
CSCI 1101 – Winter 2017
Laboratory No. 3

This lab is a continuation of the concepts of object-oriented programming, specifically the use of static variables and
static methods, and object interactions. If you finish the lab early, work on your assignment.

Note:

1. All submissions must be made on Brightspace (dal.ca/brightspace).
2. Submission deadline is 11.55 p.m. (5 minutes to midnight) on Saturday, February 4th, 2017.
3. Put the java source code files and the text outputs for each exercise in a folder. Zip the folder into

one file and submit the zip file.

4.	Marking	Scheme:		
Each	exercise	carries	10	points.	Your	final	score	will	be	scaled	down	to	a	value	out	of	10.	
Working	code,	Outputs	included,	Efficient,	Comments	included:	10/10	
No	comments:	subtract	one	point	
Unnecessarily	long	code	and	inefficient	program,	improper	use	of	variables:	subtract	one	point	
No	outputs:	subtract	two	points	
Code	 not	working:	 subtract	 up	 to	 six	 points	 depending	 upon	 the	 extent	 to	which	 the	 program	 is	
incorrect.	
	
5.	Error	checking:	Unless	otherwise	specified,	you	may	assume	that	the	user	enters	the	correct	data	
types	and	the	correct	number	of	input	entries,	that	is,	you	need	not	check	for	errors	on	input.	
	
6.	Testing	your	code	and	generating	the	outputs:	If	the	test	data	is	included	in	the	question,	use	
that	 to	 test	your	classes.	 In	addition,	 test	 it	with	 two	more	 input	sets.	Otherwise,	create	your	own	
test	data	and	run	your	program	for	at	 least	3	 input	sets	such	that	they	cover	the	range	of	results	
expected.	

Exercise 1 (a) : This is an example on static variables that we discussed in class. Run the code and trace the output so
that you understand the operation of the program. No submission required for this part.
Warning: Cutting and pasting code may cause errors!
public class TurnTaker
{
 private static int turn = 0;
 private int myTurn;
 private String name;
 public TurnTaker(String n, int t)
 {
 name = n;
 myTurn = t;
 }
 public String getName()
 {
 return name;
 }
 public static int getTurn()
 {
 turn++;
 return turn;
 }
 public boolean isMyTurn()
 {
 if (turn==myTurn)

 return true;
 else
 return false;
 }

 public static void main(String[] args)
 {
 TurnTaker person1 = new TurnTaker("Romeo", 1);
 TurnTaker person2 = new TurnTaker("Juliet", 3);

 for(int i = 1; i<= 5; i++)
 {
 System.out.println("Turn = " + TurnTaker.getTurn());
 if (person1.isMyTurn())
 System.out.println("Love from "+ person1.getName());
 if (person2.isMyTurn())
 System.out.println("Love from " + person2.getName());
 }
 }
}

Exercise 1(b): Copy the class TurnTaker.java into another file TurnTaker1.java. Modify TurnTaker1.java so that you
get the following output:

Turn = 1
Love from Romeo
Love from Juliet
Turn = 2
Love from Romeo
Love from Juliet
Turn = 3
Love from Romeo
Love from Juliet
Turn = 4
Love from Romeo
Love from Juliet
Turn = 5
Love from Romeo
Love from Juliet

What	to	submit:	TurnTaker1.java	and	the	output	generated	by	your	code	in	a	text	file.	
	
Exercise 1(C): Make another copy of TurnTaker.java into TurnTaker2.java. Modify TurnTaker2.java to do the
following: The program should prompt the user for the number of turns. Each odd turn should print “Love from
Romeo” and each even turn should print “Love from Juliet”, except the last turn when it prints both “Love from
Romeo” and “Love from Juliet”.
Run the program for at least three different inputs.
Here’s a sample dialog:

How many turns? 7
Turn = 1
Love from Romeo
Turn = 2

Love from Juliet
Turn = 3
Love from Romeo
Turn = 4
Love from Juliet
Turn = 5
Love from Romeo
Turn = 6
Love from Juliet
Turn = 7
Love from Romeo
Love from Juliet

What	to	submit:	TurnTaker2.java	and	the	outputs	generated	by	your	code	for	the	input	sets	in	a	text	
file.	

Exercise 2: Your friend Chuck owns several pizza stands distributed throughout the town. You are the java expert
who will help Chuck keep track of the number of pizzas sold by the stand as well as the total number of pizzas sold in
all the stands. For this, define a class named PizzaStand that has an instance variable for the Pizza Stand’s ID number
and an instance variable for how many pizzas sold in that stand that day. Add a static variable that tracks the total
number of pizzas sold by all the stands. Add another static variable that specifies the cost per pizza.

