
CSCI 1101 – Winter 2017
Lab. No. 7

This lab is on ArrayLists and an introduction to LinkedLists.

Notes:

1. All submissions must be made on Brightspace (dal.ca/brightspace).
2. Submission deadline is 11.55 p.m. (5 minutes to midnight) on SUNDAY, March 12, 2017. (Note:

Only for this week, the submission deadline is a Sunday).
3. Put the java source code files and the text outputs for each exercise in a folder. Zip the folder into

one file and submit the zip file.

4.	Marking	Scheme:		
Each	exercise	carries	10	points.	Your	final	score	will	be	scaled	down	to	a	value	out	of	10.	
Working	code,	Outputs	included,	Efficient,	Comments	included:	10/10	
No	comments:	subtract	one	point	
Unnecessarily	long	code	and	inefficient	program,	improper	use	of	variables:	subtract	one	point	
No	outputs:	subtract	two	points	
Code	not	working:	subtract	up	to	six	points	depending	upon	the	extent	to	which	the	program	is	incorrect.	
	
5.	Error	checking:	Unless	otherwise	 specified,	 you	may	assume	 that	 the	user	 enters	 the	 correct	data	 types	
and	the	correct	number	of	input	entries,	that	is,	you	need	not	check	for	errors	on	input.	
	
6.	Testing	your	code	and	generating	the	outputs:	If	the	test	data	is	included	in	the	question,	use	that	to	test	
your	classes.	In	addition,	test	it	with	two	more	input	sets.	Otherwise,	create	your	own	test	data	and	run	your	
program	for	at	least	3	input	sets	such	that	they	cover	the	range	of	results	expected.	

ARRAYLISTS
Exercise 1: Write a program that reads words into an ArrayList list1 and then removes all the duplicates
in list1.

A sample dialog is shown below:

Enter words on one line, end with -1
java c pascal ada java java ada c++ -1

Here’s the original list:
[java, c, pascal, ada, java, java, ada, c++]

Here’s the same list with no duplicates:
[java, c, pascal, ada, c++]

You need to do this efficiently, for example, without creating another ArrayList. Note that it can be tricky
to scan an ArrayList and simultaneously remove items from it. This is due to the fact that when you
remove or add an item, the list adjusts itself and hence the index used for scanning will not be pointing to
the same location.

Exercise 2:

The objective of this exercise is to write a program that reads a number of Strings and sorts them by
inserting each string into the appropriate place in an arraylist. For example, if the strings are:

Shai
Ralph
Hillary
Tom
Barbara
Fred

Then the arraylist should grow as follows:
[Empty]
[Shai]
[Ralph, Shai]
[Hillary, Ralph, Shai]
[Hillary, Ralph, Shai, Tom]
[Barbara, Hillary, Ralph, Shai, Tom]
[Barbara, Fred, Hillary, Ralph, Shai, Tom]

The algorithm to sort is simple. As you read each name (say name1), compare it with each name (say
name2) stored in the arraylist starting from the index 0. If (name1.compareTo(name2) <0), you found the
right index to put name1. Be sure that you do not cross the ArrayList boundary.

LINKED LISTS
Before you solve Exercises 3 and 4, test the Node class and the LinkedList class given below with the
LinkedListDemo1 class (also given below). Understand the basics of Linked Lists.

//class Node
public class Node{
 private String data;
 private Node next;
 public Node(String d, Node n){
 data = d;
 next = n;
 }
 public String getData(){
 return data;
 }
 public Node getNext(){
 return next;
 }
 public void setData(String d){
 data = d;
 }
 public void setNext(Node n){
 next = n;
 }
 public String toString(){
 return data + "-->";
 }
}

//class LinkedList (only the first few methods are given here)
public class LinkedList{
 private Node front;
 private int count;

 //constructor
 public LinkedList(){
 front = null;
 count = 0;
 }

 //add a node to the front of the linked list
 public void addToFront(String d){
 Node n;
 n = new Node(d, front);
 front = n;
 count++;
 }

 //get the current size of the list
 public int size(){
 return count;
 }

 //check if the list is empty
 public boolean isEmpty(){
 return (count==0);
 }

 //clear the list
 public void clear(){
 front = null;
 count=0;
 }

 //get the content of the first node
 public String getFrontData()
 {
 if (front==null)
 return "Empty list";
 else
 return front.getData();
 }

 //new method added - get the first node
 public Node getFront()
 {
 return front;
 }

 //scan the list and print contents
 public void enumerate()
 {
 Node curr = front;
 while (curr!=null)
 {
 System.out.print(curr);
 curr = curr.getNext();
 }
 System.out.println(".");
 }
}

//class LinkedListDemo1
public class LinkedListDemo1
{
 public static void main(String[] args)
 {
 LinkedList myList = new LinkedList();
 myList.addToFront("Toronto");

 myList.addToFront("New York");
 myList.addToFront("Calgary");
 myList.addToFront("Halifax");
 myList.addToFront("St.John's");
 System.out.println("Number of nodes in the list: "+ myList.size());
 myList.enumerate();
 myList.addToFront("Vancouver");
 myList.addToFront("Montreal");
 myList.enumerate();
 }
}

Exercise 3: Add the following method to LinkedList.java.
Method public void enumerateOddNodes()that prints the contents of all the nodes with odd indices. For
example, for the list shown below, the method should display
A à N à

Test your method by including appropriate test statements to your demo program.

 0 1 2 3

Exercise 4: Add the following method to LinkedList.java.
Method public void listAllNodesWith(String d) that displays the indices of all the nodes that have
the String d in them. For example, for the list shown below, the method listAllNodesWith(“T”) should display
0 2

 0 1 2 3

Test your method by including appropriate test statements to your demo program.

“T” “A”

“T” “N”

“T” “A”

“T” “N”

