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Abstract Classification domains such as those in medicine, national security and the envi-
ronment regularly suffer from a lack of training instances for the class of interest. In many
cases, classification models induced under these conditions have poor predictive performance
on the important minority class. Synthetic oversampling can be applied to mitigate the impact
of imbalance by generating additional training instances. In this field, the majority of research
has focused on refining the SMOTE algorithm. We note, however, that the generative bias
of SMOTE is not appropriate for the large class of learning problems that conform to the
manifold property. These are high-dimensional problems, such as image and spectral clas-
sification, with implicit feature spaces that are lower-dimensional than their physical data
spaces. We show that ignoring this can lead to instances being generated in erroneous regions
of the data space. We propose a general framework for manifold-based synthetic oversam-
pling that helps users to select a domain-appropriate manifold learning method, such as
PCA or autoencoder, and apply it to model and generate additional training samples. We
evaluate data generation on theoretical distributions and image classification tasks that are
standard in the manifold learning literature, and empirically show its positive impact on the
classification of high-dimensional image and gamma-ray spectra tasks, along with 16 UCI
datasets.
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1 Introduction

Problems such as radioactive threat classification, oil spill classification, gene function anno-
tation, and medical and text classification have challenging properties (Bellinger et al. 2015;
Kubat et al. 1998; Blondel et al. 2011; Akbani et al. 2004; Nguwi and Cho 2009). These
domains have a high level of complexity due to factors such as class overlap and multi-
modality. Moreover, the class distributions are imbalanced and the minority classes are rare.
The degree of rarity can be thought of as a function of the number of training examples
relative to the complexity of the domain.

Rarity creates a challenging learning scenario referred to as absolute imbalance. Learners
trained on absolutely imbalanced data are known to produce error prone predictions (He
and Garcia 2009). For an arbitrary dataset, the specific threshold below which a domain is
said to be absolutely imbalanced is unclear, but the outcome is not. It breaks the general
assumption of machine learning that demands a representative set of instances from each
class. An absolutely imbalanced training set leads to the induction of a decision boundary
that is biased in favour of the majority class, thereby causing weak classification accuracy
(Jo and Japkowicz 2004; Weiss 2004; He and Garcia 2009).

Given the practical importance, and the significant challenge posed by domains of this
nature, class imbalance has been identified as one of the essential problems in machine
learning (Yang et al. 2006) and has spawned workshops, conferences and special issues to
discuss and develop strategies to manage class imbalance (Japkowicz 2000; Chawla et al.
2003, 2004; Chawla and Zhou 2009; Wang et al. 2017).

The most obvious solution to the problem of class imbalance is more training samples.
Unfortunately, we cannot sample the data directly due to domain properties, such as acqui-
sition cost and class probability. Thus, we turn to the data-driven generation of synthetic
instances. Within class imbalance, this is known as synthetic oversampling, and was origi-
nally achieved by interpolating new instances atrandom distances between nearest neighbours
in the minority class; this is the classic SMOTE algorithm (Chawla et al. 2002).

SMOTE has been very successful in reducing the impact of class imbalance, and as such, it
has seen wide-spread application. Nonetheless, many studies have also found that it does not
always generate synthetic instances that produce the desired performance gains (Drummond
and Holte 2003; Van Hulse et al. 2007; Wallace et al. 2011). In turn, these studies have lead
to the development of new variations on the standard algorithm, such as boosting, post-hoc
cleaning and better methods for selecting the instances to be used for generation by SMOTE
(Chawla et al. 2003; Han et al. 2005; Bunkhumpornpat et al. 2009).

In spite of the various proposed alterations, the SMOTE algorithm and its derivatives
suffer from a particular and identifiable weakness on a great number of domains that are of
particular importance in modern machine learning, such as those involving text, speech, video,
image, radiation spectra and RNA. Each of these domains, and many more like them, are
of high-dimensionality. Methods, such as the SMOTE algorithm, that rely on calculations
of the straight-line distance between points in high-dimensional spaces are known to be
error prone. These error prone distances lead to inaccurate nearest neighbour selection, and
thus, the generation of noisy synthetic instances. These negatively impact the performance
of the induced classifier. Removing and/or avoiding these noisy instances is the focus of
the previously mentioned derivatives of the SMOTE algorithm. The outstanding problem,
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however, is that it is difficult to determine which approach is ideal, and more importantly,
none of these directly deals with the core of the problem.

We argue that a superior means of synthesizing instances for high-dimensional class
imbalance tasks is to take advantage of the intrinsic structure of the data. In particular, we
note that the class probability mass is not spread widely throughout the high-dimensional
space, but rather embedded in a much lower-dimensional manifold-space (Chapelle et al.
2006). Harnessing the intrinsic manifold property has been key to improving performance in
many high-value machine learning domains, such as image, speech, and text classification,
human action and emotion recognition in audio and video, and is necessary to advance
performance on related imbalanced domains (Tuzel et al. 2007b, 2008; Lui et al. 2010; Liu
et al. 2013; Slama et al. 2015).

The explicit weakness of SMOTE, and its related algorithms, is that it operates in the
fog of the higher-dimensional data-space. The curvature of the embedded manifold causes
orthogonal instances to appear deceptively close whilst their geodesic distance along the
manifold is, in fact, great. The direct consequence of this is that non-manifold-based synthetic
oversampling of domains that conform to the manifold property will inherently lead to noisy
instances that negatively impact performance.

On the surface, feature selection can seem like a reasonable alternative to manifold learn-
ing. Feature selection methods, such as subset selection, choose a subset of the d-dimensions
to represent the data (Alpaydin 2014). This is not an effective means of solving problems in
domains that conform to the manifold property because the probably density resides in an
embedded space. This cannot be recovered by extracting a subset of features from the feature
space. Moreover, many selected features methods themselves can be biased by the skewed
distribution.

Indeed, through our practical experience in applying synthetic oversampling methods
to gamma-ray spectral classification problems, we were able to identify that SMOTE and
other synthetic oversampling methods perform poorly when the target data conforms to the
manifold property. In particular, they have the tendency to synthesize noisy instances that
are realized as distorted images and unrealistic gamma-ray spectra.

To address this, we propose a framework for synthetically oversampling data that conforms
to the manifold property. The schema for the four component framework is presented in Fig. 1.
In brief, the framework evaluates the conformance of the domain to the manifold property
to determine an appropriate means of synthetic oversampling. Based on this outcome, an
appropriate manifold learning method can be selected and applied to the data. The synthetic
instances are then generated in the manifold-space and reverse mapped back to the feature
space to be added to the training set.

The contributions of this work are to: (a) demonstrate the weakness of existing methods
when the data conforms to the manifold property, (b) develop a framework for manifold-
based synthetic oversampling that can utilize any manifold learning algorithm, (c) propose
and evaluate methods for quantifying conformance to the manifold property to determine
when manifold-based synthetic oversampling is ideal, (d) demonstrate two formalizations
of the framework (autoencoder and PCA) and suggest others, and (e) empirically show the
benefits of the framework on high-dimensional, real-world data that conforms to the mani-
fold property. In particular, our experiments include high-dimensional image classification
and gamma-ray spectra classification tasks, along with 16 benchmark UCI datasets. These
contributions bring together and further elaborate on results that we have previously reported
(Bellinger et al. 2015, 2016).

In this work, our proposed method for testing the conformance of datasets to the manifold
property is added to improve the usability of the framework. It determines if manifold-based
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Fig. 1 General framework for synthetic oversampling

synthetic oversampling is ideal for the target domain. Moreover, it offers the potential to
aid in the choice of which manifold learning method to utilize. These are two fundamental
questions that were left unanswered in our previous work.

2 Related work

Random undersampling is one of the simplest ways to deal with class imbalance. It adjusts
the class distribution by producing a training set S = {S,,;, U E'}, where E is a set of random
samples drawn without replacement from S;,4;. The weaknesses of this method are well
documented. In particular, it is known to suffer from high variance and has the potential
to discard valuable information from the majority class, whilst still risking overfitting the
minority class (Han et al. 2005). Bagged random undersampling was proposed to deal with
the high degree of variance (Wallace et al. 2011). This does not, however, address the sig-
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nificant loss of information. In the case of absolute imbalance, for example, the amount of
undersampling needed would risk the majority class also becoming rare.

