zoomed to help appreciate the differences between the algorithms.
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the manual delineation, we plot the volumetric difference between each
method and the manual delineation vs. the volume identified by the
manual delineation. In this way, all of the methods can be shown on a
single plot and the differences of each method on a particular subject are
directly comparable. The presented bias plots, included in supplemental
material, are for the whole cerebellum label on the Adult and Pediatric
Cohorts. These plots, included as Figs. 1 and 2 in the supplemental ma-
terial, are indicative of the behavior of the methods across all the labels;
in that FS-SUIT and C-SUIT have positive biases, while SUIT has a
negative bias, and the other methods do not exhibit a consistent bias
across labels.

5. Discussion and conclusions

5.1. Ranking the methods

The primary result of this Comparison is a ranking of the state-of-the-
art methods for parcellating the cerebellum, which is summarized in
Table 6 for both the Adult and Pediatric Cohorts. The different levels of
labeling, which we have referred to as hierarchies, allows for some
granularity in understanding the ranking of the various methods on our

cohorts. Had all the Participants contributed results for the two cohorts it
would have been feasible to merge the rankings; regardless of this, there
is an obvious stratification that occurs across both cohorts that is almost
independent of the hierarchy. We observe that the order of CERES2,
LiviaNET, DeepNet, and RASCAL (as first through fourth) is very stable
across both cohorts and the hierarchies. This is quite pleasing, as it points
to a stability of both the algorithms and the labeling schemes used on
both cohorts—even though the cohorts were labeled independently. We
observe that these top methods all used spatial and intensity normali-
zation to the MNI space.

Clearly improvements in the mean Dice overlap of 0.01 could be
considered marginal, possibly even negligible, however the two-sided
Wilcoxon paired signed-rank test establishes the results of CERES2 as
being a statistical improvement over the second and third place methods
of LiviaNET and DeepNet (see Tables 7 and 8). Other metrics may pro-
vide some subtle insight into the differences of these approaches that the
Dice overlap cannot distinguish, however we note that recent work
(Maier-Hein et al., 2018) has shown that the median Dice overlap is the
most stable manner in which to evaluate challenge winners. The
important point of this work is that all three of these methods provide a
high level of accuracy in parcellating both the adult and pediatric

Fig. 7. The Dice overlap for the five labels associated with the Vermis hierarchy is shown for the Adult Cohort, see Table 4 for the list of vermis labels. See Fig. 5 for
instructions on interpreting the plots. We note that some of the scale has been zoomed to help appreciate the differences between the algorithms.
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cerebellum. This provides an opportunity for detailed analyses of the
cerebellum on an unprecedented scale.

5.2. Criticisms

The current work has two major shortcomings: 1) flawed cohorts and
2) exclusive use of Dice overlap. The two cohorts are flawed in different
ways. Firstly, the Adult Cohort while having a rich label set (CM label,
five vermal labels, and 22 lobule labels) provided only five test data sets
each of which showed signs of cerebellar dysfunction without a genetic
diagnosis. In particular, the test data for the Adult Cohort had a mean age
of 69.2 years of age, whereas the training data had a mean age of 54.7
years of age (see Table 3). A two-sided Wilcoxon signed-rank test (Wil-
coxon, 1945) between the ages of the training and testing portions of the

Adult Cohort has a p-value of 0.02, not significant but not a satisfactory
situation either. The other issues with the Adult Cohort are its gender bias
(all male test data versus training data that is only one thirdmale) and the
small size of the test data (N ¼ 5). The effects of the gender bias are an
unknown and the cohort size limits the statistical power of any tests. The
cohort size also reduced the organizers' willingness to report standard
deviations for the Dice overlap, with such a small sample any reported
standard deviations would be erroneous. In contrast, to the Adult Cohort,
the Pediatric Cohort has a slightly smaller label set (CM label, three
vermal labels, and 18 lobule labels), a larger training pool of 20 data sets
and a larger testing pool with 10 data sets. The gender proportions are
consistent throughout the training and testing data sets as well as
throughout the disease classifications in both the training and testing
data. When using a two-sided Wilcoxon signed-rank test to perform a

Fig. 8. The Dice overlap for the 22 labels (11 per hemisphere) associated with the Lobule hierarchy is shown for the Adult Cohort, see Table 4 for the list of lobule
labels. See Fig. 5 for instructions on interpreting the plots.
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comparison between the ages of the training and test data, we get a more
pleasing p-value of 0.95. The unfortunate drawback of the Pediatric
Cohort is that it is pediatric data. The pediatric cerebellum is an area of
great potential research and the availability of these automated methods
for future work is very promising. However, the pediatric cerebellum
remains an understudied portion of the central nervous system. The or-
ganizers believe that the pooling of these two cohorts to validate these
methods is still a comprehensive test for any cerebellum parcellation
method.

