
CSCI 1101 – Winter 2017
Laboratory No. 2

This lab is a continuation of the concepts of object-oriented programming.

Note:

1. All submissions must be made on Brightspace (dal.ca/brightspace).
2. Submission deadline is 11.55 p.m. (5 minutes to midnight) on Saturday, January 28th, 2017.
3. Put the java source code files and the text outputs for each exercise in a folder. Zip the folder into

one file and submit the zip file.
4.	Marking	Scheme:		
	
Each	exercise	carries	10	points.	Your	final	score	will	be	scaled	down	to	a	value	out	of	10.	
Working	code,	Outputs	included,	Efficient,	Comments	included:	10/10	
No	comments:	subtract	one	point	
Unnecessarily	long	code	and	inefficient	program,	improper	use	of	variables:	subtract	one	point	
No	outputs:	subtract	two	points	
Code	 not	working:	 subtract	 up	 to	 six	 points	 depending	 upon	 the	 extent	 to	which	 the	 program	 is	
incorrect.	
	
5.	Error	checking:	Unless	otherwise	specified,	you	may	assume	that	the	user	enters	the	correct	data	
types	and	the	correct	number	of	input	entries,	that	is,	you	need	not	check	for	errors	on	input.	
	
6.	Testing	your	code	and	generating	the	outputs:	If	the	test	data	is	included	in	the	question,	use	
that	 to	 test	your	classes.	 In	addition,	 test	 it	with	 two	more	 input	sets.	Otherwise,	create	your	own	
test	data	and	run	your	program	for	at	 least	3	 input	sets	such	that	they	cover	the	range	of	results	
expected.	

Exercise 1:
In this exercise, you are to write a simple object-oriented program to simulate the movement of a bug along
a horizontal line on the floor of a room. The horizontal line starts at the 0th position and ends at the 50th
position. In other words, the length of the horizontal line is 51 steps - there is a wall at the left and right
ends of the line.

The bug starts at an initial position between 0 and 50 (both inclusive) and an initial direction, left or right.
It can move one step at a time, either to the left or to the right (depending upon its direction). If it is at the
left wall, it changes direction and moves one step. Similarly, if it is at the right wall, it changes direction
and moves one step.

You need to write a class called Bug that models the bug’s position and direction, and has the method
move() in addition to other methods. The tester program simulates a bug at an initial random position
between 0 and 50, makes it move a random number of steps and displays its initial and final position. The
tester program has been given! All you need to write is the code for the Bug class. Complete the code,
compile and run it, and you should see results similar to the one given at the end of the program below.

public class Bug
{

 //TODO: add the attributes
 //an integer variable for position

 //another integer variable for direction (0 means left
 //and a 1 means right)

//TODO: add a constructor that sets the position and direction

//TODO: add the appropriate get and set methods

//TODO: add the move method
public void move()
{
//Here the algorithm:
/*if the direction is left, decrement the position by 1;
if the direction is right, increment the position by 1;
However, before you do the above, if the position is 0 and the direction
is left, change the direction to right and increment the position by 1;
Similarly, if the position is 50 and the direction is right, change the
direction to left and decrement the position by 1
*/

}

public String toString()
{

//TODO: return a String that contains the Position and //the
Direction of the bug
}

//BUG TESTER MAIN METHOD
public static void main(String[] args)
 {
 //randomly set the initial position(between 0 and 50) and direction
//(between 0 and 1)
 int initialPos = (int)(Math.random()*51);
 int initialDir = (int)(Math.random()*2);
 Bug bugsy = new Bug(initialPos, initialDir);
 System.out.println(bugsy);

 //display the line with the bug
 for(int i=0; i<=50;i++)
 {
 if (i==bugsy.getPosition())
 System.out.print("X");
 else
 System.out.print("-");
 }
 System.out.println();

 //make the bug move a random number of times
 int moves = (int)(Math.random()*51);
 System.out.println("Moves: " + moves);
 for(int i=1;i<=moves;i++)
 bugsy.move();
 System.out.println(bugsy);

 //display the line with the bug
 for(int i=0; i<=50;i++)
 {
 if (i==bugsy.getPosition())
 System.out.print("X");
 else

 System.out.print("-");
 }

 System.out.println();

 }

}

Sample outputs:

----jGRASP exec: java -ea Bug
Position: 25 Direction: Left
-------------------------X-------------------------
Moves: 20
Position: 5 Direction: Left
-----X---
	
----jGRASP: operation complete.
	

----jGRASP exec: java -ea Bug
Position: 15 Direction: Left
---------------X-----------------------------------
Moves: 38
Position: 23 Direction: Right
-----------------------X---------------------------

----jGRASP: operation complete.
	
----jGRASP exec: java -ea Bug
Position: 30 Direction: Right
------------------------------X--------------------
Moves: 49
Position: 21 Direction: Left
---------------------X-----------------------------
	
----jGRASP: operation complete.

Exercise 2: Implement the Point class (code for this up to the isHigher method was discussed in the
lecture). The class has the following instance variables:

• x coordinate (an int)
• y coordinate (an int)

and the following methods:
• Constructor that sets the x and y coordinates
• Get and set methods
• Method equals if this point is equal to another point object (if the x and y coordinates are the

same).
• Method isHigher if this point is higher than another point object (Note that we assume that the top

left corner is the coordinate 0,0).

