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Abstract

Simulation, as an art and a science, deals with the issue of
allowing the practitioner to model events using their respec-
tive probability distributions. Thus, it is customary for simu-
lations to model the behaviour of accidents, telephone calls,
network failures etc. In this paper, we consider a relatively
new field, namely that of modelling episodic events such as
earthquakes, nuclear explosions etc. The difficulty with such
a modelling process is that most of the observations appear as
noise. However, when the episodic event does occur, its mag-
nitude and features far overshadow the background, as one
observes after a seismic event. In this paper, we demonstrate
how the effect of a particular form of episodic event can be
modelled as it propagates through the underlying background
noise. Furthermore, we illustrate how the subsequent decay
of the event can also be modelled and simulated. In demon-
strating this concept, we utilize the exemplar scenario posed
by the Comprehensive Nuclear-Test-Ban Treaty (CTBT), and
model the propagation and decay of radionuclides, emitted
from clandestine, subterranean nuclear detonations, through
the background levels resulting from the global nuclear in-
dustry.

1 INTRODUCTION

Throughout history, modelling and simulation have been crit-
ical aids in human progress. Indeed, they have proven es-
sential in our ability to understand, predict and often bene-
fit from the behaviour of complex systems, natural or oth-
erwise. Early models, derived to articulate the motion of

celestial bodies, for example, enabled generations of farm-
ers to predict annual planting and harvesting cycles, in addi-
tion to aiding travellers with navigation. Over the past half
century, advanced computer models have been developed to
explore technological systems themselves, such as TCP and
telephone networks, in addition to natural phenomena rang-
ing from seismic waves to the dispersion of pollutants. Phe-
nomena of the latter classes are the focus of this paper. In-
deed, as we shall argue, a certain subset of these possesses
unique characteristics, which make them hard to both simu-
late and study.

A typical focus of existing modelling experiments has
been to simulate a particular hypothetical event, or to recre-
ate actual scenarios as accurately as possible. Motivating the
derivation of these models is often the requirement for (pol-
icy making) regulatory regimes and safety guidelines, or to
facilitate effective reactions to ongoing events, such as the
failure of a node on a network, or more seriously, a nuclear
accident. Alternatively, modelling and simulation have occa-
sionally been utilized in order to generate classes of data for
the training and validation of Pattern Recognition (PR), and
for example, Disease Contagion Prediction (DCP) systems,
as was fundamental to the study of the SARS crisis.

This paper concentrates on the simulation and subsequent
analysis of episodic events. Our interest in this particular
aspect of simulation resides in a desire to generate labelled
datasets for the training, testing and validation of PR systems.
In particular, the simulation strategy, as described, provides
a controlled means by which to explore the classification of
rare and/or episodic events within a well-defined background
distribution. To the best of our knowledge, the results pre-
sented here represent both a novel and pioneering step in this
venture.

The remainder of this paper is formatted as follows: Sec-
tion 2 provides a motivating scenario. In Section 3, we pro-



vide some background on pattern classification. Section 4 de-
scribes the frameworks utilized in the simulation of the back-
ground and episodic events. In particular, this section articu-
lates the Gaussian equations applied to the demonstration of
plume and puff dispersion in the atmosphere. In Section 5,
we describe the motivating factors behind the demonstration
scenario. In addition, this section also discusses the parame-
ter selection and generation issues. The results produced by
the modelling and simulation system are presented in Section
6. Section 7 includes a discussion of the results, and Section
8 contains our concluding thoughts.

2 MOTIVATION

The modelling framework presented in this paper is motivated
by two distinct application domains. From a regulatory per-
spective, the modelling of rare and/or episodic events pro-
vides insight, and advances our general understanding of the
physical and natural fall-out from rare and/or episodic events,
such as a failure at an industrial plant, or within other critical
systems.

The primary motivation for this work, however, is the
generation of background and episodic events, the effects of
which may be measured and included in domain-specific ma-
chine learning datasets. Subsequently, the derived datasets
may be applied to explore existing and new PR systems on
target domains where data is particularly elusive, or altogether
unavailable.