Alternatively, cost-sensitive learning does not necessitate the discarding of information. It
aims to assign misclassification costs in a manner that promotes the induction of a classifier
with improved accuracy on the minority class. The idea is that if you skew the misclassification
costs towards the minority class, the classifier learns to make minority class predictions that
it might not make otherwise. The set of cost-sensitive methods can be roughly separated into
those that apply misclassification costs to the training data, those that utilize cost-sensitivity
in conjunction with ensemble methods, and those that incorporate cost-sensitivity into the
learning algorithms themselves (He and Garcia 2009). In practice, these methods can be
challenging to apply due to their algorithmic forms and the need to estimate costs.

A more significant issue with cost-sensitive learning is that it relies on misclassifications
during the inductive process to adjust the decision boundary. If no training instances are
classified incorrectly, the cost adjustment has no impact on the induced classifier (Wallace
et al. 2011). This scenario is not as improbable as it may seem. When the minority class is
rare and/or the data is high-dimensional, it is possible that a decision boundary can easily
be found that separates the two classes. Due to rarity, this decision boundary is unlikely to
accurately represent the latent distribution, thus, leaving an inaccurate classifier in place.

Random Oversampling produces a training set S = {E U Sy,4;}, where E is a set of
minority training instances sampled with replacement. It rebalances the training distribution
and avoids discarding informative majority class instances; however, it does not prevent
overfitting (Batista et al. 2004a). Synthetic oversampling was envisioned as a means of
avoiding overfitting by generating synthetic instances to populate the minority class rather
than by simply replicating instances (Chawla et al. 2002). Therefore, it does not necessitate
the discarding of useful instances from the majority class, and when an appropriate bias is
selected, it offers the potential to accurately adjust the decision boundary regardless of the
separability of the training set.

The state-of-the-art methods in synthetic oversampling are primarily based on the SMOTE
algorithm, which applies a generative bias that assumes the best place to generate synthetic
instances is between nearest neighbours in the minority class. As a result, the synthetic set
is generated entirely within the convex hull formed by these instances. There are two major
criticisms of SMOTE. The first is that the instances are erroneously generated within the
majority space. This causes the inductive process to overcompensate for the prediction bias
of the classifier. The other, contradictory, criticism is that it does not generate instances close
enough to the majority class. As a result, the prediction bias is not sufficiently reduced. The
properties of the data domain determine which of these criticisms applies to SMOTE for a
given domain.

A series of ad-hoc modifications to SMOTE have been proposed in an attempt to manage its
weaknesses. Post-hoc methods have been described that attempt to remove minority instances
generated in the majority space (Batista et al. 2004a; Han et al. 2005; Stefanowski and Wilk
2007). Other methods have been developed that aim to promote the generation of instances
close to the majority space (Batista et al. 2003; He et al. 2008).

Nonetheless, the weaknesses of SMOTE and its derivatives relate to its generative bias,
i.e., whether the convex hull formed via straight-line measurements in the feature space
accurately covers the minority class. This is a reasonable assumption for many low- and
medium-dimensional domains. As the dimensionality and corresponding sparsity increases,
however, SMOTE becomes a limiting choice. To this end, our research shows that the existing
means of synthetic oversampling are inappropriate for data that conforms to the manifold
property, and that manifold-based synthetic oversampling should be applied.
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3 Problem overview

Our research was originally inspired by our collaboration with the Radiation Protection
Bureau at Health Canada, where we applied machine learning for safety in regards to radia-
tion. The primary challenges were the high-dimensionality of the domain and the degree of
imbalance. These are features that are common to a large number of classification domains,
such as global climate change, image recognition, human identification, text classification
and spectral classification.

We recognized that domains with this property can often be better represented in a lower-
dimensional embedded space. This concept takes advantage of the reality that instances
are not spread throughout the feature space but are concentrated around a lower-dimensional
manifold. A simple example of a manifold in machine learning comes from handwritten digit
recognition, where the digits are recorded in a high-dimensional feature space, but can be
effectively represented in a lower-dimensional embedded space (Domingos 2012). Manifold
learning provides a gateway to the embedded space in which all possible handwritten digits
can be encoded.

Somewhat similar to the variations caused by an individuals style of writing on the shape
and orientation of handwritten digit, the data distribution representing a particular isotope
of interest, such as cobalt-60, is impacted by a combination of factors. When measured
with a gamma-ray spectrometer, a pure isotope sample produces a very specific signature
in the gamma-ray spectra. This clear signal, however, is altered and eroded by the amount
of radioactive material, the degree to which it is shielded, the amount of the background
radiation, and the distance between the source and the gamma-ray spectrometer. Different
combinations of these aspects may affect a signal at any given time. The various combinations
that may occur in the high-dimensional space can be imagined as forming a dense, low-
dimensional structure in the embedded space.

Inducing a manifold representation of the training data provides a gateway to an embedded
space that concisely represents the various forms of gamma-ray spectra that may occur in
the class of interest. These include combinations of its different degraded and eroded states.
If you can imagine taking a walk along the induced manifold, as you travel from one end
to the other, you would be traveling along a continuum representing the transition between
the different aspects that affect the spectra, including the degree of shielding, amount of
radioactive material, distance to the source, etc.

A significant amount of research has been dedicated to the development of manifold
learning methods (Huo et al. 2007; Ma and Fu 2011). The resulting algorithms utilize a
diverse set of assumptions and biases, such as the complexity of the curvature of the manifold
and the nature of the noise. Classic methods, such as PCA and MDS, are simple and efficient.
These are guaranteed to determine the structure of the data on or near the embedded manifold.
These traditional methods assume a linear manifold (Tenenbaum et al. 2000). Other, more
algorithmically complex methods, such as kernel PCA and autoencoding, enable the induction
of non-linear manifolds. Manifold learning has demonstrated great potential in clustering,
classification and dimension reduction (Belkin and Niyogi 2003; Tuzel et al. 2007a; Zhang
and Chen 2005; Roweis and Saul 2000). In spite of its potential, manifold learning methods
have gone unconsidered in problems of class imbalance. We address this gap in the literature
with a framework for manifold-based synthetic oversampling. This enables the user to select
the most appropriate manifold learning strategy, be it a simple and efficient linear approach
like PCA or local linear embedding, or more sophisticated non-linear methods such as the
autoencoder.
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3.1 Limitations of SMOTE on manifolds

Chawla et al. presented Synthetic Minority Oversampling TEchnique (SMOTE) (Chawla
et al. 2002) as a general purpose synthesizer to overcome the limitation of random oversam-
pling. SMOTE augments the minority training set by interpolating points between nearest
neighbours in S,,;,. For each x; € S;,in, a synthetic instance is created at a random point on
the edge connecting x; to a random instance x; in its kNN set, x; € kNN (x;). Given x;, x;
and a random number § = [0, 1], the synthetic point is calculated as

Xnew = Xi + (Xj —X;) X 8. (D

To reduce the risk of synthesizing instances too deep inside the majority space, post-
hoc processing to remove instances that form Tomek links has been proposed for SMOTE
(Batista et al. 2003, 2004b). A pair (x;, x;) is considered to be a Tomek link if =3x; s.t.
dist(x;, xx) < dist(x;, x;) nor dist(xj, x;) < dist(x;, x;) and x; € Syin, Xj € Spqj. If
x; and x; form a Tomek link, then either x; or x; are noise or they are on the class border,
and as such they are deleted. This has the effect of shifting the convex hull away from the
majority class. Alternatively, it is sometimes desired that the convex hull be shifted towards
the majority class. Borderline SMOTE has been proposed to do this (Han et al. 2005). It finds
a subset S;nin € S such that the elements of Sl/m.n are on the border of the majority class.
SMOTE is then applied to the instances in the subset S/ . .

The two major issues with SMOTE on manifold data are that (a) it is applied in the fog
of the higher-dimensional feature-space, and (b) it applies a straight-line distance, typically
calculated with the Minkowski distance, to find nearest neighbours. This is error prone for
absolutely imbalanced data because the instances are expected to be far apart in the fea-
ture space. In Fig. 2, we illustrate the weaknesses of SMOTE by using a one-dimensional
manifold embedded in a two-dimensional space. In the demonstration, we use the general
version of SMOTE. This is warranted because the more recent adaptations apply the same
bias, they suffer from the same weaknesses on data that conforms to the manifold prop-
erty.

