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Abstract—Binary classifiers have typically been the norm for
building classification models in the Machine Learning commu-
nity. However, an alternate to binary classification is one-class
classification, which aims to build models using only a single
class of data. This is particularly useful when there is an over-
abundance of data of a particular class. In such imbalanced
cases, binary classifiers may not perform very well, and one-
class classifiers then become the viable option. In this paper,
we are interested in investigating the performance of binary
and one-class classifiers as the level of imbalance increases, and,
thus, uncertainty in the second class. Our objective is to gain
insight into which classification paradigm becomes more suitable
as imbalance and uncertainty increase. To this end, we conduct
experiments on various datasets, both artificial and from the UCI
repository, and monitor the performance of the binary and one-
class classifiers as the size of the second class gradually decreases,
thus increasing the level of imbalance. The results show that
as the level of imbalance increases, the performance of binary
classifiers decreases, whereas one-class classifiers stay relatively
stable.

Keywords-Machine learning, one-class classification, binary
classification, imbalanced data.

I. INTRODUCTION

The traditional methods of classification have always been
those that use all data classes to build models. Such models
are discriminatory in nature, since they learn to discriminate
between classes. However, many real world situations are such
that it is only possible to have data from one class, the target
class; data from other classes, the outlier classes, is either very
difficult or impossible to obtain. Examples of such domains
include those in which there are almost an infinite number of
instances from the outlier classes, such as in typist recognition
[1], or those in which obtaining instances from the outlier
classes is dependent upon the occurrence of a rare event1, such
as the detection of oil spills [2] or the inclusion of journal
articles for systematic reviews [3]. Discriminatory methods
cannot be used to their full potential in such situations, since
by their very nature, they rely on data from all classes to
build the discriminatory functions that separate the various
classes. As a result, one-class learning methods become more
appealing. These methods only use data from a single class to
build a model, and are based on recognition, since their aim is

1It is likely that the outlier class for classification is the target class in
reality. However, we use the term target class to denote the majority class,
while it may or may not be the intuitive target class.

to recognize data from a particular class, and reject data from
all other classes.

One-class classification has seen a rise in application over
the years, for example, in the use of document classification
[4], typist recognition [1] and compliance verification of
the CTBT [5]. However, to the best of our knowledge, the
question of which classification paradigm, discriminatory or
recognition-based, to apply, and when, has never explicitly
been explored.

Since the use of either of the paradigms is dependant
on the level of imbalance inherent in the dataset, a natural
question to ask is: at what levels of imbalance does the use of
binary classifiers becomes futile, and using one-class learning
becomes the more suitable option? Clearly, if the data has
a reasonable level of balance between the various classes,
there is no reason why binary classifiers should not be used.
It is at high levels of imbalance, and/or when there is a
significant degree of uncertainty in the minority class, that the
use of binary classifiers comes into scrutiny. We investigate
this question by performing a series of experiments on both
artificial datasets, and datasets from the UCI repository. The
use of artificial datasets is purely for theoretical reasons, as it
give us an opportunity to evaluate the learnt models using a
large enough test set. The target class in each dataset has a
fixed size, but the size of the outlier class is steadily decreased,
thereby increasing the level of imbalance in the dataset. The
performance of the classifiers is monitored over the increas-
ingly imbalanced datasets. The results show a decreasing trend
in binary classifier performance as the levels of imbalance
increase. This result can be attributed to the binary classifier’s
failure to build a strong model of the second class. One-class
classifiers, on the other hand, display fairly stable performance,
offering support to their use in highly imbalanced cases.

The remainder of this paper is structured as follows; section
II provides an overview of one-class classification (OCC).
In Section III we elaborate on the issue of one-class versus
binary classification methods in the context of imbalance.
Section IV describes the various datasets in detail, and Section
V describes the experimental framework. The results are
presented in Section VI, and finally, concluding remarks are
provided in Section VII.

II. ONE-CLASS CLASSIFICATION: AN OVERVIEW

As we discussed in the preceding section, it is often the
case that the data presented for inducing classifiers comes

2012 11th International Conference on Machine Learning and Applications

978-0-7695-4913-2/12 $26.00 © 2012 IEEE

DOI 10.1109/ICMLA.2012.212

102

2012 11th International Conference on Machine Learning and Applications

978-0-7695-4913-2/12 $26.00 © 2012 IEEE

DOI 10.1109/ICMLA.2012.212

102



with either an overabundance of a single class, or the complete
absence of all other classes (apart from a single, target class),
thereby necessitating the use of OCC. One approach to OCC is
to use density estimation [6]. This is performed by attempting
to fit a statistical distribution to the data from the single
class (the target data), and using the learnt density function
to classify instances as belonging either to the target class
(high density values), or to the set of outlier class (low
density values). Parametric approaches rely on reliably esti-
mating the distribution of the data beforehand, a challenging
and impractical task given that most real-world data have
complex distributions. An alternative approach to parametric
techniques would be to use non-parametric techniques, such
as Parzen Windows [6]. But, as the dimensionality of the
data increases, these methods suffer from the well known
curse-of-dimensionality problem, whereby the computational
complexity for density estimation increases drastically.