Since both our data sets were acquired using Philips scanners, our
study cannot be used to assess the robustness and stability across scan-
ners. Additionally, our study did not explore the ability of any of these
methods to identify group differences between populations; our cohorts'
size and composition did not permit this. We note that the top ranked
method, LiviaNET, was validated on the Autism Brain Imaging Data
Exchange (ABIDE) (Martino et al., 2014). LiviaNET used ABIDE I, which

included 17 international sites consisting of 1112 individuals (539 with
autism spectrum disorder and 573 healthy controls, individuals were
between 6 and 64 years of age at scan time) and the authors claim that
this demonstrated a robustness “to various acquisition protocols, de-
mographics, and clinical factors” (Dolz et al., 2018). We further note that
several of the included methods have been used on other data sources
with high quality results (Romero et al., 2017; Weier et al., 2014), and
studies based on the submitted methods have previously explored group
differences (Bernard et al., 2015; Weier et al., 2016). However, we do not
make any claims of robustness to data or efficacy for group comparisons
for any of the reported methods.

The remaining concern is the exclusive use of the Dice overlap mea-
sure throughout the paper. If we ignore the hierarchical label evaluation
we employed, there were 28 labels in the Adult Cohort and 22 labels in
the Pediatric Cohort. Given this many labels it seemed impractical to the
organizers to report multiple metrics. Moreover, it would have been quite

Fig. 9. Shown for a test data set in the Pediatric Cohort are the (a)manual delineation, and the results for each of the methods: (b) LiviaNET; (c) CERES2; (d)
DeepNet; (e) ConvNet; (f) RASCAL; (g) C-SUIT; (h) FS-SUIT; and (i) SUIT, for the same coronal slice shown in Fig. 3. The methods are ranked based on
their mean whole cerebellum parcellation (see Fig. 10 for details).

Fig. 10. The Dice overlap for the three labels associ-
ated with the Coarse hierarchy are shown for the Pe-
diatric Cohort. Each column includes ten data points,
for the ten test data sets in the Pediatric Cohort,
showing the Dice overlap for a method-label pair
(some of the data points are on top of one another and
are thus occluded from view). The horizontal line in
each column shows the mean Dice overlap for that
particular method and label. We note that the scale
has been zoomed to help appreciate the differences
between the algorithms.
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difficult to develop a consensus as to how to combine such metrics in a
meaningful and unbiased manner. We also note that the majority of pa-
pers comparing multiple algorithms, as this paper does, are focused on a
small number of labels. In fact it is typical for there to be only one label
under consideration: white matter lesions, for example (Styner et al.,
2008). As organizers, we observed in Maier et al. (2017) (from Table 7)
that the final ranking correlated with the mean Dice overlap; in fact, the
mean Dice overlap correctly predicts the top three methods and only
incorrectly ranks three of the fourteenmethods under consideration. This
occurs despite the fact that the Dice overlap is only one component of a
multi-measure evaluation (Maier et al., 2017). Thus, we believe exclusive
use of the Dice overlap is acceptable and that our analysis of this Com-
parison correctly represents the state-of-the-art in fully automated cere-
bellum parcellation.

There are three more (minor) concerns—image quality, subsequent
analyses, and the use of FreeSurfer v5.3—each of which we comment on

below. A limitation in both of our cohorts was quality assessment (QA) of
the images, which was limited to ensuring images were free from arti-
facts. It is possible that other more subtle quality issues may have
contributed to errors in generating the manual delineations. Our basic
review was not a comprehensive QA, like MRI-QC (Esteban et al., 2017),
which might identify an image that was not acquired in a manner
consistent with the other data in the cohort. A further consideration, that
is not covered by MRI-QC, would be a cerebellum specific processing
assessment (Li et al., 2016; Zuo et al., 2018) that would highlight other
issues due to preprocessing.

This paper has focused on the automated parcellation of the cere-
bellum to facilitate streamlined regional analyses. Such regional analyses
can be used as a normalizing factor in functional MRI (Barrett et al.,
2017) and positron emission tomography data (Murphy et al., 2013), and
for studying the changing shape of the cerebellum in disease (Abulnaga
et al., 2016; Kansal et al., 2016). However, there is continued interest in

Fig. 11. The Dice overlap for the eight labels associated with the Lobe hierarchy are shown for the Pediatric Cohort, see Table 4 for the list of lobe labels. See Fig. 10
for instructions on interpreting the plots. We note that the scale has been zoomed to help appreciate the differences between the algorithms.

Fig. 12. The Dice overlap for the three labels associated with the Vermis hierarchy are shown for the Pediatric Cohort, see Table 4 for the list of vermis labels. See
Fig. 10 for instructions on interpreting the plots.
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voxel based morphometry (VBM) analyses of the cerebellum (Colloby
et al., 2014). In this regard several of the presented methods are defi-
cient, as there is no convenient interpretation between the provided
parcellation and a common atlas space that would lend itself to a VBM
style study. This is an area for potential future research. Finally, two of
the included methods used FreeSurfer v5.3 as part of their processing
pipeline, however a newer version of FreeSurfer v6.0 is available. Based
on the ChangeLog available for FreeSurfer, it was not immediately

obvious of any improvement that would benefit either of these methods.