The top left graphic in Fig. 2 shows the manifold in red with samples from the man-
ifold appearing as black circles. Each instance can be represented by its one-dimensional
coordinate m in the manifold space. In machine learning, we often have data in the
fog of a higher-dimensional feature space, not the embedded space. Manifold learning
induces a model of the embedded space, and from this we can focus the generation of
instances in high probability regions. This is visualized in the top right graphic, where
the blue shading illustrates the probability mass being spread along the manifold. In
the subsequent section, we demonstrate how this is achieved with our proposed frame-
work.

The bottom graphics demonstrate the result of synthetic oversampling using SMOTE
with k = 7 and k = 3. The first thing that we note is that the synthesized instances are
clustered in many small pockets for the smaller k-value. This value results in the creation of
a set of small, dense and disjunct convex hulls. These clusters fail to add much information
specifically because they are tightly clustered around training instances that are already
available. The larger k-value creates one large, uniformly populated convex hull. This results
from the fact that for larger k-values the algorithm must search increasingly greater distances
to find so-called nearest-neighbours. In our example, we provide a simple demonstration of
the fact that when the k-value is increased and the convex hull becomes large, it tends to
spread more and more away from the manifold. This analysis applies to all of the variations
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Fig. 2 Top left: One-dimensional non-linear manifold. Top right: spread of instances along the manifold.
Bottom: spread of SMOTE-based synthesization away from the manifold with K=7 and K=3

of the SMOTE algorithm because the base algorithm does not account for geodesic distance
along the manifold.

The weakness of SMOTE is due to the topological structure of a manifold; it will only
produce an accurate kNN set if the query instances are close together (Gauld 2008). Similarly,
a straight-line distance will only be accurate on a manifold when it is applied to measure the
distance between instances in the same local neighbourhood. For this to occur, the training
data must be dense and well sampled. When x; and x; are in different areas of the manifold,
as we might expect on sparse imbalanced learning problems, the edge connecting them in
the Hilbert space is likely to span regions of the data-space that do not belong to the minority
class; however, this is precisely where SMOTE will generate instances!

4 Framework
4.1 Overview

Figure 1 presents the four components of our manifold-based synthetic oversampling frame-
work. The framework that we proposed in our previous work has been extended here to first
enable the evaluation of conformance to the manifold property.

Based on the design for the framework, we can assume that it will work well when the data
conforms to the manifold property. However, it is often not clear if a domain conforms to the
property. The first component of the framework assists in this determination. In addition, when
it is established that the domain conforms to the manifold property, it offers the potential to
empirically aid in the decision of which manifold learning method to utilize in the framework
for the target data.
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The determination of conformance to the manifold property has not been directly consid-
ered within the machine learning literature. We can, however, approach the question more
generally from the perspective of the implicit dimensionality. This allows us to develop a
conformance test that takes advantage of other areas of science, such as psychology and
economics, that are interested in this question. The details of our proposed test are discussed
in the subsequent section.

A large number of manifold learning methods, such as PCA, kernel PCA, autoencoding,
local linear embedding, etc., have been studied within the machine learning literature. Indi-
vidually, they incorporate a diverse set of assumptions and biases. For this reason, we have
designed the framework that can take advantage of the wealth of manifold learning methods
rather than designing a manifold-based synthetic oversampling algorithm that is restricted
to a single manifold learning method. In the second element of the framework, the selected
manifold learning method is formalized to induce a manifold representation of the minority
class.

In general, the selection of a specific manifold learning method for a given problem will be
guided by a number of factors. The most prominent amongst these are the number of training
examples and the complexity of the latent manifold. If the learning objective involves a linear
manifold, or the training data is extremely rare, a linear method is appropriate. Alternatively,
non-linear problems with more training data are well-suited for methods that can represent
the complexity.

In Sect. 4.3, we have selected PCA and DAE from the large number of manifold learning
methods to demonstrate the framework. These two formalizations reinforce the steps required
to implement the framework. In addition, they illustrate both a linear method and a non-linear
method (PCA and DAE respectively). PCA is arguably the simplest, best known, and most
widely applied manifold learning method. In addition, it can be seen to represent a reasonable
baseline that more complex methods should beat, because it can be conceived as being at
the origin of a line or perhaps the bottom of a partial order. Alternatively, we have selected
DAE to demonstrate a non-linear formalization because its highly flexible structure renders
it a reasonably generic method that can represent a wide variety of manifolds. Moreover,
autoencoders offer the most natural means of sampling the induced manifold. Therefore, it
is a good generic choice. However, in the spirit of our general framework, we encourage the
consideration of alternative manifold learning methods.

Data is synthesized along the induced manifold during the second phase of the framework.
For each manifold learning method, the details of the generation process will differ. The
common objective, however, is to generate novel instances along the induced manifold to
inflate the minority class. Our empirical results indicate that applying random transformations
along the manifold works best.

We believe that random transformations produce a better synthetic set from the perspective
of classifier induction because they reduce the likelihood that the samples are drawn from
the extreme ends of the manifold. This advantage results from the fact that the generation
process starts from points on the manifold where we have the most evidence that samples
exist, and shift outward along the manifold to produce samples.

The final phase maps the synthesized data to the original feature space and returns it to the
user. The reverse mapping is dependent on the selected algorithm. When selecting a manifold
learning method, we must consider the ability to perform this mapping. It is more challenging,
and perhaps not possible, for some approaches. Both PCA and DAE offer straightforward
means for reversing the mapping.
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4.2 Testing conformance to the manifold property

The flexibility of the proposed framework enables it to be widely applicable to datasets with
various degrees of conformance to the manifold property. Nonetheless, the performance is
expected to increase with the conformance to the property. Thus, it is desirable to have a metric
to test for conformance when selecting between manifold-based synthetic oversampling and
SMOTE. Typically when deciding whether or not to use manifold learning, researchers have
relied on their experience and intuition. A key component of this comes from the expectation
that high-dimensional domains are likely to conform to the manifold property. Part of our
research is to examine more quantitative approaches.

We propose that a metric for conformance to the manifold property should have the
following attributes:

— It should produce a continuous score that can be used to rank datasets; and,

— Given an independent random sample of datasets, the corresponding ranks should be
approximately uniformly distributed so that datasets with various levels of conformance
are accurately and evenly spread over the range of scores.

With a metric of this nature, we can experimentally select a threshold below which manifold-
based synthetic oversampling learning should be applied. We look to the established field of
factor analysis in order to develop this metric. Factor analysis is a toolbox of methods for
estimating the implicit dimensionality of a dataset. Given a factor analysis method F(-) and
a dataset D, an integer y is returned that indicates the implicit dimensionality as y = F (D).
Conformance to the manifold property assumes that the probability density of the data
distribution resides in a lower dimensional space. Therefore, we can say that conformance
to the manifold property increases as implicit dimensionality decreases relative to the cor-
responding feature space. Based on this, we measure conformance to the manifold property

as:
m(D) = F(D)/dim(D). 2)

We use the ratio of the implicit over the actual dimensionality of the dataset to give preference
to datasets having a relatively smaller implicit dimensionality.

Factor analysis methods are particularly popular in the social sciences where the latent
variables associated with the topic are either unknown or hard to measure directly. An impor-
tant question from the field is how to best estimate the number of factors to retain (Courtney
and Ray 2013). The methods are generally based on principle component analysis and prin-
ciple factor analysis, and the insight of Cattell (1966) that eigenvalues, when plotted in
descending order of magnitude against their factors, ‘level off” at the point where the factors
are primarily measuring random noise. Thus, the general goal is to find the elbow in the curve
so as to keep all of the components that are not associated with random noise. In our terms,
those above the elbow can be thought of as representing the manifold.

The traditional approaches to answering this question utilize the Kaiser criterion and the
scree test (Kaiser 1960; Cattell 1966). Given the practical importance of factor analysis to
the field, the research continues to evolve. Simulation studies have shown that methods such
as parallel analysis (Horn 1965), minimum average partial procedure (Garrido et al. 2011)
and comparison data (Ruscio and Roche 2012) can be more accurate than the scree test and
Kaiser criterion. Within machine learning, Zhu and Ghodsi (2006) proposed an alternate
means of estimating the implicit dimensionality using the profile likelihood.