Add the following methods:
A constructor that sets the ID number to some value and the number of pizzas sold by that stand to 0.
A method named justSold that increments the number of pizzas sold by that stand by 1.
Another method to return the number of pizzas sold by that stand.
A static method to set the cost per pizza.
A static method that returns the total number of pizzas sold by all stands.
A static method to return the total sales.

Test the class for at least three different input sets (each with at least five pizza stands) that each sell a number of
pizzas during the day.

A sample screen dialog is given below. The cost of the pizza is set to $5.00.
Pizza Sales:
1 2 (means that Pizza Stand 1 sold 2 pizzas)

2 1

3 1

4 1

5 1

Total pizzas sold: 6
Total sales: $30.00

Process completed.

What	to	submit:	Pizza.java,	PizzaDemo.java	and	the	outputs	generated	by	your	code	for	the	input	sets	
in	a	text	file.	

Exercise 3: Design a class named MyInteger. The class contains:
• An int instance variable named value that stores the int value represented by the object.
• A constructor that creates a MyInteger object for the specified int value.
• A get method that returns the int value.
• Static methods isEven(int), isOdd(int) and isPrime(int) that return true if the specified value is odd, even, or

prime, respectively, and false otherwise.
• Methods isEven(), isOdd(), and isPrime() that return true if the value in this object is even, odd or prime,

respectively, and false otherwise.
• Static methods isEven(MyInteger), isOdd(MyInteger) and isPrime(MyInteger) that return true if the value of

the specified object is even, odd, or prime, respectively, and false otherwise.
• Method equals(int) that returns true if the value in this object is equal to the specified integer.
• Method equals(MyInteger) that return true if the value in this object is equal to the value in another object.
• Static method parseInt(char[]) that converts an array of numeric characters to an int value.
• Static method parseInt(String) that converts a string into an int value.

Note: if c is a character from ‘0’ to ‘9’, then (int)c-48 converts c to an integer value.
You may assume that the user enters only digits.

Here’s a demo class that tests the above methods and the output. Change the values and run the code at least three
times for different input sets.

public class MyIntegerDemo
{
 public static void main(String[] args)
 {
 MyInteger n1 = new MyInteger(5);
 System.out.println("n1 is " + n1.getValue());
 System.out.println("n1 is even? " + n1.isEven());
 System.out.println("n1 is odd? " + n1.isOdd());
 System.out.println("n1 is prime? " + n1.isPrime());
 System.out.println("15 is prime? " + MyInteger.isPrime(15));
 char[] chars = {'3','5','3','9'};
 System.out.println(MyInteger.parseInt(chars));
 String s = "9786";
 System.out.println(MyInteger.parseInt(s));
 MyInteger n2 = new MyInteger(24);
 System.out.println("n2 is " + n2.getValue());
 System.out.println("n2 is odd? " + n2.isOdd());
 System.out.println("45 is odd? " + MyInteger.isOdd(45));
 System.out.println("n1 is equal to n2? " + n1.equals(n2));
 System.out.println("n1 is equal to 5? " + n1.equals(5));
 }
}

----jGRASP exec: java -ea MyIntegerDemo
n1 is 5
n1 is even? false
n1 is odd? true
n1 is prime? true
15 is prime? false
3539

9786
2 is 24
n2 is odd? false
45 is odd? true
n1 is equal to n2? false
n1 is equal to 5? true

----jGRASP: operation complete.

What	to	submit:	MyInteger.java,	MyIntegerDemo.java	and	the	outputs	generated	by	your	code	for	the	
input	sets	in	a	text	file.	

Exercise	4:	We	discussed	the	following	example	of	object	interactions	in	the	lectures.		
We	define	a	Point	class	and	a	Circle	class.	The	Circle	class	has	a	method	that	checks	if	a	Point	object	is	enclosed	
inside	the	Circle	object.	Study	the	code,	run	it	and	understand	it.	

//Circle class
//Defines a circle object with center cx,cy and radius r
public class Circle
{
 //instance variables
 private double cx;
 private double cy;
 private double radius;

 //constructor
 public Circle(double cx, double cy, double radius){
 this.cx=cx;
 this.cy=cy;
 this.radius=radius;
 }

 //get and set methods
 public void setCX(double cx){this.cx=cx;}
 public void setCY(double cy){this.cy=cy;}
 public void setRadius(double radius){this.radius=radius;}
 public double getCX(){return cx;}
 public double getCY(){return cy;}
 public double getRadius(){return radius;}

//Point class
//Defines a point with coordinates px and py
public class Point
{
 private double px;
 private double py;

 //constructor
 public Point(double px, double py)
 {
 this.px = px;
 this.py = py;
 }

 //get and set methods
 public void setX(double px){this.px = px;}
 public void setY(double py){this.py = py;}
 public double getX(){return px;}
 public double getY(){return py;}
 //toString method
 public String toString()
 {
 return "[px = " + px + ",py = " + py + "]";
 }
}

a) Add a method to Circle.java that returns true if this Circle object touches another Circle object
externally, and false otherwise. For	example,	the	method	should	return	true	for	the	case	shown	in	
Figure	1(a).
	