There are algorithms designed specifically for one-class
(OC) classification. An example of a OC classifier is the
autoassociator (AA) [7], which can be thought of as a com-
pression neural network, where the aim is to try to recreate
the input at the output, with the compression taking place at
the hidden layers. Hempstalk et al., in [1], describe a method,
PDEN, for estimating the probability density function of a
single class by first obtaining a rough estimate of the density
of target class, generating an artificial class based on it and
then performing binary learning. Yet another example of a
OC classifier is the OC Support Vector Machine (OCSVM)
[8]. OCSVMs assume the origin in the kernel space to be
the second class, and, subsequently, learn a boundary that
separates the target class from the origin.

III. ONE-CLASS VERSUS BINARY CLASSIFICATION

In this section, we discuss in detail the performance of
binary classifiers in the context of levels of imbalance in the
dataset from a Bayesian perspective.

The Bayes Rule for classification, assuming a zero/one loss
function, given two classes ω1 and ω2, is: Classify as ω1 if
p(x|ω1)P (ω1) > p(x|ω2)P (ω2), else classify as ω2.

If instances from class ω1 are much more abundant than
those from class ω2, we will get, for the prior probabilities,
P (ω1) >> P (ω2). Also, given the rarity of instances from
class ω2, the probability density functions (PDF) will be
related as p(x|ω1) >> p(x|ω2). Only in extremely rare,
exceptional cases will this inequality be reversed. Given these
relationships between the priors and the PDF, using the rule
mentioned previously, we observe that we will almost always
classify an instance as belonging to class ω1. Clearly, the re-
sulting classifier will be extremely biased towards the majority
class, and will thus not be suitable for use in an imbalanced
domain.

This analysis shows, from a Bayesian perspective, the
effects of imbalance on binary classifiers; they almost always
become biased towards the majority class, effectively ignoring
the minority class. In contrast, OCC ignores prior probabilities,
since, given a single class ω, the notion of using prior
probabilities becomes moot. What we are interested in OCC

is estimating the PDF of the given target class; once we have
that, we can perform classification by imposing a threshold τ
on the value given by the PDF for a given test instance:

Classification(x) =

{
target, if p(x|ω) ≥ τ

outlier, otherwise
(1)

As we only use information from a single class to build a
model (in this case, estimating the PDF), there is no bias
present in it. Therefore, OCC, from the analysis shown here,
becomes the better choice for building classification models
when extreme levels of imbalance are present in the data.

The discussion here is from a purely theoretical perspective,
and does not necessarily relate to any particular classifier.
What we are interested in is empirically verifying the analysis
presented in this section by running different classifiers on
various datasets, and seeing at what point the use of binary
classifiers becomes detrimental to the problem at hand.

IV. DESCRIPTION OF THE DATA SETS

This section provides a description the various data sets
used in the experiments. We begin by describing the artificial
datasets that we create, followed by the UCI datasets.

A. Artificial Data

The purpose of using artificial data is to create an idealized
data distribution on which we can concretely test the trends of
classifier performance as class imbalance increases. It provides
us with an ample test set, eliminating the need for using
cross-validation. Having a very small outlier class causes the
resulting test sets in cross-validation to be small, and the
performance metric value may not represent the true classifier
performance.

We use two artificial datasets which are various combina-
tions of multimodal and unimodal target and outlier distri-
butions. These are comprised of unimodal bivariate Gaussian
distributions. The standard deviations for both dimensions
are the same in both the target and outlier classes; only the
means vary. We completely specify these distributions using
six parameters (U: Unimodal, M: Multimodal, B: Bimodal):

Data 1: U target and M outlier distributions:
Target : N([µu1, µu2],σt)
Outlier: N([µu1, µu2+2.75σt],σo)∪N([µu1, µu2−

2.75σt],σo)∪N([µu1 + 2.75σt, µu2],σo)∪
N([µu1 − 2.75σt, µu2],σo)

Data 2: B target and M outlier distributions:
Target : N([µm1, µm2],σt) ∪ N([µm1, µm2 +

4.5σt],σt)
Outlier: N([µm1 + 2.25σt, µm2 + 1.984σt],σo) ∪

N([µm1 + 2.25σt, µm2 − 1.984σt],σo) ∪
N([µm1 − 2.75σt, µm2],σo) ∪ N([µm1 +
7.25σt, µm2],σo)

The values for the parameters are as follows: µu1: 20, µu2:
20, µm1: 15, µm1: 20, σt: 2.5 and σo: 1.5.