Related work, by Dietterich et al., in [7], extended the
generalizing strategy presented by Aha in [1], to derive an
artificial dataset that was characteristically similar to data ex-
tracted from the target domain, as a means of overcoming the
deficient supply of positive instances. This study, however,
relied on a characteristic understanding of the class data being
generated. Moreover, it assumed that the available data was,
indeed, representative of the broader class, and thus, justified
the generation procedure. The accuracy of such a conclu-
sion is typically elusive in domains having characteristically
episodic elements.

Alternatively, our approach relies not on an understanding
of the distribution of, and statistical relationships within, the
episodic data desired, but on knowledge of the environment
that affects it. In the case of pollutant dispersion, for exam-
ple, this implies knowledge of the propagation medium, the
physical properties of the chemical being dispersed, and the
ability to simulate a source’s affect on the measurement site.

3 BACKGROUND ON PATTERN RECOGNI-
TION

PR systems and their practitioners specifically rely on data
from both the background and episodic classes for training

and validation. For further details on PR, readers are directed
to the work of Duda et al., in [8]. However, it is sufficient to
understand that standard PR systems utilize training instances
drawn from the background and episodic classes in order to
learn a discriminating function, which can be used to distin-
guish between the two classes during deployment.

Further training instances are subsequently utilized in test-
ing and validation, which are processes essential to PR model
selection, and our interpretation of how the system will per-
form when deployed. In standard PR applications, the avail-
ability of training instances is generally not an issue. How-
ever, if the problem is episodic in nature or imbalanced in
general, the issue of insufficient data points must be over-
come in order to build sufficient confidence in the PR system
being deployed.

The standard approach to the testing and validation of PR
systems is to set a certain number of the training instances
aside, or held-out, for use during each of these important
phases. The standard holdout approach was demonstrated
by Lubinsky in [14], in an imbalanced scenario. The use
of novel instances is essential in these phases in order to as-
sess the performance in a manner that is independent of the
training process. When the holdout technique is applied to
imbalanced classification problems, the results depend on ex-
tremely small testing and validation sets, thus, limiting the
confidence which can be placed on the future performance of
the PR system.

Alternative approaches train one-class classifiers, in which
the training process utilizes the background instances alone
[11, 13]. As a result, the few instances from the episodic
class can be entirely committed to the testing and validation
process. However, the availability of instances of the episodic
class may still be insufficient to build confidence in this ap-
proach as well. This suggests that alternative mean validation
are required, such as the generation of artificial data.

The above mentioned notion of data generation for im-
balanced scenarios leads to a very interesting, and yet con-
siderably less studied topic. Particularly pertinent, is the rela-
tionship between the measured characteristics (or features) of
the episodic events under examination, such as earthquakes
or the massive short-term releases of pollutants into the en-
vironment, and the background levels of these measurable
characteristics, which exist as noise, and are expelled from
alternate sources. In terms of modelling and simulation, this
can be conceptualized by the existence of two classes of data,
namely the background data and the episodic data. The back-
ground class is considered to be relatively well understood,
and in particular, strong estimates of its distribution can be as-
sumed to be known. Alternatively, the episodic events, which
are characteristically random and unpredictable in time, space
and magnitude, rarely occur. Thus, the details of their distri-
butions are extremely difficult – if not impossible – to esti-



mate in general terms. Moreover, the relationship between
the two phenomena, and the effect of one on the other is in-
herently difficult to determine.

In the spirit of the verification of the Comprehensive Test
Ban Treaty (CTBT), this work demonstrates the process of
simulating the dispersion of radioxenon emitted from indus-
trial sources, and calculates the effect on the radioxenon lev-
els at points of interest. The initial simulation process is em-
ployed to develop the background data, which is characteris-
tically well-defined. More specifically, the background distri-
bution can be determined and is stable over time as a result of
the static nature of the sources and the consistency of the at-
mospheric dispersion when considered over the long-term. In
addition, the result of radioxenon emitting, clandestine, deto-
nations of nuclear weapons, whose spacial and temporal loca-
tions along with the magnitude of the detonations are random,
is simulated to form the episodic events.