5.3. Comment on inter-rater performance

A portion of our Adult Cohort, along with other similarly acquired
data, was used as part of an inter-rater comparison (Bogovic et al.,
2013b). It is reassuring to see that the performance of the top methods in
this Comparison have similar Dice overlap to that reported for the

Fig. 13. The Dice overlap for the 14 labels (7 per hemisphere) associated with the Lobule hierarchy are shown for the Pediatric Cohort, see Table 4 for the list of
lobule labels. See Fig. 10 for instructions on interpreting the plots. We note that the scale has been zoomed to help appreciate the differences between the algorithms.

A. Carass et al. NeuroImage 183 (2018) 150–172

164



inter-rater analysis. In particular, the mean Dice overlap for CERES2,
LiviaNET, and DeepNet, for the whole vermis are larger than those re-
ported for the inter-rater values (Fig. 5 in Bogovic et al. (2013b)).

5.4. Impact of this work

Several of the methods in this Comparison are either readily available

for use through download or web interface. In particular, the top two
methods are accessible to the community, CERES2 can be used through a
web portal3 and LiviaNET is available for download.4 Identifying the
state-of-the-art in cerebellum parcellation is important for improving the
robustness and speed with which cerebellum imaging studies can be
completed. Although SUIT (Diedrichsen, 2006; Diedrichsen et al., 2009)
has been available and widely used for over 10 years, our study clearly
reveals that there are emerging methods with significantly better per-
formance (given our performance criteria); we note that the probabilistic
lobular segmentation generated by SUIT was meant to be informative
and not definitive. As studies begin to emerge relating the volumes of
cerebellar lobules to functional brain performance (cf. Kansal et al.
(2016)), methods such as CERES2, LiviaNET, and DeepNet may offer a
better alternative for identifying these volumes. As well, this study pro-
vides a baseline for future work on cerebellar parcellation, both in
providing information on the best strategies to date and in providing Dice
coefficients for comparison.
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Appendix A. Methods

Here we provide detailed descriptions of all the methods used in the Comparison. We introduce each method with a three line summary: the first line
includes a colored square (that is used in subsequent plots and figures for quick reference) and the name of the method; second is a one line summary of
the method; and finally in parentheses is the Participant(s) that contributed the method.

SUIT.
Default SUIT v3.2.
(Carlos H. Castillo).
Data analysis were performed using MATLAB R2015b (The Mathworks Inc. Natick, MA), SPM12 (Ashburner et al., 2000), and the spatially unbiased

atlas template of the human cerebellum (SUIT) toolbox v3.2 (Diedrichsen et al., 2009). To achieve the best performance from SUIT, all anatomical
images were first reoriented into LPI (Neurological) orientation and then the origin of each T1-w image was assigned to the manually selected anterior
commissure.

To ensure the correct normalization of the cerebellar cortex into the atlas template, SUIT first isolates the infra-tentorial structures from the rest of
the brain. This is important because the occipital cortex has a similar intensity as the cerebellum and inmost cases there is not a clearly visible separation
between these two structures. SUIT v3.2 achieves this separation by using the unified segmentation (Ashburner and Friston, 2005) of SPM12; this
segmentation procedure combines tissue classification and registration by means of both a mixture of Gaussians and tissue probability maps. Using this
technique, the brain is segmented into eight tissue types: cerebral GM, cerebral WM, cerebellar GM, cerebellar WM, cerebrospinal fluid (CSF), bone,
fat/skin, and air. Finally, a binary cerebellar mask is created by combining the cerebellar GM andWM segmentation maps including voxels with a tissue
probability of greater than or equal to 90% of coming from either of those classes.

After the cerebellar isolation, SUIT uses a fast-diffeomorphic normalization algorithm (DARTEL) (Ashburner, 2007). DARTEL uses the probabilistic

GM and WM segmentation maps to align the anatomy of the cerebellum
of each participant to the SUIT atlas template. To increase the speed of
the process, the non-linear registration is solved using a
Levenberg-Marquardt strategy and a multigrid method; see Ashburner

Table 8
For the Pediatric Cohort, we show the p-value for the two-sided Wilcoxon paired
signed-rank test comparing the second ( LiviaNET) and third ( DeepNet)
placed teams to the top ( CERES2) ranked team across the four hierarchies
(Coarse, Lobe, Vermis, Lobule) of labeling and also the combination of all 28
labels (Consolidated). The mean Dice overlap for each method, at the respective
hierarchy, is shown underneath the methods name.

Hierarchy Method p-value

Mean Dice Overlap

Coarse CERES2
0.9348

vs. LiviaNET 2:1% 10*1

0.9326
vs. DeepNet 6:0% 10*6z

0.9201

Lobe CERES2
0.9033

vs. LiviaNET 7:4% 10*6z

0.8859
vs. DeepNet 4:9% 10*7z

0.8827

Vermis CERES2
0.8763

vs. LiviaNET 2:7% 10*5z

0.8491
vs. DeepNet 7:5% 10*5z

0.8427

Lobule CERES2
0.9043

vs. LiviaNET 1:6% 10*11z

0.8776
vs. DeepNet 1:4% 10*12z

0.8808

Consolidated CERES2
0.9043

vs. LiviaNET 2:2% 10*16z

0.8828
vs. DeepNet 2:2% 10*16z

0.8815

yDenotes weak statistical significance (p-value < 0:001).
zDenotes strong statistical significance (p-value < 0:0001).