• Method findDistance that calculates the distance between this point and another point. (Formula
for the distance between two points (x1,y1) and (x2,y2) is square root of ((x2-x1)2 + (y2-y1)2)

Test the class. In the demo program, construct four points p1, p2, p3 and p4 using user-defined values.
Determine

• Which point is the highest. (If more than one point is at the same height, you may report any one
point).

• Whether the distance p1à p2 is more than the distance p3à p4, or p3à p4 is more than p1àp2,
or whether they are the same.

A sample screen dialog is given below:

Enter the x and y coordinates of point1: 8 9
Enter the x and y coordinates of point2: 4 3
Enter the x and y coordinates of point3: 2 1
Enter the x and y coordinates of point4: 5 6
[2,1] is the highest point
The distance between [8,9] and [4,3] is 7.211102550927978
The distance between [2,1] and [5,6] is 5.830951894845301
[8,9]-->[4,3] is longer than [2,1]-->[5,6]

Exercise 3: Implement a Stock class that has the following attributes:
symbol (String), price (double), number of shares (int)
and the following methods:
Constructor (that sets the symbol, price and number of shares to user defined values).
Get and set methods.
toString method returns the symbol, price and number of shares
method public int compareTo(Stock s) compares the share price of this stock with another
stock and returns:
-1 if the value of this stock is lower than the other stock.
1 if the value of this stock is higher than the other stock.
0 if both the values are the same.
(Value of the stock = price * number of shares)

For example, let’s say IBM has a price of $105.23 and you have bought 45 shares and MOS has a price of
$89.88 and you have bought 60 shares. Then the value of IBM in your portfolio is 105.23*45= $4735.35
and the value of MOS in your portfolio is 89.88*60 = $5392.80. Comparing this stock(IBM) with another
stock(MOS) will return a -1 since the value of MOS is greater in your portfolio.

Test the Stock class with a client program that asks the user to enter the symbols, share prices, and number
of shares for two stocks, prints their values, determines which stock is higher than the other and by how
much and prints the total value. You must use the methods in the Stock class wherever appropriate.

A portion of the client program is given below for your programming convenience.
import java.util.Scanner;
public class StockDemo
{
 public static void main(String[] args)
 {
 Scanner keyboard = new Scanner(System.in);
 String sym1, sym2;
 double prc1, prc2;

 int sh1, sh2;
 //get the values for two stocks
 System.out.print("Enter the symbols for the two stocks: ");
 sym1 = keyboard.next();
 sym2 = keyboard.next();
 System.out.print("Enter their prices: ");
 prc1 = keyboard.nextDouble();
 prc2 = keyboard.nextDouble();
 System.out.print("Enter the number of shares for the two stocks: ");
 sh1 = keyboard.nextInt();
 sh2 = keyboard.nextInt();

 //create the first Stock
 Stock s1 = new Stock(sym1,prc1,sh1);

 //create the second Stock
 Stock s2 = new Stock(sym2,prc2,sh2);

 // continue the rest of the code here
 }
}

The following is a sample screen dialog:
Enter the symbols for the two stocks: IBM MOS
Enter their prices: 105.23 89.88
Enter the number of shares for the two stocks: 45 60

I have the following stocks:
Stock: IBM
Price: 105.23
Shares: 45

Stock: MOS
Price: 89.88
Shares: 60

The value of MOS is higher than IBM
The total value of my portfolio is: $ 10128.15

Exercise 3: Define the Rectangle2D class that contains:

• Double data fields named xpos, ypos (that specify the top left corner of the rectangle), width and
height. (assume that the rectangle sides are parallel to the x and y axes. See example below).

•

xpos, ypos = (10.0, 5.0)

width = 3.0

height = 2.0

(0.0,0.0)

• A no-arg constructor that creates a default rectangle with (0.0, 0.0) for (xpos, ypos) and 0.0 for
both width and height.

• A constructor that creates a rectangle with the specified xpos, ypos, width, and height.
• Get and set methods for all the instance variables.
• A method getArea() that returns the area of the rectangle.
• A method getPerimeter() that returns the perimeter of the rectangle.
• A method contains(x, y) that returns true if the specified point (x, y) is inside this rectangle. See

Figure 1(a).
• A method contains(Rectangle2D r) that returns true if the specified rectangle is inside this

rectangle. See Figure 1(b). Note that the condition for contains is that all four corners of the second
rectangle must be contained in the first. This means, that if the two rectangles are exactly identical,
we still say that the second rectangle is contained within the other.

p

 (a) (b) Figure 1

Write a test program that creates a Rectangle2D object and tests various methods. For example, as a first
test case, create a Rectangle2D object r1 with parameters 2, 2, 5.5 and 4.9, which represent xpos, ypos,
width and height, respectively, displays its area and perimeter, and displays the result of r1.contains(3, 3)
and r1.contains(new Rectangle2D(4, 5, 10.5, 3.2)).

The sample screen dialog for the above input is given below:

Enter the xpos, ypos, width and height of the rectangle: 2 2 5.5 4.9
The perimeter of the rectangle is 20.8
The area of the rectangle is 26.950000000000003
Rectangle [[2.0,2.0],width=5.5,height=4.9] contains point [3,3]
[[2.0,2.0],width=5.5,height=4.9] does not contain Rectangle
[[4.0,5.0],width=10.5,height=3.2]

Try it for two other cases.

What to submit:
ONE Zip file containing the following:

1. Bug.java (the tester main method is already included in Bug.java)
2. Point.java
3. PointDemo.java
4. Stock.java
5. StockDemo.java
6. Rectangle2D.java
7. Rectangle2DDemo.java
8. A text file containing sample outputs for all the programs.