4 MODELLING SYSTEM

As previously mentioned, this work considers a relatively new
field, namely that of modelling episodic events, which are
characteristically random in space, time and magnitude. It
also explores the relationship between these episodic events
and the well-defined background data. The difficulty with
such a modelling process is that most of the observations ap-
pear as noise. However, when the episodic event does occur,
its magnitude and features far overshadow the background, as
one observes after a seismic event. In particular, we demon-
strate how modelling and simulation can be applied to super-
impose episodic events on, and propagate their effects through,
the background noise.

In doing this, we divide the modelling process into two
phases. The details of these stages, and in particular, the
modelling of the background and the episodic events, are dis-
cussed in detail in the following subsections. Before preced-
ing, however, it is important to note that while this particular
simulation scenario is optimized for the airborne dispersion
of pollutants, such as radionuclides emitted from the nuclear
industry and the detonation of nuclear weapons, the theoreti-
cal concepts extend to any scenario characterized by episodic
interludes into a well-defined background distribution.

We can summarize our hypothesis by the following:

1. The simulation of background noise-like non-episodic
pollutants is best modelled by the Gaussian plume model;

2. The simulation of episodic contaminants is best mod-
elled by the Gaussian puff model.

These issues are clarified in the following sections.

4.1 Modelling the Background
In this particular application of the theoretical model described
above, the background data is modelled after pollutant obser-
vations have been made at a receptor site. More specifically,
we assume the existence of industrial emitters positioned at
static locations and characterized by emission rates that are
subjected to Gaussian fluctuations. The effect of the various
sources on the receptor site is calculated based on the widely
applied Gaussian plume model.

While the Gaussian plume model has seen considerable
application, and has been verified to reproduce plume disper-
sion with relative accuracy (see [3, 4, 17]), it is noted that,
in the strictest of terms, the Gaussian model is limited in its
applicability, as it requires large diffusion times and homo-
geneous, stationary conditions. However, we cite Batchelor’s
supposition that the Gaussian function may provide a general
description of the average plume diffusion because of the es-
sential random nature of the phenomenon, by analogy with
the central limit theorem of statistics [19]. The latter justifies
its application in the current task.

The Gaussian plume dispersion equation has its founda-
tion in the basic advection-diffusion equation, which through
a series of assumptions can be solved analytically to produce
the Gaussian puff equation described below. The Gaussian
puff equation, Eq. (2), models the three-dimensional advec-
tion and diffusion of a neutrally buoyant cloud of tracer ma-
terial in the atmosphere from the source to a receptor. By
considering the continuous plume exiting from a source stack
as an infinite number of Gaussian puffs, one arrives at the
Gaussian plume model. Mathematically speaking, this im-
plies integrating the Gaussian puff equations from t = 0 to
t =∞. After making a few simplifying assumptions, such as
neglecting dispersion along the x-axis in order to simplify the
integration of Eq. (2), the Gaussian plume equations takes the
following form, which was articulated by Lyons in [15] as:

χ(x, y, z, t) =
Q

2πσyσzu
exp

(
− y2

2σ2
y

)
(1)[

exp

(
− (z −H)2

2σ2
z

)
+ exp

(
− (z +H)2

2σ2
z

)]
,

and describes the air pollutant concentration, χ, in mass units
m−3, at the receptor location, (x, y, z), where the x-axis is
assumed to be parallel to the mean direction of the wind. The
parameter Q in the above equation represents the pollutant
emission rate from the source in mass units s−1, the value u
takes the mean wind speed in m s−1, and the values of sigma
represent the crosswind and vertical dispersion as a function
of the downwind distance, in meters. Finally, H takes the
effective value of the pollutant plume’s center-line.