In the 1950s, Henry Kaiser famously proclaimed, “solving the number of factors problem
is easy, I do it everyday before breakfast. But knowing the right solution is harder.” He was
recognizing that even at that early stage, there were a wide variety of methods available
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Table 1 Factor analysis methods

Acronym Summary References
PL Profile likelihood: searches for the scree by finding the 1, that Zhu and Ghodsi
maximizes the difference between the distribution of 1...n (2006)

and n 4+ 1...m, where n is the number of eigenvalues

Fact Factors: compares the scree of factors of the observed data with Revelle (2013)
that of a random data matrix. Reports the number of factors
with eigenvalues > eigenvalues of random data

Comp Components: compares the scree of components of the observed Revelle (2013)
data with that of a random data matrix. Reports the number of
components with eigenvalues > eigenvalues of random data

MAP Velicer’s minimum average partial criterion: applies principal Revelle and Rocklin
components analysis and follows this by examining a series (1979)
of matrices of partial correlations

VSS Very simple structure criterion: compares the original Velicer (1976)
correlation matrix to that reproduced by a simplified version
of the original factor matrix

BIC Bayesian information criterion: chooses the most likely model Schwarz (1978)
from a set of models

ABIC Sample size adjusted BIC: chooses the most likely model from Schwarz (1978)
a set of models

PA Parallel analysis: creates a random data matrix and compares Humphreys and
the eigenvalues values calculated on it to the eigenvalue Montanelli (1975)

calculated on the target domain. All components with
eigenvalues greater than the mean of the eigenvalues for the
random data are kept

CD Data comparison: variant on PA that reproduces the observed Ruscio and Roche
correlation matrix rather than generating random data (2012)
A>pu A > mean()): selects the end of the scree as the point where Revelle (2013)

the eigenvalues become less than the mean of the eigenvalues

oC Optimal coordinate: determines the location of the scree by Raiche et al. (2006)
measuring the gradients associated with eigenvalues and their
preceding coordinates

AF Acceleration factor: numerical solution for determining the Raiche et al. (2006)
coordinate where the slope of the curve changes most abruptly

and no single method seemed to offer a clear advantage for all datasets and all objectives.
Rather, the choice of a method is largely experimental that depends on the domain and the
overarching objective of the research. For this reason, we evaluate a wide variety of methods
with various degrees of complexity in order to empirically select the most suitable approach
for our application. These are listed in Table 1.

4.3 Instantiations

4.3.1 Instantiations with PCA

PCA is a linear mapping from the d-dimensional input space to a k-dimensional embedded
space where k < d. The standard process is a result of calculating the leading eigenvectors

E corresponding to the k largest eigenvalues A from the sample covariance matrix X of the
target data.
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In the PCA realization of the framework, a model pca = {u, X, E, A} of the d-
dimensional target class T with m instances is produced. We produce a synthetic set S
of n instances in the manifold-space by randomly sampling n instances from 7' = T x E (T
in the PCA-space) with replacement. In order to produce unique samples on the manifold,
we apply i.i.d. additive Gaussian noise N (0, D) to each sampled instance prior to adding
it to the synthetic set S. The covariance matrix for the Gaussian noise is a diagonal matrix
with each o; ; specified by B1;, where f is the scaling factor applied to the eigenvalues. This
controls the spread of the synthetic instances relative to the manifold, and can be thought of
as a geometric transformation of points along the manifold, thereby producing new synthetic
samples on the manifold. Finally, we map the synthetic instances S into the feature space as
S’ = § x E~! and return them to the user for use in classifier induction.

4.3.2 Instantiations with autoencoders

Autoencoders are a form of artificial neural networks commonly used in one-class classifi-
cation (Rumelhart et al. 1986; Japkowicz 2001). They have an input layer, a hidden layer and
an output layer, with each layer connected to the next via a set of weight vectors and a bias.
The input and output layers have a number of units which is equal to the dimensionality of
the target domain, and the user specifies an alternate dimensionality for the hidden space.
The learning process involves optimizing the weights used to map feature vectors from the
target class into the hidden space, and those used to map the data from the hidden space back
to the output space.

A manifold bias is incorporated in the autoencoding process through its mapping from
the feature space to the hidden-space and back via fy(-) and gg/(-), where:

Jo(x) =s(Wx + b) 3)

gor(») = 5" (W'y + 5.
Here, x is a d-dimensional input vector, and 6 and 0’ represent the induced encoding and
decoding parameter set, respectively. Specifically, W is a d x d’ weight matrix and b is
a d’-dimensional bias vector, where d’ is the number of hidden units. The function s is a
non-linear squashing function, such as the sigmoidal. In the decoding parameter set, W’
and b’ represent the weight matrix and the bias vector that cast the encoded vector back to
the original space. The s’ function is typically linear in autoencoders. As is standard with
artificial neural networks, the weights are learnt using backpropagation and gradient descent.
In addition, we utilize denoising with additive Gaussian noise during the training process
as a form of regularization to promote the learning of key aspects of the input distribution
(Vincent 2010). We add Gaussian noise to the input and the network learns to reconstruct the
clean instances.

The learning processes prioritizes the dual objective of a reconstruction function g(f(-))
that is as simple as possible, but capable of accurately representing neighbouring instances
from the high-density manifold (Alain and Bengio 2014). This promotes accurate recon-
struction of points on the manifold, whilst the reconstruction error [x — g(f (x))|? rises
quickly for examples orthogonal to the manifold. Given a point, p, on the manifold, the
output g(f(p)) remains on the manifold in essentially the same location. Conversely, when
an arbitrary point, ¢, is sampled from off the manifold, the output f(g) is mapped orthog-
onally to the manifold. Therefore, g(f(g)) returns a representation of ¢ on the high-density
manifold. This is the inspiration for the DAE sampling method, and is demonstrated in Step
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Step 3: map orthoganally % Step 2: Map
back to the manifold "W |non-orthogonally
df) —Xx , .| off the manifold

Step 1: Select
random training
instances

Transfo :
along the manifold
"% via steps 1-3

Fig. 3 Three steps of synthesization for the autoencoder formalization with generic points and handwritten
4s

3 of Fig. 3 as g(f (X)) — x, where X is a point off the manifold, with the manifold depicted
in red.

Whilst the encoding-decoding function g(f(-)) is typically considered as a single unit,
for the purpose of our framework they are treated separately. The encoding induces the
lower-dimensional manifold representation and is used to generate samples and the decoding
function performs the reverse mapping. Specifically, we take an arbitrary minority class
instances x and apply a non-orthogonal mapping. This shifts it off the implicit manifold
x — Xx. It is then orthogonally mapped back to the manifold via f(x¥) — y. The result is
a transformation along the implicit high-density manifold from a training instance x to a
synthetic instance y. This is illustrated graphically in steps 1-3 of Fig. 3. The non-orthogonal
mapping is produced by adding noise to the training instance x. A greater amount of noise
leads to a larger transformation along the manifold. By sampling n instances from the minority
class with replacement and performing the random transformation, we produce the synthetic
set. The decoding function g(-) maps the synthetic instances on the manifold in the hidden
space to their corresponding points on the implicit manifold in the feature space. Algorithm
1 formalizes the method.

Algorithm 1 dae-SyntheticOversampling(X, DAE(w p}, n, o)

Input:
i) X, an m by d dimensional data matrix.
ii) DEA(w,p), a trained denoising autoencoder with weight matrix W and bias b.
iii) n, the number of instances to synthesize.
iv) o, variance of the Gaussian sample initiation noise.

Output:
i) Y, the synthetic samples.
Method:
1: X’: column normalization of X between [—1, 1].
2: norm Params: column normalization parameters of X.
3: Z: normalized X plus sample initiation noise N (0, o).
4: Y' = DAEw p)(Z): samples )’ from the induced manifold.
5: Y: denormalization of ) based on norm Params.

6: Return()))
End Algorithm
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Parameter selection is an important task in machine learning. Prior to calling Algorithm 1,
we perform model selection by randomly searching the parameter space for a predetermined
number of iterations with the objective of minimizing the reconstruction error on the minority
training data X'. This is simple and efficient, and it alleviate us of the task of hand tuning the
model. The ability to do this is a very nice feature of PCA and autoencoders. This method
works very well, as is demonstrated by our results.

The size of the parameter search space should be kept small by limiting the upper bound
of the epochs and number of hidden units. We do this to limit the complexity of the model and
avoid overfitting the small amount of training data that is available. For the 250-dimensional
spectra data, we searched 5-30 hidden units with fewer than a thousand epochs of training.
Indeed, overfitting is the primary risk of poorly selected parameters. In terms of manifold
learning on sparse data, this is realized in the form of an induced manifold with wildly
unrealistic curvature. As we have specified, however, denoising during training and limiting
the upper bound of the hidden space in the autoencoder minimizes the risk of overfitting.