3 CERES2 can be used on http://www.volbrain.upv.es/.
4 LiviaNET can be downloaded from https://github.com/josedolz/LiviaNET.
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(2007) for complete details. The result is a non-linear deformed image coregistered to the SUIT atlas template and its respective deformation field.
To identify the cerebellar lobular boundaries, the probabilistic atlas of the cerebellum included in the SUIT toolbox was used. The SUIT atlas consists

of a set of 34 probabilistic maps that indicates the likelihood that a certain voxel in the reference space belongs to each lobule. The SUIT atlas includes
the cerebellar left and right lobules (I-IV, V, VI, Crus I, Crus II, VIIb, VIIIa, VIIIb, IX, X), vermis (VI, Crus I, Crus II, VIIb, VIIIa, VIIIb, IX, and X), and deep
cerebellar nuclei. For this work, these compartments were combined to have only 18 labels (I–V, VI, Crus I, Crus II-VIIb, VIII, IX, X, Vermis I–V, Vermis
VI-VII, Vermis VIII-X, and corpus medullare). For each subject, the inverse warp deformation field was calculated and then applied to the SUIT atlas
using a nearest neighbor approach, so the values of each label were preserved. For each voxel one label was assigned depending on the maximum
probability of the SUIT atlas, resulting in a lobular segmentation of the subject's native space.

C-SUIT.
Customized-SUIT (C-SUIT) with Corrections and Customized Atlas based on the Pediatric Cohort.
(Paul Rasser).
FreeSurfer (v5.3) (FS) (Fischl, 2012) was used to preprocess the images from the Pediatric Cohort training set by performing bias correction, in-

tensity normalization, and skull stripping on the provided defaced MP-RAGE images. A 6-paramerter transformation from their original defaced
MP-RAGE to the conformed FreeSurfer space was found using minctracc (Collins et al., 1994) and was applied to both the defaced and the manually
parcellated volumes. The parcellated volumes were used to correct differences in cerebellum GM as defined by the FreeSurfer subcortical segmentation
output. SPM (Ashburner et al., 2000) was used to correct the coordinate system of the data sets to match the requirements of SUIT (Diedrichsen et al.,
2009). The correction was followed by application of SUIT to provide an initial SUIT cerebellummask that was subsequently corrected to conform to the
cerebellar volume as defined by the corrected subcortical segmentation of FreeSurfer.

ANTs (Avants et al., 2008)—using the fast cross correlation metric—was used to find a symmetric diffeomorphic transformation between the
normalized and bounded MP-RAGE to the SUIT space. All subject images (MP-RAGE, parcellated cerebellum, cerebellum binary mask) were trans-
formed to the SUIT space. FreeSurfer was then used to create a bounded normalized atlas in SUIT space as well as a cerebellum mask in SUIT space by
combining the output from 19 of the 20 training subjects from the Pediatric Cohort. The 20th subject was excluded from this atlas construction step due
to its poor registration with the SUIT space. In the SUIT space, the 18 labels from the 19 subjects in the Pediatric Cohort were combined to create a
customized parcellation using mri_concat from FreeSurfer.

To apply the customized atlas to the remaining ten subjects in the Pediatric Cohort, C-SUIT first preprocesses the ten subjects using FreeSurfer to
perform bias correction, intensity normalization, and skull stripping. Preprocessing the data in this manner provided a consistency between the
volumetric measures based on the cerebellar parcellation and the existing cerebral measures derived from FreeSurfer. This feature was included to
provide a supplementary cerebellar parcellation for projects with existing measures of the cerebrum derived from FreeSurfer, such as the ENIGMA
Project.5

Using SUIT the preprocessed MP-RAGED is bounded, then ANTs estimates a symmetric diffeomorphic transformation into the customized atlas. This
is then applied to the normalized and bounded MP-RAGE. The inverse of this symmetric diffeomorphic transformation was applied to the average
cerebellum hemisphere mask in SUIT space and used to create a binary SUIT style cerebellum mask. The SUIT command suit_normalize was applied to
the bounded and normalized volume and its mask, with the inverse of this transformation applied to the customized cerebellum parcellation. As the
cerebellum parcellation was required in the native space, the test subject's cerebellum parcellation was transformed from the bounded space to their
native space using fsl_rigid_register supplied with the FreeSurfer package. Finally, to remove any potential outliers in the cerebellum parcellation, FSL's
FAST tissue segmentation algorithm (Zhang et al., 2001) was used to create GM and WM masks that were applied to the final cerebellum parcellation.