Turner, in [21], conveniently articulates the equation in
terms of four distinct factors, which are combined to pro-



duce the final estimate. These factors represent the depen-
dence upon emissions released from the source and the time-
averaged atmospheric conditions. The emissions factor, Q,
indicates that the concentration at the receptor site is directly
proportional to the emissions. The downwind factor, 1

u , spec-
ifies that parallel to the x-axis, the concentrations are inversely
proportional to the wind speed. Parallel to the y-axis, the
crosswind factor,

1

(2π)1/2σy
exp

[
− y2

2σ2
y

]
,

indicates that the concentrations are inversely proportional to
the crosswind spreading, σy , of the plume. The greater the
downwind distance, the greater the horizontal spreading, im-
plying a lower concentration. The exponential involving the
ratio of y to σy provides a correction factor for the distance of
the receptor from the center of the distribution – quantified in
terms of the number of standard deviations. Finally, parallel
to the z-axis, the vertical factor,

1

(2π)1/2σz

{
exp

[
− (z −H)2

2σ2
z

]
+ exp

[
− (z +H)2

2σ2
z

]}
,

specifies that the concentrations are inversely proportional to
the vertical spreading, σz , of the plume. Once again, as the
downwind distance increases, so does the vertical spreading,
implying a lower concentration of the pollutant. The sum of
the exponential terms in the vertical factor represents how far
the receptor height, z, is from the plume’s center-line, H, in
the vertical direction. The first term represents the direct dis-
tance, H − z, of the receptor to the center-line. The second
term represents the reflected distance, the distance from the
plume’s center-line to the ground and back up to the recep-
tor. The last term accounts for the reflection of the spreading
plume off the earth’s surface.

Through iterative evaluations of Eq. (1) over the experi-
ment, with some location-specific fluctuations in the parame-
ters over time, it becomes apparent that the background dis-
tribution at the receptor site is a function of the receptor’s lo-
cation relative to the industrial emitters, along with the mean
tendencies of the individual industrial emitters and the over-
lying atmosphere.

4.2 Modelling Episodic Events
The episodic events modelled in this simulation are represen-
tative of short-term massive releases of pollutants into the en-
vironment from a random point in space and time. Subse-
quent to the random episodic event, a pollutant cloud is in-
stantaneously vented, and takes a Gaussian form in the envi-
ronment, where it is transported by the host of atmospheric
forces. This Gaussian assumption applies to the pollutant
cloud as it advects through the atmosphere, and is, once again,

supported by Batchelor’s supposition, which was originally
referred to in the previous subsection. Its influence may even-
tually be observed at the receptor site as a deviation from
the background distribution, which is physically realized as
a sharp spike in the background measurements.

While the Gaussian puff model is fundamentally applica-
ble to the dispersion of neutrally buoyant trace materials re-
sulting from an instantaneous point source, its notoriety, and
indeed, the vast majority of its application, has resulted from
the simulation of dispersing pollutants emitted from continu-
ous sources as a series of puffs. The particular advantage of
the puff model is that it frees the modeller from the steady-
state requirement of the plume model, and allows the simu-
lation to model the effects of time- and space- varying me-
teorological conditions. Indeed, models based on the Gaus-
sian puff framework, as explained in [2, 10, 12], have been
demonstrated to produce strong concentration predictions in
comparison with physical measurements. However, for the
purpose of the present simulation, the Gaussian puff model
is most desirable by virtue of its traditional function of mod-
elling dispersion from an instantaneous point source

The derivation of the Gaussian puff equations is illus-
trated by Lyons, in [15], and takes the following form,

χ(x, y, z, t) =
Q

(4πt)
3
2 (σxσyσz)

1
2

(2)

exp

[
− (x− ut)2

2σx
+

y2

2σy
+

z2

2σz

]
,

which is unsurprisingly reminiscent of the Gaussian plume
equation displayed in Eq. (1). As in the Gaussian plume
equations, χ indicates the air pollutant concentration at the
receptor position, (x, y, z), in mass units m−3. The parame-
terQ in the above equation represents the instantaneous point
source in mass units s−1, t, is time in seconds, and the mean
wind speed, which is assumed to travel along the x-axis, is
represented by u, in m s−1. Finally, the σ values represent
the downwind, crosswind and vertical dispersion as a func-
tion of downwind distance, in meters.

5 EXPERIMENTAL SETUP

In this study, we propose a modelling technique designed to
facilitate the simulation of episodic events propagating through
a modelled system. As a means of demonstrating this theory,
we utilize the particularly interesting scenario suggested by
the verification of the United Nations’ CTBT. The remain-
der of this section provides essential details of the modelled
system.