5 Demonstration

In this section, we visualize the results of both manifold-based synthetic oversampling and
non-manifold-based synthetic oversampling on four domains that are commonly utilized
in the manifold learning literature. In particular, the demonstrations in the following two
subsections utilize theoretical manifold distributions involving points on a three-dimensional
helix and Swiss roll (Xue and Chen 2007; Wei et al. 2008; Goldberg et al. 2009; Silva and
Tenenbaum 2003; Weinberger et al. 2004a). These lead into two subsections with more
realistic image classification domains. Specifically, the third and fourth experiments utilize
high-dimensional datasets composed of images of a rotating teapot and of handwritten digits
(Weinberger et al. 2004b; LeCun et al. 1998).

The objective of these experiments is to demonstrate that non-manifold-based synthetic
oversampling has an elevated risk of generating instances in low probability regions of the
data space that are orthogonal to the embedded manifold, whilst manifold-based approaches
spread the synthetic instances along the manifold. The weaknesses of the non-manifold-
based approaches result from the error-prone means by which they identify nearby instances.
Specifically, the failure to account for the geodesic distance between points (Belkin and
Niyogi 2004). The implications of this are presented pictographically in Fig. 4. Here, the

R 2 Z,
\ (x) SMOTE
-\' generated
\
Y x5y
q- ;.
[ \ (x) Manifold-based »\4'
L \ points IE
L '\\ - ‘)7
e N ._‘;;,./

Fig. 4 (Left) SMOTE styled generation that ignores the geodesic distance. (Right) Generation along the
manifold between geodesically near instances
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distances measured on the planes spanning points (y, z) and points (y, g) are the same.
Thus, to SMOTE these points are equivalently valid candidates from which to generate
synthetic training instances. When observed with respect to the curvature of the manifold,
however, ¢ is significantly closer than y. It is erroneous equivalences such as these that
cause non-manifold-based methods to synthesize instances in low probability regions that
are orthogonal to the manifold.

For each demonstration, we use 25 random samples to train and generate novel synthetic
instance from. The denoising autoencoder and PCA implementations of the manifold-based
synthetic oversampling framework are employed. In addition, we demonstrate the generative
capabilities of SMOTE and kernel-based synthetic oversampling. The kernel-based method
divides the data space into hypercubes and uses Parzen-windows to estimate the density in the
hypercubes. These densities are smoothed using a Gaussian kernel. Although, kernel-based
methods are not widely applied, they have seen some attention (Gao et al. 2012).

To summarize, each subsection below takes a dataset that conforms to the manifold prop-
erty and demonstrates that the existing approaches generate instances that spread away from
the latent embedded density, whilst our proposed method generates instances that spread
along the embedded structure. Based on this, we claim that manifold-based synthetic over-
sampling has the best chance of producing instances to improve the performance of the target
classifier. This latter result is shown in Sect. 7.

5.1 Helix

The helix distribution is consistently utilized for demonstration purposes in manifold learning.
In order to increase the difficulty of the modelling task, and to emphasize the strength of
the proposed framework, a dataset of the form H = h(-) + N'(-), where h(-) samples a
pure helix and A/(0, 0.1) samples a Gaussian distribution with zero mean and 0.1 standard
deviation, is employed. The pure helix is defined as x; = rcos(t); xo = rsin(t); x3 = ct,
where t € [0, 2pi), r is the radius of the helix and 2w ¢ is a constant specifying the vertical
separation of the loops.

Figure 5 plots the training data and the synthetic data produced by the denoising autoen-
coder and PCA formalizations of the framework along with SMOTE and the kernel-based
method. The circles in the figure represent the training data and the triangles are the instances
synthesized by each method; the colouration of the points is simply to emphasize the relative
positions. The red boxes highlight the weaknesses of each method.

It is clear from the figure that the kernel-based solution performs the worst. It produces
synthetic instances that are wildly spread around the manifold. SMOTE offers a clear improve-
ment to the kernel-based method; however, its failings are still apparent. The most prominent
issue in its generation is that it synthesizes some points far from the manifold, and in general,
has a lot of variance orthogonal to the manifold. In addition, SMOTE produces dense clusters
of instances along the manifold and leaves vast empty spaces between them.

As we expect, the manifold-based methods are good at synthesizing instances along the
manifold. The data that they synthesize have slightly different properties due to the difference
in biases. Visually, the denoising autoencoder generates a sprinkling of instances along the
manifold, much like a Canadian snowplow traveling down the road, spreading salt crystals
after an ice-storm. PCA has more orthogonal variance relative to DAE. Continuing with the
metaphor, we can imagine PCA spreading the salt, with some of it bouncing off the roadway
and onto the shoulder.
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Fig. 5 From top to bottom, helix Data Source
data synthesized by DAE, PCA, A DAE
SMOTE and kernel-based ® Real
methods. The colouration in these
plots merely provides perspective
on the relative distance between
points. The shape of the point
specify whether it is a synthesize
instance (triangle) or real
instances (circle)

Only two cases of
noteworthy spread
away from manidolfd

Data Source

A PCA
® Real

No significant cases.
More mild spread
orthogonal variance

Data Source

A SMOTE
® Real

Some significant
spread, clustering and|
orthogonal variance

Data Source

A Kernel
® Real

Significant spread
orthogonal to the
manifold!
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5.2 Swiss roll

Like the helix, the swiss roll is a common dataset in the manifold learning literature. Its
shape is reminiscent of the Central European pastry. The swiss roll is a plane defined in a 3-
dimensional space as x| = yjcosy;; xo = y1sin(y1); X3 = y2; y1 € [37”, 97”]; v € [0, 15].
The training and synthetic swiss roll data are presented in Fig. 6; the kernel-based method
has been omitted due to its poor results. The training instances are plotted as small turquoise
(light grey) circles and the synthetic instances are the larger orange circles (dark grey).

The advantage of the manifold-based methods is once again very clear here. Specifically,
SMOTE synthesizes points in the vast vacant regions that are not part of the swiss roll.
Three instances are, for example, synthesized in the void that is the center of the swiss
roll. In addition, many synthetic instances span the empty region between the inner and
outer layer of the swiss roll. In both cases, SMOTE is clearly placing synthetic instances
in regions of the data space that are not part of the target distribution. Alternatively, the
instances synthesized with the manifold-based synthetic oversampling framework via PCA
and the denoising autoencoder stay within the regions reasonably occupied by the swiss roll
distribution.

When we take a macro-scale view of the synthesized data, we see that instead of a swiss
roll, SMOTE has produced two clusters of synthetic instances. These are circled and marked
by Ci and C; in the figure. It generated a small cluster on the left of the data space. This
cluster represents a small area of the swiss roll. The other cluster is much larger in terms of the
area of the population. It occupies much of the central and upper left region of the plot, and
sparsely covers both the swiss roll and the void spaces in-between the layers of the roll. The
manifold-based synthetic oversampling framework, however, synthesizes instances along the
manifold. Therefore, we see that the synthetic instances are sprinkled over all regions of the
swiss roll in a manner that is consistent with the target distribution.

5.3 Handwritten fours

Handwritten 4s from the MNIST dataset provide a practical manifold learning task. Each
training 4 is drawn from a 28 x 28 grey-scale image. Image learning problems, such as facial
recognition and character recognition, conform to the manifold assumption in the sense that
the target object exists in a subspace of the M x N pixel image. To understand this, consider
that there are infinitely many random combinations of grey-scale pixels in the feature space
that do not make 4s. The task of the manifold learner is to infer the subspace where the fours
exist. This is the space that encodes the various, legitimate shifts, rotations and skews in the
target digit. In this space, we are much more likely to synthesize fours correctly.