	
	
	
	
	
	
	
	
Figure	1(a):	The	two	circles	touch	each	other	externally.	
	
	

//toString method
 public String toString()
 {
 return "Circle with center " + cx +"," + cy + " and radius " + radius;
 }

 //enclose method (illustrates object interactions)
 //checks if a point is enclosed within the circle
 //Algorithm: A point px,py is enclosed in a circle if the distance from
 //the point to the center cx,cy of the circle is less than the radius

 public boolean encloses(Point p)
 {
 double d;
 d = Math.sqrt(((p.getX()-cx)*(p.getX()-cx)) + ((p.getY()-cy)*(p.getY()- cy)));

 if (d<radius)
 return true;
 else
 return false;
 }

}

import java.util.Scanner;
public class PointCircleDemo
{
 public static void main(String[] args)
 {
 Scanner keyboard = new Scanner(System.in);
 System.out.print("Enter the x and y coordinates of the point: ");
 Point p = new Point(keyboard.nextDouble(), keyboard.nextDouble());
 System.out.print("Enter the center coordinates (x,y) of circle and
its radius: ");
 Circle c = new Circle(keyboard.nextDouble(),keyboard.nextDouble(),
keyboard.nextDouble());

if (c.encloses(p))
 System.out.println(c + " encloses " + p);
 else
 System.out.println(c + " does not enclose " + p);
 }
}

	
b) Add	a	method	to	Circle.java	that	returns	true	if	this	Circle	object	touches	another	Circle	object	

internally,	and	false	otherwise.	For	example,	the	method	should	return	true	for	the	case	shown	in	
Figure	1(b).	

	
	
	
	
	
	
	
Figure	1(b):	The	two	circles	touch	each	other	internally.	
	
	
Algorithm:	Find	the	distance	d	between	the	two	centers.		
Add	the	two	radii.	If	d	is	equal	to	the	sum	of	the	radii,	then	the	two	circles	touch	each	other	externally.	
Subtract	the	two	radii.	If	d	is	equal	to	the	difference	between	the	two	radii,	the	two	circles	touch	each	other	
internally.	
	
Test	your	code	in	a	demo	program	called	CircleDemo.java	for	at	least	three	different	cases.	
	
Sample	runs	of	the	program	are	given	below:	
	
----jGRASP exec: java -ea CircleDemo
Enter the center coordinates (x,y) of the first circle and its radius: 10 10 10
Enter the center coordinates (x,y) of the second circle and its radius: 30 10 10
Circle with center 10.0,10.0 and radius 10.0 touches Circle with center 30.0,10.0 and
radius 10.0 externally
Circle with center 10.0,10.0 and radius 10.0 does not touch Circle with center
30.0,10.0 and radius 10.0 internally
----jGRASP: operation complete.
	
----jGRASP exec: java -ea CircleDemo
Enter the center coordinates (x,y) of the first circle and its radius: 10 10 10
Enter the center coordinates (x,y) of the second circle and its radius: 15 10 5
Circle with center 10.0,10.0 and radius 10.0 does not touch Circle with center
15.0,10.0 and radius 5.0 externally
Circle with center 10.0,10.0 and radius 10.0 touches Circle with center 15.0,10.0 and
radius 5.0 internally
----jGRASP: operation complete.
	
----jGRASP exec: java -ea CircleDemo
Enter the center coordinates (x,y) of the first circle and its radius: 10 10 10
Enter the center coordinates (x,y) of the second circle and its radius: 30 30 5
Circle with center 10.0,10.0 and radius 10.0 does not touch Circle with center
30.0,30.0 and radius 5.0 externally
Circle with center 10.0,10.0 and radius 10.0 does not touch Circle with center
30.0,30.0 and radius 5.0 internally
----jGRASP: operation complete.
	
	

	
What	to	submit:	Circle.java,	CircleDemo.java	and	sample	outputs	in	a	text	file.	If	you	have	used	
Point.java	in	the	Circle	class,	submit	that	as	well.	

	
	
	
	
	
	