5.1 Motivation
The CTBT is a United Nations treaty, which when it enters
into force, will prohibit the detonation of nuclear weapons by
member nations. As a result, a number of verification strate-
gies are currently under study, aimed at ensuring the integrity
of the treaty. The primary verification techniques being ex-
plored utilize PR systems trained on quantities of radioxenon
measured at sampling stations, otherwise referred to as “re-
ceptors”, distributed throughout the globe [20].

In general, it can be assumed that radioxenon is present
within the atmosphere for one of two reasons, the primary
being emissions from the nuclear industry. Alternatively, the
detonation of nuclear weapons is known to release massive
quantities of radionuclides into the atmosphere. This is par-
ticularly the case for surface and airborne detonations, but is
also true, although to a lesser extent, for subterranean detona-
tions.

Indeed, even in the most frightening of scenarios, it is ex-
pected that the testing of nuclear weapons will be characteris-
tic of an episodic event. Moreover, representative instances of
the class are unavailable for development of a PR system. Al-
ternatively, the operation schedules for individual nuclear in-
dustries are typically defined into the distant future, and thus,
in the medium-term, it can be assumed that their emission
rates are relatively consistent. We make this assumption with
the above-defined modelling and simulation task in mind, and
consequently do not aim to articulate fluctuations that may re-
sult from cyclical production cycles within individual plants
or resulting from unexpected shutdowns. Instead, our objec-
tive is to model the general effect of local industries on a par-
ticular receptor site, and to subsequently simulate the effect
of episodic explosions propagating through the system.

5.2 Modelled System
For the purpose of this demonstration, we assume a simplified
environment. In particular, we apply simplifying assumptions
to the process of atmospheric dispersion, industrial emissions
and the episodic emissions, in order to illustrate the general
effect of the episodic event at the receptor site.

5.2.1 Atmosphere

Once emitted, an airborne cloud of pollutants becomes sub-
jected to a complex array of interdependent forces, which
stretch, pull and fold the pollutant body. Theorist and practi-
tioners have attempted to classify the diffusive effect that re-
sults from these processes in a variety of ways. Traditionally,
the Pasquill stability classes and the Pasquill-Gifford disper-
sion parameters [9, 16] have experienced considerable favour
within Gaussian dispersion models, and are applied for the
determination of the σ terms in Eq. (1) and Eq. (2). More

recently, new techniques have been proposed, which are sub-
jected to fewer restrictions. However, for the purpose of this
study, we choose to view diffusion as a purely statistical phe-
nomenon. Indeed, we apply this assumption to the complete
set of atmospheric parameters required by the Gaussian meth-
ods. Thus, we assume that over the course of an experiment,
the wind speed, wind direction, and diffusion parameters,
σx,y,z , take independent Gaussian forms with user-defined
means and variances.

5.2.2 Background Emissions

Within this experiment, the background distribution is mod-
elled as per the real-time measurements of radioxenon at a
selected receptor site. Also, as previously indicated, in gen-
eral, the background levels of radioxenon can be attributed
to the nuclear industry, with the primary sources being the
production of medical isotopes and the generation of nuclear
power.

For the purpose of this experiment, we forgo the more
realistic notion of cyclical emission cycles, which may re-
sult from refuelling, planned maintenance, safety inspections,
etc., as a means of concisely achieving our overall objective.
Furthermore, the emission rates and plume rise phenomena
are assumed to take independent Gaussian forms, with user-
defined means and variances. Moreover, subsequent to ex-
iting the emissions stack, the plume is assumed to instanta-
neously reach its determined center-line, and to begin its dis-
persion in the downwind direction under steady-state condi-
tions over the course of a reasonable amount of time, say, one
hour. Subsequent to the hour of dispersion, the model param-
eters are randomly recalculated within their respective Gaus-
sian curves. In line with the enabling assumption of homoge-
neous, stationary conditions for Gaussian dispersion models,
the recalculated wind speed and direction are assumed to hold
for the entire model over the duration of this hour.