A random selection of 16 fours that were generated by each synthetic oversampling method
are presented in Fig. 7. This includes the generators of primary interest; manifold-based
synthetic oversampling framework using the denoising autoencoder and PCA instantiations,
SMOTE and kernel-based oversampling. Each of these systems was trained on the same 25
handwritten fours. The objective is to synthesize instances that look like well constructed
4s and to synthesize distinct synthetic 4s. Producing replicas of a single, very nice, four is
not sufficient. The kernel-based approach is clearly shown to be a poor generator of fours.
Though the shape of the fours can be seen, they are very blurry. This blurriness of the fours
indicates a spreading away from the manifold resulting from the fact that modelling and
synthesization is performed in the fog of the feature space rather than in the clarity of the
manifold space.
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Fig. 6 From top to bottom, swiss
roll data synthesized by
denoising autoencoder (DAE),
PCA SMOTE-based methods
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Fig. 7 From left to right, handwritten fours synthesized by DAE, PCA, SMOTE and kernel-based methods

Twelve of the sixteen fours produced by SMOTE are well constructed. Many of these,
however, are skewed to the left. We refer to the style of the 4s in the exceptionally bad cases
as stacked 4s. We demonstrate this in the figure as generating a new four by placing two
very different fours on top of each other. These fours occur when SMOTE generates new
instances between two training instances that are far apart. The vector connecting the two
training instances along which SMOTE produces synthetic instances does not follow the
curvature of the manifold. The longer the vector connecting the nearest neighbours, the more
likely it is that the vector will deviate from the manifold. Therefore, the synthesized instances
along this vector are not accurate 4s.

PCA produces reasonable 4s. Only three of the examples are of lesser quality and none are
skewed in any way. All but one of the fours produced by the denoising autoencoder are well
constructed; moreover, denoising autoencoders produce a very good amount of diversity in
the set of 16 fours. These results illustrate the relative advantage of manifold-based synthetic
oversampling on a practical and high-dimensional domain.

5.4 Rotating teapot
The final demonstration domain involves the teapot dataset. This dataset includes 400 colour

images of a teapot from different angles; thus, the dataset appears as 400 snapshots of a
rotating teapot. The images have a resolution of 76 x 101 with each pixel involving 3 bytes
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Fig. 8 (Left) A subset of the 30 training instances. (Centre) SMOTE generated instances. (Right) Instance
generated via manifold-based oversampling

of colour information. Therefore, the dataset has 400 instances with 23,028 dimensions. For
training and synthetic generation purposes, 30 instances are taken at random. Given the high-
dimensionality, this is, indeed, a very small training set. In spite of the high-dimensionality,
however, this domain can effectively be represented with as little as a single degree of freedom
that accounts for the angle of rotation (Silva and Tenenbaum 2003). To this end, a synthetic
oversampling method that utilizes a manifold-based approach is expected to accurately syn-
thesize new instances even with a relatively small training set.

For this final demonstration we focus our attention on the DAE and SMOTE algorithms
alone as they have consistently been the best methods from the manifold-based and non-
manifold-based camps. A subset of the training instances along with instances generated with
the SMOTE and DAE algorithms are displayed in Fig. 8. The generated results on the teapot
dataset profoundly demonstrate the limitations of SMOTE on a high-dimensional domain
that conforms to the manifold property. Moreover, these results illustrate the effectiveness of
manifold based oversampling.

6 Experimental method

In order to validate the benefit of manifold-based synthetic oversampling, we apply it to
a wide variety of datasets with a diverse set of classifiers. The details are presented in the
following sections.

6.1 Datasets
6.1.1 Gamma-ray spectra

Gamma-ray spectral data are collected and analyzed for a wide variety of important experi-
mental and practical purposes, such as isotope classification in the lab (Olmos et al. 1991),
the analysis of mining ore (Yoshida et al. 2002) and the monitoring of ports of entry for
the importation of illicit nuclear materials (Kangas et al. 2008). In this work, two classes
of gamma-ray spectral data that were collected and analyzed by the Radiation Protection
Bureau at Health Canada are considered.

Health Canada is a federal department with the mandate to assist Canadians in maintain-
ing and improving their health.! The Radiation Protection Bureau operates within Health
Canada’s mandate with the purpose of promoting and protecting the health of Canadians by

I See http://www.hc-sc.gc.ca/ahc-asc/activit/about-apropos/index-eng.php.
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assessing and managing risks posed by exposure to radiation at home, work and in the broader
environment.” To this end, the Radiation Protection Bureau has set up radiation monitoring
stations at key sites around the country, including within major cities and near nuclear power
plants and nuclear industries, such as medical isotope production facilitates.

The existing monitoring system involves a simple threshold on the dose rate, and/or a
threshold on regions-of-interest in the spectra, which are associated with particular isotopes.
The goal of this process is to monitor and flag isotopes of interest and detect any generally
anomalous events. Each spectra that is flagged by the system is then analyzed by a physicist
at the Radiation Protection Bureau to determine the source and ensure that the isotopes of
interest are being emitted in safe amounts and at an acceptable frequency. The threshold-
based system, however, flags a large number of false positives, which leads to a high cost in
terms of human analysis and a potential lag in evaluation.

The general work of our lab in conjunction with the Radiation Protection Bureau has been
to devise more sophisticated means of anomaly detection and classification of isotopes of
interest. The work in this article is particularly focused on the task of classifying a general
category of isotopes of interest. The complicating property of this data is the degree of
imbalance between the background class and the class of isotopes of interest.

In addition to the national monitoring stations, the Radiation Protection Bureau col-
laborates with various Canadian security agencies, such as The Canadian Nuclear Safety
Commission, Defence Research and Development Canada, Canadian Security Intelligence
Service, etc., to deploy gamma-ray spectrometers during high profile events. These agencies
deployed gamma-ray spectrometers in and around the Greater Vancouver Area during the
2010 Olympics in order to gather and monitor gamma-ray spectra for isotopes of interest that
may signify a person transporting a material that poses a radioactive threat to participants
and spectators at the Winter Games. Whilst the Games have long since closed, the data is
highly imbalanced and provides an excellent platform on which to evaluate our proposed
manifold-based synthetic oversampling framework.

Data collection Sodium lodide detectors are utilized in the national monitoring system
and were deployed during the Vancouver 2010 Olympic Games (Vancouver). During the
Winter Games, response time was a clear priority, and as such the instruments recorded one
measurement per minute; the measurements are recorded as counts per photon energy (keV).

The Vancouver dataset has 512-dimensions and was recorded in one-minute samples. This
produced gamma-ray spectra that are very noisy. The data is composed of pure background
readings and a background plus isotopes of interest. The latter forms the minority class in
our experiments. There are 39,000 background instances and 39 minority class instances
involving Iodine, Thallium, Technicium and Caesium.

The environmental monitoring data is collected in fifteen-minute samples by the national
monitoring network of gamma-ray spectrometers. The vast majority of measurements are
solely affected by elements in the local background; these instances are considered to be
of no interest. Alternatively, non-background spectra that have been affected by specific
isotopes are to be detected and subsequently reviewed by physicists. We use data from two
locations in our experiments (Thunder Bay and Saanich). The Saanich, BC dataset has 19,068
background readings and 44 isotopes of interest. The Thunder Bay, Ontario dataset contains
11,573 background instances and 29 isotopes of interest. In each of these datasets, and the
Vancouver dataset, the classification task is made more difficult by the complexity of the
background, the decay of the isotope and the presence of heavy rain. Each of these obscures
the isotopes signature in the measured spectra.

2 See http://www.hc-sc.gc.ca/ahc-asc/branch-dirgen/hecs-dgsesc/sep-psm/rpb-br-eng.php.
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Table 2 UCI Datasets applied in

these experiments Min class Dim
Breast Malignant
Diabetes Positive
Ecoli 1 7
Heart Statlog Present 13
Ionosphere B 34
Letter R 16
Musk 1 166
Opt Digits 4 64
Ozone One 1 72
Pen Digits 3 16
Satlog 4 36
Segmentation Brickface 19
Sonar Rock 60
Vehicle Saab 18
Wave 1 40
Yeast MIT 8
CIFAR-10 Horse 1024

6.1.2 Benchmark domains

The sixteen UCI datasets along with the high-dimensional image classification domain,
CIFAR-10, are presented in these experiments. These domains are specified in the first col-
umn of Table 2. The UCI datasets were selected to ensure a diverse range of dimensionalities
and complexities. When required, the datasets are converted to a binary task by selecting a
single class to form the minority class, and the remaining classes are merged into one.

The CIFAR-10 dataset is a high-dimensional image classification dataset that appears fre-
quently in the applied manifold and deep learning literature (Krizhevsky 2009). The dataset
includes 60,000 32 x 32 pixel colour images. The dataset has 10 classes associated with
different objects and animals. For the purpose of our experiments, we have artificially under-
sampled the horse class to render it a minority class. We selected the horse class because the
images are somewhat similar to the deer, dog and cat classes. Thus, the modified classification
task is of high complexity.