Figure 1 shows the plot of the datasets generated by the
aforementioned distributions.
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Fig. 1. The artificial datasets.

TABLE I
DESCRIPTION OF THE UCI DATASETS USED IN THIS PAPER. THE WBCD

DATASET IS THE WISCONSIN BREAST CANCER DATASET.

Dataset Number of Targets Number of Outliers

Diabetes 500 268
Heart Disease 150 120
Hepatitis 123 32
Ionosphere 225 126
Thyroid Disease 3541 231
Sonar 111 97
WBCD 357 212

B. UCI Datasets

Table I lists the datasets used, along with the number of
target instances and outlier instances in each dataset. All the
datasets are binary problems, with numeric attributes, and no
missing values. As can be seen, the initial ratios indicate that
there is not nearly enough imbalance to warrant using OCC.

V. EXPERIMENTAL FRAMEWORK

We use the Autoassociator (AA) and the Probability Density
Estimator (PDEN) for one-class classification. The binary clas-
sifiers use are: Multilayer Perception (MLP), Decision Trees
(DTree), Support Vector Machines (SVM), Nearest Neighbour
(IBK)

Apart from AA, all classifiers have been implemented in
WEKA [9], and run with their default settings. This is done
so as to prevent any bias resulting from the fine tuning the
parameters in order to obtain optimal results from specific
datasets. For PDEN, we use the Gaussian Estimator as the
density estimator, and AdaBoost with Decision Stumps as
the class probability estimator. Both of these were used with
default settings. The experiments with AA were implemented
using the AMORE2 R package, and run in R3. One hidden
layer was used for the AA in all the experiments, and the
number of training iterations was set to 50. The momentum
value was set to 0.99, and the learning rate to 0.01. The number
of hidden units for the artificial datasets were set to 4. For all
other datasets, they varied from 1 to the number of dimensions
of the particular dataset, and the number of units giving the
best results were chosen.

The performance measure we use is the geometric mean
of the per-class accuracies [10]. It is given by gmean =√
acc1 × acc2, where acci is the accuracy of the classifier

on instances belonging to class i. By definition, the metric is
immune to class imbalance. Evaluation is done using stratified
10-fold cross validation for the UCI datasets. For the artificial
datasets, we use a dedicated training and test set.

To simulate the effect of imbalance, we fix the size of the
target set, and steadily decrease the size of the outlier set. Let
r be the ratio of outlier instances to target instances, i.e., r =
|outliers|
|targets| . We divide the range from r to 0.001 into 20 intervals
of a fixed width, w = r−0.001

20 . We then get size of each new
outlier set, s as s = (r − (w × i))× |target|, ∀i ∈ {0, 19}.

VI. EXPERIMENTAL RESULTS

We begin with the results over the artificial data, followed
by the UCI dataset. It is worth noting that what we are
interested in seeing are the trends; consequently, actual values
are unimportant. Therefore, we only present graphs which plot
the LOWESS curve [11] for the actual values.

A. Results on Artificial Data
The results of the binary and one-class classifiers are shown

in Figure 2. The performance trends of the binary classifiers
are clear: there is a steady decline as the levels of imbalance
increase, starting at around imbalance levels of 1:2.8. The one-
class classifiers on the other hand remain stable throughout.
The slight deviations in the AA are due to it using the
outlier class from the training set for setting the threshold.
The stability of the one-class classifiers can be attributed to
the fact that they only use information from the target class

2AMORE: A MORE flexible neural network package, http://cran.r-project.
org/web/packages/AMORE/index.html

3The R Project for Statistical Computing, http://www.r-project.org/
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TABLE II
INITIAL RATIOS OF THE UCI DATASET, ALONG WITH THE RATIO AT WHICH

BINARY LEARNING STARTS TO DETERIORATE.

Dataset Initial Ratio Deterioration Ratio

Diabetes 1:1.86 1:3.73
Heart Disease 1:1.25 1:2.5
Hepatitis 1:3.84 1:6.47
Ionosphere 1:1.78 1:3
Thyroid Disease 1:15.32 1:37
Sonar 1:1.14 1:2.92
WBCD 1:1.68 1:4.82

to build the models. As a result, they are not affected by
the lack of information from the outlier class. Amongst the
binary classifiers, Dtree, SVM and IBK all perform relatively
similarly, whereas the MLP has the worst performance, with
a sharp decline in performance at higher levels of imbalance.
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Fig. 2. Performance trends of the binary and one-class classifiers over the
artificial datasets. A greater value of Index implies a greater imbalance.