5.2.3 Episodic Emissions

The episodic events in this simulation take the form of clan-
destine nuclear explosions. Thus, the detonation is somehow
contained in an attempt to both conceal any visual evidence
from satellites and other flyovers, which would induce suspi-
cion, and to restrict the release of radionuclides. As seen in
the past, however, the containment of the pollutants produced
during a subterranean nuclear detonation is not a straightfor-
ward task [18]. Moreover, the inert property of radioxenon
dictates that large quantities are likely to be vented from even
the soundest of containment facilities, after a detonation [6].

Based on the evidence presented above, and consistent
with [18], we assume that a random portion of the produced
radioxenon is immediately vented and subsequently dispersed
downwind. Furthermore, the total radioxenon produced by



the detonation is assumed to be large relative to the back-
ground levels, with a substantial portion of it being vented
into the lower atmosphere.

Being episodic in nature, the occurrence of an explosion
at any particular point in space and time, is best estimated as
a uniform random event. Thus, at any specific point in the
simulation, it is unlikely that an explosion will occur, how-
ever, the remnant cloud of an early explosion is expected to
be present within the modelled system, at trace levels, for
some time. When a detonation occurs at a particular time, t,
for example, it promptly becomes subject to the atmospheric
condition present at that time, and continues to disperse until
it exits the modelled domain or completely decays.

6 RESULTS

This section details the results produced by the simulation
processes and scenarios described above. We begin, in the
subsection that immediately follows, by demonstrating how
a single industrial emitter effects the radioxenon levels at a
set of regional receptor sites. The subsequent subsection,
Subsection 6.2, illustrates how the episodic events propagate
through the otherwise consistent background distribution.

6.1 Background
In order to illustrate the propagation of episodic events through
background noise, we simulate a simplified version of the
CTBT scenario. In particular, the modelled environment is a
five-hundred square meter site1 with a single industrial emit-
ter and four downwind receptor sites.

The receptor sites are situated 100, 130, 160 and 190 me-
ters downwind from the industrial emitter, at elevations of
one meter. Upwind, the industrial pollutants are emitted from
a stack elevated to twenty-five meters, and are expelled at a
mean rate of 10,000 units per second and with a standard de-
viation of 10 units per second.

The overriding atmosphere is assumed to maintain a ho-
mogeneous, steady-state condition for a period of one hour, at
which time the key atmospheric parameters are recalculated
around their individually defined means. For the purpose of
this experiment, the mean wind speed has been specified at
a velocity of 7 meters per second, with a standard deviation
of 5 meters per second. On average, the wind direction is as-
sumed such that it transfers the pollutant plume emitted from
the industrial source towards the receptor sites. Beyond this,
it is subject to a standard deviation of 5 degrees. Within this
simplified model of the atmosphere, diffusion is assumed to
be approximately isotropic. Therefore, the σx,y,z values in

1For demonstration purposes, the distances used in this paper are “small”.
A corresponding scenario in which the distances involve hundreds of thou-
sands of kilometres is described in [5].

Eq. (1) and Eq. (2) assume a specified mean value of 15 with
a standard deviation of 5. However, we use the term “approx-
imately isotropic” because, each σ value oscillates indepen-
dently about the mean, and therefore, they do not necessarily
realize the same values at any particular point in the simula-
tion.

Based on the above details, ten experiments were run,
each over a period of 1, 000 hours, which is approximately
forty-one days. During each experiment, the mean hourly
pollutant concentration was recorded. The resulting back-
ground probability distributions for the four receptor sites are
displayed in histogram form in Figure 1. By calculating the
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Figure 1. The calculated probability distribution for pollu-
tant levels resulting from a single regional industrial emitter
at each of the four receptor sites located 100, 130, 160 and
190 meters downwind. These results were calculated over a
forty-one day period.

hour-on-hour mean over the ten iterations of the experiment,
we derive an ensemble average for each hour in the forty-one
day period. For another perspective, we also present the en-
semble averages as illustrated in Figure 2. This figure gives
a scatter plot with the successive hours plotted on the x-axis
and the ensemble mean volume plotted on the y-axis.