For each experiment, we train on 25 minority training instances and 250 majority training
instances; thus, we render each domain as an absolutely imbalanced classification task. We
have selected constant values for the training distribution of each dataset, rather then speci-
fying a percentage for the minority class, in order to ensure that the performance differences
between datasets are not the result of having access to different numbers of minority instances.
If we set the minority portion to 10%, for example, then a dataset with 1000 instances would
have many more examples in the training set than a dataset with 200 instances.

6.2 Algorithms and evaluation

We utilize the SVM, MLP, kNN, naive Bayes and decision tree classifiers in the following
experiments. Synthetic oversampling is performed by the autoencoder and PCA instantiations

@ Springer



Mach Learn

of our framework. These are compared to random oversampling (ROS), SMOTE, Borderline
SMOTE and SMOTE with the removal of Tomek links. For each variation of the SMOTE
algorithm, we test k-nearest neighbour with k € {3, 5, 7}.

With respect to the gamma-ray spectra classification results in Sect. 7.1, we report the
mean five times twofold cross-validated AUCs. Five times twofold cross validation is used
in place of the more common tenfold version because it has been observed that it has a lower
probability of issuing a Type I error (Dietterich 1998). In addition, k-fold cross validation with
larger k values was established with small datasets in mind; the size of the datasets is not a
concern here. Because the classification objective is to select the best synthetic oversampling
method for each dataset, here we test for statistical significance of using manifold-based
synthetic oversampling versus SMOTE using the ¢ test.

In order to further validated manifold-based synthetic oversampling and illustrate the
impacts of the manifold property on the standard methods of synthetic oversampling, we
perform an additional set of experiments on the benchmark datasets. We apply a different
experimental setup here as the datasets are diverse and our objectives are different.

In order to limit the impact of sampling during the preprocessing to create imbalanced
binary classification problems, we record mean AUC performance results over thirty trials for
the baseline classifiers and the classifiers aided by each synthetic oversampling method. Given
the large number of datasets and algorithms, we test our results for statistical significance
using the Friedman test and Nemenyi post-hoc test.

7 Results
7.1 Gamma-ray spectra

The results for the experiments on the Saanich, Thunder Bay and Vancouver dataset are
presented in Fig. 9. In each experiment, we report the mean AUC produced by the individual
classifiers with synthetic oversampling via the manifold method (DAE or PCA) and the
SMOTE-based methods.

The general results based on the application of the five classifiers on the three gamma-ray
spectra datasets demonstrate that both manifold-based oversampling and the SMOTE-based
algorithms are always better than random oversampling. Moreover, manifold-based synthetic
oversampling is nearly always better than the SMOTE-based algorithms.

Over the three datasets and five classifiers, manifold-based synthetic oversampling pro-
duces a greater improvement on 13 of the 15 cases. This shows that it has a stronger positive
impact than SMOTE on a wide range of classifiers. Moreover, the combination of manifold-
based synthetic oversampling with a classifier produces the best overall mean AUC for each
of the three dataset. This occurs with Naive Bayes on Saanich, MLP on Thunder Bay and
kNN on Vancouver.

To summary, when applied to the gamma-ray spectral classification datasets, manifold-
based synthetic oversampling has a better impact on individual classifiers in general. More
importantly, it produced the best overall classifier in each case.

7.2 Benchmark datasets
In order to generalize our findings, we now shift to examine the impact of the manifold on

synthetic oversampling over benchmark datasets from the UCI repository and the CIFAR-10
image classification dataset. The mean of the AUC results are tabulated in Table 3.
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Fig. 9 AUC results on the B DAE M PCA [ Tomek M SMOTE M Borderine M ROS
gamma-ray spectra datasets 93
broken down by classifier. The
plots listed from top to bottom
are for: Saanich, Thunder Bay
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Table 3 AUC results on the

benchmark datasets for the Base = SMOTE BLS Tomek PCA  DAE

baseline, SMOTE, borderline Musk2 0724  0.776 0773 0431 0767 0.793
SMOTE, SMOTE with the .
removal of Tomek links and the Opt Digits 0.828 0.830 0.834 0.581 0.850 0.916
two manifold-based methods Wave-form  0.657  0.725 0.735  0.547 0.733  0.755
PCA and DAE Satlog 0.675  0.770 0764 0545  0.776 0.778
Ionospher 0.778  0.831 0.831 0.489 0.836 0.829
Sonar 0.724  0.733 0.729 0.496 0.742 0.740
Ozone One  0.625 0.710 0.711 0.561 0.709  0.702
Segment 0.864 0.889 0.895 0.541 0.879  0.960
Vehicle 0.581 0.657 0.656  0.445 0.665 0.667
Pen Digits 0.946 0.957 0.742  0.960 0.972 0974
Breast 0915 0.930 0.950 0.742 0.943  0.953
Yeast 0.602 0.703 0.705 0.539 0.707 0.653
Ecoli 0.887  0.937 0.710  0.509 0.950 0.923
Heart 0.755 0.782 0.764  0.627 0.776  0.770
Letter 0.762  0.936 0.764  0.545 0.878 0.870
Diabetes 0.569  0.709 0.637 0.445 0.662 0.652
CIFAR-10 0.528 0.522 0.529 0.510 0.533  0.555
Bold values indicate the highest Total Wins 0 3 1 0 4 9
AUC for each data set

The results show that performing synthetic oversampling prior to classifier induction
improves the AUC performance beyond the baseline on every dataset. Moreover, the benefit
of synthetic oversampling is large (greater than 0.1 AUC) in many cases, such as on the
optical digits, letter, yeast and diabetes datasets.

We use the Friedman test to evaluate the statistical significance in the performance of each
method. The null hypothesis states that there is no difference between the methods over all
datasets. These results show a statistically significant difference in the performance of the
methods with a p value of 2.213e—06. The Nemenyi multiple comparison test enables us to
identify where the differences exist. It indicates that each synthetic oversampling method is
statistically different than the baseline.

When we shift to examine the relative performance of the synthetic oversampling methods,
we see that manifold-based synthetic oversampling generally produces the largest increase
over the baseline. This occurs 13 out of the 17 times.

Figure 10 displays relative performance of manifold-based synthetic oversampling to the
SMOTE-based methods. In producing these results, we have selected the best manifold-based
method (M OSpca or MOSpag) for each dataset from Table 2, and have done likewise
for the SMOTE-based methods. The results, AUC(MOS(D)—AUC(SMOTE((D))), are
plotted in decreasing order of the dimensionality of the datasets. This reveals the trend of
superiority for manifold-based synthetic oversampling on higher dimensional datasets. This
suggests that dimensionality can be used to determine when it is best to apply manifold-based
synthetic oversampling. Whilst dimensionality is often used as a proxy for conformance to the
manifold property, we recognize that conformance is much more complex. In the next section,
we explore the means introduced in Sect. 4.2 as better methods of assessing conformance to
the manifold property.

An additional observation from Table 3 is that there is a clear distinction between the
datasets that are well suited for M O Sp g and those that are better suited for M OSpca.
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Fig. 10 Bar graphs displaying the relative difference in AUC between the best manifold-based synthetic
oversampling (MOS) method to the best SMOTE-based approach. The results are sorted by data dimensionality
in descending order

Specifically, on certain datasets, such as lonosphere, Sonar and Ozone One, where the per-
formance of M O Sp o drops below SMOTE, the performance of M O Spc 4 becomes better
than MO SpaEg.

On some datasets, even though M O Spc4 is the better of the two formalizations of the
framework that were considered, it is not better than SMOTE. Here, the utilization of a third
manifold method might be more suitable. This is indicative of the benefit of developing a
framework that enables the user to select the manifold learning method that has the most
appropriate bias for the learning problem.

These results demonstrate that using manifold-based synthetic oversampling is generally
preferable to the application of SMOTE-based methods, and that the advantage increases
with dimensionality. Whilst the relationship between dimensionality and conformance to
the manifold property is often assumed, dimensionality is not necessarily the most accurate
metric for use in deciding which synthetic oversampling method to use. We are interested in
formalizing the relationship between the choice of synthetic oversampling algorithm and the
data. We examine this question in the following section.

7.2.1 Manifold conformance and the loss metric

In this section, we test our function for estimating conformance to the manifold property. The
objective is to define a function to assess which synthetic oversampling algorithm to apply to
a given dataset. The specific function was introduced as m(D) = F(D)/dim(D) in Eq. 2 in
Sect. 4.2. It ranks machine learning datasets according to their conformance to the manifold
property. In order to do this, it reports the ratio between the implicit dimensionality of the
data, as measured by a user-specified function, and the physical dimensionality of the data.