B. Results on UCI Datasets

Figures. 3, 4, 5 and 6 show the performance trends of the
binary and one-class classifiers over the various UCI datasets.
These datasets originally come with levels of imbalance that
are not extreme, thus making them conducive for binary
classification. However, as we decrease the size of the outlier
class and increase imbalance between the targets and outliers,
there is a clear declining trend in performance in all the binary
classifiers. This offers support to the fact that an increasing
imbalance will cause deterioration in performance of binary
classifiers. Table II displays the approximate ratios at which
binary learning starts to deteriorate. The ratios indicate the
number of target instances for each outlier instance. Thus, a
ratio of 1 : t indicates that there are t target instances for a
single outlier instance in the dataset.

For one-class classifiers, one would expect their perfor-
mance to remain stable, regardless of the level of imbalance.
However, since we use 10-fold cross validation, the number of
outliers in the test set changes, and as a result, we get different
performance values for different sizes of the outlier set. But
in all cases, the trends in one-class classifier performance and
not even close to as pronounced as those in the binary case.
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Fig. 3. Performance trends of the binary and one-class classifiers over the
(i) Heart and (ii) Diabetes UCI datasets.
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Fig. 4. Performance trends of the binary and one-class classifiers over the
(i) Ionosphere and (ii) WBDC UCI datasets.
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Fig. 5. Performance trends of the binary and one-class classifiers over the
(i) Hepatitis and (ii) Thyroid UCI datasets.
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Fig. 6. Performance trends of the binary and one-class classifiers over the
Sonar UCI dataset.

VII. CONCLUSIONS AND FUTURE WORK

Given the inherent imbalance present in most real world
datasets, it is natural to wonder which classification paradigm
would be suitable, i.e., one based on discrimination (binary
classification), or one based on recognition (one-class classi-
fication). We investigate the performance of binary and one-
class classifiers over datasets in which we purposely decrease
the size of the outlier (or second) class, thereby increasing
the level of imbalance between classes. The results show
that in all cases, the performance of the binary classifiers
decreases as the imbalance increases. The one-class classifiers
on the other hand, remain relatively stable in performance.
More importantly, the performance of the binary classifiers is
generally found to degrade below that of the OCC when the
balance is taken to the extreme.

In almost all cases presented here, for both UCI and
artificial datasets, there appears to be at least an imbalance
ratio of 1 : 2.5 before binary classifier performance starts to
deteriorate. In other words, when there are at least two and
a half times as many target instances as outlier instances, the
performance of the binary classifiers may not be as strong as
that of a recognition-based method. Indeed, in some cases,
the imbalance ratio is well over 1 : 3.5 before a decline
in binary classifier performance happens. Different binary
classifiers have different points of imbalance after which their
performance starts to decline, making any generalizations over
the discriminatory paradigm in the presence of imbalance
difficult. In addition, each classification problem is unique.
Specifically, some problems are easier to model than others,
thus, fewer instances are required. Indeed, this appears to be
the case in the WBDC problem. And, as a result, the majority
of the binary learners are capable of effectively model the
problem without succumbing to the class imbalance.

The answer to the question posed in the title of the paper,
Which and When?, is not a simple one. The ultimate choice
of which classification paradigm to use will depend on the
problem at hand. While the work presented does show that
performance of binary classifiers decreases with increasing
imbalance, this does not imply that binary classifiers should
not be used if there is any form of imbalance present. Indeed,
even with a decent level of imbalance, certain binary classifiers
can come up with effective decision boundaries. It is only

when the imbalance is extreme to the point that the minority
class is not providing nearly enough information does the value
of using a recognition based paradigm becomes apparent.

Furthermore, one must be cautious when empirically eval-
uating binary and one-class classifiers over datasets that are
inherently suited for binary classification. Examples of such
datasets are the UCI datasets; the initial imbalance ratios
presented in Table II illustrate this point. Both paradigms
are complementary to each other; the success of one is
usually dependent on the failure of the other, and as a result,
comparisons between them can never be absolute, but only
relative to the context of their application.

We conducted experiments using two popular one-class
classifiers, the autoassociator and PDEN, and four well known
binary classifiers. Continuing this study, we will explore the
performance trends for other one-class and binary classifiers
for increasing levels of imbalance. Furthermore, it would be
worth taking this work further by examining each classifier
individually, and discovering the various nuances present in
them that contribute to their performance over imbalanced
datasets. A deeper understanding into the workings of both
binary and one-class classifiers over different datasets, with
varying levels of imbalance, can help facilitate the selection
of the appropriate classifier for the task at hand. Indeed, the
results here show that the performance of any classifier is
highly dependent on both the nature of the dataset and the
degree of imbalance inherent in it.
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