FS-SUIT.
FreeSurfer and SUIT in collaboration for Cerebellar Segmentation.
(Melanie Ganz & Vincent Beliveau).
The approach considered in this work combines FreeSurfer (v5.3) (Fischl, 2012) and SUIT (Diedrichsen et al., 2009), to overcome some of the

limitations of these algorithms when used independently. Whole brain and cerebellar GM and WM segmentation of structural MRI data was performed
with FreeSurfer. FreeSurfer processing included motion correction, removal of non-brain tissue, automated Talairach transformation, segmentation of
subcortical WM and deep GM volumetric structures (including hippocampus, amygdala, caudate, putamen, ventricles) (Fischl et al., 2002, 2004),
intensity normalization, and further cortical surface processing. FreeSurfer's cerebellum segmentation is driven by a probabilistic atlas segmentation
(Fischl et al., 2002). The procedure maintains tissue class statistics (e.g., means and variances of the MRI intensities of a given neuroanatomical
structure) on a per-location per-class basis throughout an atlas space. In addition, local spatial relationships between structures are encoded in a Markov
random field (MRF). FreeSurfer has been demonstrated to have good test-retest reliability across scanner manufacturers and field strengths (Han et al.,
2006).

As FreeSurfer only provides a segmentation of the cerebellar GM andWM, FS-SUIT augments it with SUIT (v2.7) (Diedrichsen et al., 2009) to identify
cerebellar lobules. SUIT is available as a compatible toolbox for SPM12 (Ashburner et al., 2000) which allows for the creation of a segmentation of the
cerebellum into different lobules. SUIT consists of three steps: 1) cerebellum isolation; 2) normalization to SUIT atlas space; 3) reslicing into SUIT atlas
space/individual subject space. SUIT uses SPM to perform the cerebellum isolation by segmenting the brain into tissue-types. The volume is cropped to
include anything inferior to the tentorium cerebelli. The tissue-types are used to compute posterior probability for each voxel. The normalization to
SUIT atlas space is performed by a nonlinear deformation map to the SUIT template using the cosine-basis function approach (Ashburner and Friston,
1999). Finally, SUIT applies the estimated deformation to map the subject into the SUIT atlas space. In SUIT the atlas is spatially unbiased.

To unify the results from FreeSurfer and SUIT into a coherent cerebellum lobule parcellation, a final segmentation is created by limiting the SUIT
lobule parcellation to their intersection with the FreeSurfer cerebellar GM. While SUIT yields a segmentation of the cerebellar lobules, it largely ignores
the individual WM and GM intensities. Whereas FreeSurfer provides a more accurate representation of the cerebellar WM and GM tissue classes, but it is
also more sensitive in regions of low contrast between tissue types and tends to over-label peripheral tissue. Thus, the intersection provides a refinement
of the GM and WM segmentation while reducing the over-labeling of peripheral tissue. Correspondingly, due to the restriction of the SUIT labels to
FreeSurfer cerebellar GM, FS-SUIT uses the FreeSurfer WM to label the CM; otherwise there would be gaps between the lobule labels and the CM.

5 http://enigma.ini.usc.edu/.
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LiviaNET.
Cerebellum parcellation from a deep learning perspective.
(Jose Dolz, Ismail Ben Ayed, & Christian Desrosiers).
Originally designed for image recognition and classification tasks, convolutional neural networks (CNNs) are now commonly employed for semantic

segmentation. The most naive approach follows a sliding-window strategy where regions defined by the window are processed one-by-one. This
technique presents two main drawbacks: 1) processing image regions independently provides non-structured output, which reduces segmentation
accuracy; and 2) due to many redundant convolution and pooling operations, the process is inefficient. To mitigate these limitations, the spatial map of
class probabilities can be obtained in a single, dense inference step. This approach, known as a fully convolutional neural network (FCN) (Long et al.,
2015), represents the network as a single non-linear convolution, which is trained end-to-end. Unlike the sliding-window approach, FCNs can avoid
redundant convolution and pooling operations, making them computationally more efficient. Additionally, fully convolutional networks have an order
of magnitude fewer coefficients, which makes them easier to train with fewer training samples.

The proposed method, which is built on top of DeepMedic (Kamnitsas et al., 2017), is based on the FCN described in Dolz et al. (2018) which had
state-of-the-art performance for subcortical brain segmentation. This network is composed of 13 layers in total: 9 convolutional layers, followed by 3
fully-connected layers, and the classification layer. The number of kernels in each convolutional layer—from shallow to deep—is 25, 25, 25, 50, 50, 50,
75, 75, and 75, respectively. The kernel sizes are equal to 3 % 3% 3 in all the convolutional layers. Three fully-connected layers, composed of 400, 200,
and 150 hidden units each, are added after these convolutional layers for encoding semantic information. To ensure that the network contains only
convolutional layers, fully-connected layers are converted to a collection of 1% 1% 1 convolutions (Kamnitsas et al., 2017). Dolz et al. (2018) described
two intermediate-layer outputs (i.e., feature maps) that were embedded in the final predictions, encouraging consistency between features extracted at
different scales, while injecting fine-grained information directly in the segmentation process. As the structures in the cerebellum are often thinner than
subcortical structures, to avoid losing small details when passing the target structures through several convolutional blocks, LiviaNET embeds the
feature maps from all layers into the fully-connected layers.