6.2 Episodic Events
Unlike episodic events, such as earthquakes and tsunamis,
which radiate outward from the epicentre in all directions,
the body of a pollutant cloud is advected in the direction of
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Receptor  1

σ = 0.31
µ = 0.86

( 1 )
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Receptor  2

σ = 0.25
µ = 0.66

( 2 )
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Receptor  3

σ = 0.2
µ = 0.52

( 3 )
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Receptor  4

σ = 0.16
µ = 0.41

( 4 )
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Figure 2. The time-series scatter plot illustrating the mean
hourly background pollutant concentrations resulting from an
upwind industrial emitter, for each of the four receptor sites
located 100, 130, 160 and 190 meters downwind. These re-
sults were calculated over a forty-one day period.

the mean wind. Moreover, the rate of advection often over-
shadows diffusion in each of the three coordinate directions.
Therefore, only those receptors located in the general down-
wind direction can expect to be effected by a pollutant cloud.
Thus, events that occur upwind are of primary interest in this
experiment.

Being cognisant of the above fact, and for demonstration
purposes, we model four upwind detonations at varying dis-
tances, thus, maximizing their effects on the receptor sites.
In particular, detonations are simulated at distances of 200,
150, 100 and 50 meters upwind. Their individual effects are
superimposed on the time-series scatter plot of the hourly en-
semble means previously described in Figure 2. In this fig-
ure, in order to illustrate the shape of the peaks, the effect of
radioactive decay was omitted from the simulation that pro-
duced these results. Alternatively, the effects of the decay
are demonstrated in Figure 4. In Figure 3, the solid blue cir-
cles indicate the background levels discussed earlier. The four
peaks in this plot result from four subterranean detonations,
each approximately four orders of magnitude larger than the
industrial emission rate. The four successively larger peaks,
demonstrate the effect of moving the denotation incremen-
tally closer to the receptor site. In particular, the taller, nar-
rower peaks resulted from detonations that occurred closer to

the receptor site, and thus, had less time to diffuse. As a re-
sult, the majority of the pollutant concentration is witnessed
over a shorter period of time and at higher levels. Alterna-
tively, the pollutant clouds characterized by the lower, wider,
peaks have travelled a longer distance, and thus, have had a
greater opportunity to diffuse. Consequently, the receptor site
depicts lower pollutant levels although their peaks are main-
tained for slightly longer durations. For detonations at greater
distance, this effect is further amplified. The downwind prop-
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Figure 3. The time-series scatter plot illustrating the effect
of four episodic events on pollutant levels at the receptor site
nearest to the industrial emitter. The details about the figure
and its legend are found in the body of the paper.

agation of an instantaneous vented cloud of radioxenon, re-
sulting from a subterranean detonation is depicted in Figure
4. In particular, this figure demonstrates the effects of both
dispersion and radioactive decay. By comparing the episodic
spike in sub-figure 4.1 with the third episodic spike in Figure
3 (which corresponds to a similar detonation), it becomes ap-
parent that the radioactive decay plays a fundamental role in
the removal of radioxenon from the atmosphere. In particular,
the episode peaks slightly above a concentration of 2 in sub-
figure 4.1, although it reaches elevations greater than 8 in the
previous figure, where the decay was not accounted for. Dis-
persion and decay are also visible in the fading of the spikes
at the successive receptors depicted in the four sub-figures.
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Figure 4. This figure illustrates the downwind propagation
of a cloud of vented radioxenon. In particular, the effects
of diffusion and radioactive decay are demonstrate through
the incrementally decreasing concentrations of radioxenon
(depicted by red diamonds, which collectively form small
spikes) measured at each successive receptor site.

7 DISCUSSION

An analysis of the accuracy of the Gaussian dispersion mod-
els presented above is beyond the scope of this paper. Indeed,
as earlier indicated, these models, and their variants, have re-
ceived considerable application and analysis in the past. For
in-depth analyzes of these techniques, interested readers are
directed to the earlier citations.