As discussed in Sect. 4, there has been very little work within machine learning aimed
at assessing the implicit dimensionality of a dataset. Outside of machine learning, however,
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T'able4 Correlation between COMP FACT MAP BIC ABIC DC A>u
difference

AUCMOS)—AUC(SMOTE)  pIpr  —0.51 —-0.51 0.35 —-0.14 —-0.26 038 —0.01
and m £ (-)

PA oC AF PL Dim

DIFF —0.45 —0.38 —0.52 —0.31 0.14

this is a thriving area of study. This work reports this first large scale study of these methods
from the perspective of manifold learning in a machine learning context.

We tested each function F in the set of methods discussed in Sect. 4 to evaluate their effec-
tiveness in the machine learning context. Moreover, we compared them to the standard, by a
more naive, approach of assuming higher dimensional domains have greater conformance.
Our hypothesis is that selecting a good F(-) methods for use in m ()3 will produce a better
ranking of the datasets than dimensionality alone.

We use the UCI datasets and augmentation versions of the UCI datasets for these exper-
iments. The augmented versions increase the dimensionality of the data to embedded its
probability density in a lower space; this process is described in Bellinger (2016). Incorpo-
rating the augmented versions increases the sample size and the variance in the conformance
to the manifold property to produce a stronger assessment of the m(-) score.

For evaluation, we compare the relationship between mx, (D;) and dim(Dj) to
AUCMOS(D;))—AUC(SMOT E(D))) for each dataset D ;. For a good choice of m #(-),
we expect a negative correlation. This is because lower implicit dimensionality causes a lower
score, and the relative performance of manifold-based synthetic oversampling increases with
greater conformance. For dim (D), we expect a positive correlation because higher dimen-
sionality serves as a surrogate for greater conformance to the manifold property.

The primary question is, do the functions J;, produce a better ranking than dimensional-
ity alone? We assessed this using correlation analysis with linear regression over mx; (D)
and AUC(MOS(D;))—AUC(SMOTE(Dj)), and dim(D;) and AUC(MOS(D;))—
AUC(SMOTE(Dj)). The correlation results are reported in Table 4. From this, we see
that a few of the standard methods have a stronger correlation then dimensionality. The m
score using F € {COM P, FACT} have the strongest correlation with the relative perfor-
mance.

Figure 11 plots the performance differences between manifold-based synthetic oversam-
pling and SMOTE. The datasets are sorted according to their m g, (-) score using COMP.
The datasets at the top of the plot have the greatest conformance to the manifold property
and those at the bottom have weak conformance. Manifold-based synthetic oversampling
produces better performance on roughly the top two-thirds of the datasets. This sorting sug-
gests that the m z; (D ;) using COMP works quite well. FACT, the other method with a strong
correlation, produces a similar sorting, whereas using dim (D) is more mixed as suggested
by the correlation. We have omitted their bar graphs in the interest of brevity.

Using the ranking produced by m £, (-) score, we can sort the datasets in a manner related to
the performance of the synthetic oversampling methods. This enables the setting of thresh-
old a t to dichotomize datasets such that for VD : m(D) < t, manifold-based synthetic
oversampling should be applied. Table 5 illustrates this for m g, () score using COMP. It
places 21 datasets below the threshold; manifold-based oversampling outperforms SMOTE

3 Note that we have added the subscript F to the m(-) score to signify the use of a specific function Eq. 2.
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Fig. 11 Bar plots of the performance difference AUC(MOS)—AUC(SMOTE) sorted by the top M (-)
methods

0.090

Table S Number of times each —pyoqpolg NumDS  Total Wins
method produced the top mean

AUC above and below the PCA DAE MOS SMOTE
mer, (-) score threshold using
C OM P in the manifold Comp
conformance analysis <0.176 21 18 20 20
>0.176 12 7 4 7 5

on 20 of these datasets. This provides an accurate indication of when to apply manifold-based
synthetic oversampling.

Finally, we note that there is also potential to use m ; (-) to decide which manifold-based
synthetic oversampling method to apply. Table 6 shows that using FACT and COMP for this
task leads to the strongest correlation with the relative performance. Given the wide range of
manifold learning methods available in the literature with their various biases and resulting
complimentary strengths, it is very useful to have a method to select between them. This
requires additional experimentation. Nonetheless, these results provide a good indication
that m z, (-) score can be used for this as well as generally deciding when to apply manifold
based oversampling.
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Table 6 Correlation between difference AUC(DAE)—AUC(PCA) and m £ (-)

COMP FACT MAP BIC ABIC DC A>p

DIFF —0.53 —0.60 0.18 0.15 0.05 —0.28 —0.24
PA oC AF PL Dim

DIFF —0.50 —0.40 —0.46 —0.47 0.18

8 Future work

In constructing the framework, we recognized the depth of current research into manifold
learning and acknowledged that the biases and assumptions that are implicit in these methods
render them more or less suitable for the surfeit of manifold learning tasks. An important
aspect of future work involves understanding which properties make a manifold learning
algorithm ideal for inclusion in the framework, and performing meta-learning in order to
facilitate the suggestion of a specific manifold learning algorithm for a given dataset. In
addition, we continue to consider a general form of model selection for the framework. The
reconstruction error performed well for the denoising autoencoder formalization; however, it
is our expectation a model selection method designed specifically for synthetic oversampling
would be ideal.

We are interested in studying the effectiveness of manifold learning techniques that rely
on the local neighbourhood training points to produce their representation of the manifold.
Our intuition suggests that the small training sets available in imbalanced domains will limit
their effectiveness. Are, as we suspect, the more globally-based methods more effective in
our application, and can the trade-off be mathematically formulated? Generating samples
from a learnt model of the latent manifold is a novel and fascinating area for future research
resulting from this work. Taken in the context of class imbalance, our objective is to advance
our understanding of the data classes and the manifold, and devise means of sampling directly
from regions of the manifold that will be most impactful for ameliorating the negative impact
of class imbalance. We currently have theories regarding how best to do this for the denoising
autoencoder formalization, and continue to test this understanding and consider how to extend
it to alternate methods.

Given the prominence of multi-class classification, and the fact that many of these involve
class imbalance, an important next step for this research is to study how best to apply the
framework to multi-class problems. Can it be applied in an organic way rather than breaking
the task into a set of one versus one or one versus all problems, as is often done. Fecker
et al. (2013) proposed the use of Gaussian mixture models for modelling and generating
joint distribution of an imbalanced binary class problem. Their method involved modelling
and generating from the joint distribution, and then apply applying an assignment rule to
label the data for use in the induction of the classifier. Although their specific method was
proposed for binary classification and is inappropriate for data that conforms to the manifold
property, it suggests a potential means of extending our framework to imbalanced multi-class
classification.

Deep learning algorithms have been extremely successful in a wide variety of domains,
such as speech and object recognition, drug discovery and genomics. They has, indeed, been
at the nexus of exciting developments in machine learning for the last few years. To be
effective, however, deep learning algorithms require large datasets for training. This places
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a significant limit on where and when the power of deep learning can be leveraged. We
see manifold-based synthetic oversampling as having the potential to generate additional
training instances for deep learning, thereby broadening the scope of applicable domains.
Moreover, since many of the deep learning algorithms are based on artificial neural networks
that are related to DAEs, we question if the synthetic oversampling process cannot be built
into deep nets in a manner that enables bootstrapping based on examples that they themselves
generated.

9 Conclusion

Our research into the imbalanced classification of gamma-ray spectra with the Radiation
Protection Bureau at Health Canada led us to consider how to appropriately synthesize the
minority class for this particular domain. This study led us to understand the negative impacts
of conformance to the manifold property on the state-of-the-art in synthetic oversampling.
We have shown that ignoring this leads to instances being generated in erroneous regions of
the data space.

We proposed a general framework for manifold-based synthetic oversampling that first
assesses the conformance to the manifold property in order to aid in selecting an appropriate
method. The framework is then applied to model and generate additional training samples that
spread along the embedded probability density; this leads to more realistic synthetic samples.
As aresult of the proposed framework, we were able to improve the AUC results on all three
of our key gamma-ray spectral classification domains. In addition, we demonstrated that our
method is highly beneficial to challenging image classification tasks that commonly appear
in the manifold learning and deep learning literature. Finally, we employed 16 benchmark
datasets from the UCI repository to show, generally, that our framework leads to improved
AUC results when the data conforms to the manifold property.
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