Due to computation and memory limitations, the LiviaNET network cannot apply dense training over the whole 3D input volume. Instead, LiviaNET
sub-samples this volume into S smaller sub-volumes, which are then fed into the network. In this way: 1) LiviaNET avoids memory issues when the input
is not down-sampled (as in this work), and 2) LiviaNET has a high number of samples from each image, removing the need for data augmentation. A
Parametric Rectified Linear Unit (PReLU) (He et al., 2015), which applies an element-wise activation function, follows each convolutional layer. Let θ be
the network trainable parameters, and L as the set of ground-truth labels such that Lvs 2 L represents the label of voxel v in the sth sampled sub-volume
for all the predicted voxels V. The cost function is

Jðθ;L Þ ¼ * 1
SV

X

s¼1

S X

v¼1

V

log pLvs ðXvÞ;

where pLvs ðXvÞ is the output of the classification layer for voxel v in the segment s (i.e. softmax output) given their input feature maps, Xv. This cost
function corresponds to the mean cross-entropy computed over all voxels and sub-volumes. Sample sizes were set to be larger for inference than in
training (Dolz et al., 2018). In this particular application, the following combination was found to give satisfactory results: 27% 27% 27 for training and
35 % 35 % 35 for testing.

Optimization of network parameters was performed via the RMSprop optimizer (Tieleman and Hinton, 2015). Momentum was set to 0.6 and the
initial learning rate was set to 0.001; the latter was reduced by a factor of 2 after every 5 epochs (starting from epoch 10). Weights in layer l were
initialized based on a zero-mean Gaussian distributionwith standard deviation

ffiffiffiffiffiffiffiffiffi
2=nl

p
, where nl denotes the number of connections to units in that layer.

LiviaNET was trained for 35 epochs, with each epoch composed of 20 sub-epochs. At each sub-epoch, a total of 1000 samples were randomly selected
from the training images, and processed in batches of size 10. The network architecture was developed using Theano (Bergstra et al., 2010), with
modifications being made through LiviaNET.6 LiviaNET was used on a server with a NVIDIA Tesla P100 GPU and 16 GB of RAM; training took
approximately 15 h for LiviaNET (taking 25min per epoch).

ConvNet.
Cerebellum segmentation using convolutional neural networks.
(Benjamin Thyreau).
The basis of this work is a convolutional neural network (ConvNet) that learns to segment the MRI using the expert labels as training data. ConvNet

was intended to investigate whether whole-image input, as opposed to patch-based, could better capture high-level structure and human-expert
variation. ConvNet usually requires a large data set, so increasing the number of training examples available was important. As there is overlap be-
tween the labeling schemes in both cohorts, ConvNet uses a merged set of each provided expert delineation to have a common labeling scheme across
the two cohorts. ConvNet is trained on this common set, followed by duplication and refinement of the ConvNets for each of the two cohorts.

A template image was created from all provided delineations using ANTs (Avants et al., 2008). A cerebellummask is defined in this template space as
the bounding box of the union of all labels in this template space. This cerebellummask reduced the size of the computational domain for the processing.
The general left/right symmetry was used to double the training-set size and further reduce the input FOV. Then each image was augmented 200% using
random elastic distortions focused especially at label borders. The images were also intensity-normalized. Due to the memory constraints of the GPU
platform (NVidia GTX 1080, 8 Gb), the left/right resolution had to be halved which diminished some image details.

ConvNet was created with computational and time constraints in mind. Thus ConvNet structure has an alternating stack of 40- and 24-wide con-
volutional layers, with batch-normalization layers. No max-pooling nor other resolution changes were incorporated to reduce the model complexity.
ConvNet also refrained from recalling low-level features within the final layers—usually a good practice in deep learning segmentation systems—as the
goal is not pixel-perfect accuracy but rather expert imitation.

The loss function was a standard cross-entropy metric, weighted by each label size. When a label did not exist, which is a possibility since different
label sets were merged, its weight was not accounted for in the loss function. Stochastic gradient decent (SGD) with momentum was used for the

6 https://github.com/josedolz/LiviaNET.
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optimization of the initial ConvNet—as it tends to find better-quality minima with less over-fitting. The initial ConvNet model fitting took two days to
train. The fine tuning of the separate ConvNets for each cohort used ADAM (Kingma and Ba, 2014) instead of SGD. This allowed for faster fine-tuning of
the two ConvNets, taking approximately 4 h per model. Mini-batches of size 6 were used. During development, one subject was left out of every data set
for internal evaluation purpose, and later, as a final step the models were refitted on all available training data.

This ConvNet has limitations and room for improvement. For instance incorporation of multi-resolution features, tuning the number of parameters,
and a different dropout scheme to ease convergence should all help improve the results. Additionally, as each of the ConvNets were trained on half-
cerebella, the central voxels are arbitrary labeled according to their bounding-box side, which cause inaccuracies when the vermis is absent. Some
post-processing, such as the use of an MRF, could be employed to enhance the results.