Of primary interest in this work, is the relationship be-
tween the background data and the episodic events, and in
particular, how this relationship can be modelled. We theorize
that in many instances, over the long-term the background
sources of features deemed to be of particular interest, such
as air polluting industries or regular p- and s- wave gener-
ating small-scale tectonic movements, can be modelled in a
probabilistic manner based on a knowledge of their emission
rates and the medium in which the propagation takes place.
Radionuclide emissions from the nuclear industry are used to
demonstrate this theory, and the results displayed in Figure
1 indicate that our objective of demonstrating how the gen-
eral characteristics of the background data can be modelled
has been realized. As expected, the model captures the key
features of the system under study. In particular, the sim-

ulation articulates the successive movement of the distribu-
tion to the left of the histogram at greater distances from the
source. Furthermore, we witness a narrowing of the shape
of the histogram at a greater distance, which is indicative of
the pollutant body becoming increasingly well-mixed over an
expanding area. Both of these results are confirmed in Figure
2 through the sequentially decreasing mean values and stan-
dard deviations. Larger-scale and longer experiments, which
include seasonal variations in the atmosphere, and for more
emitters at greater distances, will help to further validate this
in the future. However, we believe that this simple model
presents a solid foundation for any future study.

Episodic events, which are characteristically random in a
multitude of ways, are inherently difficult to simulate. More-
over, the successful recreation of one event within a mod-
elled domain does not imply a generally applicable model.
A great deal of effort must be applied to properly tune most
models in order to recreate events with minimal error. How-
ever, often, as is the case for the generation of data for PR
systems, our desire is to produce a large number of plausi-
ble scenarios that capture the general relationship between
the background and episodic events. Moreover, we are in-
terested in how the rare episodic events, which possesses a
largely unknown distribution in time, space and magnitude,
can be simulated, and their effects subsequently propagated
through the model. Figure 3 and Figure 4, provided excel-
lent depictions of how a series of probabilistic choices can be
applied to generate episodic events in space, time and mag-
nitude, in addition to propagating the resulting phenomena
through the transmission medium. Indeed, the demonstrated
model captures the subsequent rise and fall that occurs in the
feature space of the individual downwind receptor affected
by the episode. In particular, the slumping spikes in Figure 3
illustrate the relationship between the dispersion and distance
travelled, as does Figure 4, which additionally demonstrates
the modelling of radioactive decay.

Our proposed modelling framework, thus, provides an
effective means by which a researcher can execute the ini-
tial exploratory phase of analysis within a large number of
domains and scenarios, in addition to facilitating a domain-
specific data generation scheme for the training, testing, vali-
dating and debugging of PR systems. We have, indeed, used
these schemes to design such a system, the results of which
are presently being compiled for publication [5].

8 CONCLUSION

In this paper, we have considered a relatively new field, namely
that of modelling episodic events such as earthquakes, nu-
clear explosions etc. The difficulty with such a modelling
process is that most of the observations appear as noise. How-
ever, when the episodic event does occur, its magnitude and



features far overshadow the background, as one observes af-
ter a seismic event.

In particular, we present a straightforward theory, which
states that in the long-term, measurable features produced
by characteristically noisy background sources, take a rela-
tively consistent and recognizable form. Moreover, by using
the knowledge of the particular propagation medium and a
general description of the background sources that are under
study (in this case, the nuclear industry), the major features
can be modelled sufficiently for the purpose of exploring the
effects of episodic events. Given the largely random and spo-
radic nature of these episodic events, we argue that for ex-
ploratory purposes, they proceed through a series of proba-
bilistic decisions.

In the spirit of the radionuclide monitoring challenge sug-
gested by the Comprehensive Nuclear Test-Ban-Treaty, we
demonstrate how the nuclear industry can be assumed to take
the role of the background source, thus, affecting relatively
consistent levels of radioxenon at a set of receptor sites. Sub-
sequently, we have demonstrated how the consequence of det-
onations of nuclear weapons can be generated and propagated
through the modelled system.

The results obtained and knowledge gained through the
application of the state-of-the-art in pattern recognition of la-
belled (background/episodic) data produced by this simula-
tion system, are discussed elsewhere [5].
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