CERES2.
Cerebellum multi-atlas patch-based segmentation with a patch-based boosted neural network error corrector.
(Jos!e E. Romero, Pierrick Coup!e, & Jos!e V. Manj!on).
A new version of CERES (Romero et al., 2017), which is a cerebellum lobule segmentation algorithm that is based on a recent method called

Optimized PatchMatch Label fusion (OPAL) (Giraud et al., 2016; Ta et al., 2014) is presented. The method consists of a multi-atlas patch-based
(Rousseau et al., 2011; Coupe et al., 2011) non-local label fusion technique that produces segmentations using a library of manually annotated cases.
CERES2 improves on CERES by using a different intensity normalization method and by adding a systematic error correction step based on an ensemble
of patch-based boosted neural networks.

CERES2 preprocesses all the imaging data by denoising it using the spatially adaptive non-local means filter (Manj!on et al., 2010) and corrects for
intensity inhomogeneity using the N4 bias correction method (Tustison et al., 2010). The images were registered to the Montreal Neurological Institute
(MNI) space using an affine transformation estimated using ANTs (Avants et al., 2008) and the MNI152 T1-w template; this is followed by intensity
normalization (Nyúl and Udupa, 1999b) with theMNI152 images as the reference template. The images are then cropped to the cerebellum based on the
manual segmentations of the subjects in the MNI space. Non-linear deformation was estimated using ANTs (Avants et al., 2008) using the cropped
MNI152 template as reference. CERES2 completes the preprocessing by again applying intensity normalization (Nyúl and Udupa, 1999b) to the cropped
images, further improving the intensity matching. After preprocessing, CERES2 has a library consisting of a set of cropped images (and segmentations)
and their non-linear transformations to the cropped MNI space. Similar to CERES, when given a new subject to segment a custom library is created
online in the subject's linear MNI space to avoid unwanted interpolation artifacts. This is done by concatenating the direct non-linear transformations of
the library templates with the inverse non-linear transformation of the target case.

CERES2 employs a non-local patch-based label fusion, which is a multi-atlas segmentation fusion technique (Coupe et al., 2011). The resultant label
for each image voxel is calculated by a weighted label fusion of multiple sample patches from a specific search area surrounding the target voxel for all
the cases in the library, computed as

vðxiÞ ¼
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Here Vi is the search area around the ith voxel of the subject image, s iterates over the number of subjects in the library, and ys;j is the candidate label from
voxel xs;j, the jth voxel in the sth subject. The function wðxi; xs;jÞ is the similarity between patches, which is defined as,
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where Pð'Þ is the patch around the respective voxel,
$$$$ '

$$j2 is the normalized L2 norm (normalized by the number of elements), and h is a normalization
factor calculated as the minimum of all patch distances from the search area.

The PatchMatch algorithm (Barnes et al., 2010) is an efficient way to find patch-wise correspondences between 2D images based on the approxi-
mated nearest neighbor field (ANNF) method. The core idea is that if two patches are a good match, then adjacent patches are likely to be a good match
as well. Ta et al. (2014) presented the Optimized PatchMatch Label fusion (OPAL), an adaptation to 3D MR images, establishing correspondences
between the input subject image and the library of L templates; the major benefit of OPAL is its run time is independent of the size of the library. A key
difference between Barnes et al. (2010) and OPAL is the assumption, within OPAL, that both subject and library templates are located in the same
coordinate frame (MNI space). A more complete description is available in Ta et al. (2014). Giraud et al. (2016) presented a multi-scale extension to
OPAL, thus avoiding issues relating to fixed size patches. In this extension multiple label probability maps are computed and combined equally for each
label before the label fusion step. Like CERES, CERES2 uses two scales and a label dependent weight as follows,

pðlÞ ¼ αðlÞp1ðlÞ þ ð1* αðlÞÞp2ðlÞ;

where p'ðlÞ is the corresponding probability map for label l and αðlÞ 2 ½0; 1) is the mixing coefficient for label l. Details about the coefficient optimization
are available in Romero et al. (2017). The final label for a voxel is simply the label with the highest probability.

Automatic segmentation methods suffer from random and systematic errors. Despite the fact that random error can be mitigated with aggregation
techniques (such as multi-atlas techniques), systematic errors cannot be reduced using this strategy as they are not random. Nevertheless, their bias can
be learned and used to correct the segmentations. Inspired by the work of Wang et al. (2013), in CERES2 a systematic error corrector using a patch-based
ensemble of boosted neural networks to improve the segmentation accuracy is incorporated. The neural network ensemble is trained using samples from
a region of interest of the label to correct as done in Wang et al. (2013). The feature vector was created by concatenating the following data: image
patches of sizes 3 % 3 % 3 voxels (fully sampled); 7 % 7 % 7 and 11 % 11 % 11 voxels (subsampled by skipping two and four voxels at each dimension,
respectively) from the T1-w image; the corresponding patches from the automatic segmentations; the Euclidean distance value of the voxel to the edge
of the structure, and the coordinates in MNI space. Thus CERES2 has a feature vector of length 166 that is mapped to the corresponding manual
segmentation patch of size 3 % 3 % 3 voxels. Features were extracted using an overcomplete scheme as done in Manj!on et al. (2016). Such a structured
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prediction not only provides more accurate results than the voxel-wise version but also produces a more regular correction.
The neural network model used in CERES2 consists of a multilayer perceptron with two hidden layers of size 83 and 55 neurons resulting in a

topology of 166 % 83 % 55 % 27 weights. CERES2 uses an ensemble comprising of 10 neural networks trained using a boosting strategy were wrongly
classified training data samples were selected with higher probability than correctly classified ones. One ensemble per label is trained. At test time, the
trained ensembles are used to correct the automatic segmentations produced by OPAL. The correction process takes a few seconds.

RASCAL.
Patch-based label fusion.
(Vladimir S. Fonov and D. Louis Collins).
The previously published RASCAL (Rapid Automatic Segmentation of the Human Cerebellum and its Lobules) (Weier et al., 2014) was adapted for

use with the two cohorts. The data was preprocessed as follows: 1) linear registration to MNI-ICBM152 2009c stereotaxic space (Fonov et al., 2010); 2)
linear intensity normalization based on quantile matching to normalize the intensity range to the MNI-ICBM152 2009c template; 3) extracted brain
mask using thresholding of the provided SPECTRE brainmask; 4) created an unbiased population specific template (Fonov et al., 2010), the resultant
template was used as a reference template for RASCAL.

The RASCAL segmentation algorithm is an improved version of Coupe et al. (2011), which is also used by CERES2 and described above. The key
differences are a change in how intensity normalization is done, majority voting to account for multiple labels, and the use of nonlinear registration.
RASCAL (Weier et al., 2014) was then fine-tuned for the proposed data sets by employing a leave-one-out cross-validation. Linear registration, localized
to the cerebellum, is performed using the affine registration mode of ANTs (Avants et al., 2008) with the Mattes cost function; which is followed by
non-linear registration to the reference template using ANTs with the cross-correlation cost-function. After the registration steps are complete, all
images are resampled to have the same resolution as the subject. Segmentations are then fused using the non-local patch-based algorithm.

DeepNet.
U-Net Parcellation of the Cerebellum.
(Vladimir S. Fonov and D. Louis Collins).
DeepNet is an exploration of the potential of using an FCN based on U-net (Ronneberger et al., 2015; Çiçek et al., 2016) to parcellate the cerebellum.

Recall that FCNs are CNNs designed for semantic segmentation. U-net has demonstrated state-of-the-art performance in several tasks (Chen et al., 2016;
He et al., 2017; Zhao et al., 2017) while preserving the high resolution information throughout the contraction-expansion layers of the network. In brief,
3D U-net consists of a contracting (analysis) path and an expanding (synthesis) path. Each layer of the contracting portion consists of two 3% 3% 3
unpadded convolutions, followed by a ReLU and a 2% 2% 2 max pooling operation with a stride of 2 for downsampling in each dimension. Every step of
the expansion consists of an upsampling convolution of 2% 2% 2 with a stride of 2 in each dimension followed by two 3% 3% 3 convolutions each
followed by a ReLU. Shortcut connections from layers of equal resolution in the contracting path provide the high-resolution features to the expansion
portion of the network. The last layer consists of a 1% 1% 1 convolution to reduce the number of output channels to the number of labels. Before each
ReLU layer, batch normalization is performed during training with the mean, standard deviation, and global statistics updated using these values. This is
followed by a layer to learn the scale and bias explicitly. At test time, normalization is done via the computed global statistics and the learned scale and
bias.

As originally presented, 3D U-net used four analysis/synthesis steps; for the cerebellum parcellation task DeepNet uses five analysis/synthesis steps.
DeepNet also modifies the default convolution kernels on a per-layer basis, with the details listed in Table A1. The final layer of DeepNet contains two
fully connected convolutional layers with 256 and 128 channels and a Dropout Layer. Thus the final layer creates a mapping from the 128 features into
the segmentation labels—28 for the Adult Cohort and 18 for the Pediatric Cohort. Log Soft Max was used to calculate the negative log-likelihood error
function, generalized kappa overlap metric was used to track performance on out-of-sample validation data. The total number of trainable parameters
input into the model is 9,479,573.

Table A1
Layer parameters for DeepNet.

U-net Input Output Convolution Kernels Upsampling

Layer Channels Channels #1 #2 Kernel

1 4 256 5% 5% 5 5% 5% 5 5% 5% 5
2 16 128 5% 5% 5 5% 5% 5 3% 3% 3
3 16 64 3% 3% 3 3% 3% 3 3% 3% 3
4 16 64 3% 3% 3 3% 3% 3 3% 3% 3
5 32 64 1% 1% 1 3% 3% 3 3% 3% 3

Appendix B. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.neuroimage.2018.08.003.
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