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Abstract. Problems of class imbalance appear in diverse domains, rang-
ing from gene function annotation to spectra and medical classification.
On such problems, the classifier becomes biased in favour of the majority
class. This leads to inaccuracy on the important minority classes, such
as specific diseases and gene functions. Synthetic oversampling mitigates
this by balancing the training set, whilst avoiding the pitfalls of random
under and oversampling. The existing methods are primarily based on
the SMOTE algorithm, which employs a bias of randomly generating
points between nearest neighbours. The relationship between the gener-
ative bias and the latent distribution has a significant impact on the per-
formance of the induced classifier. Our research into gamma-ray spectra
classification has shown that the generative bias applied by SMOTE is
inappropriate for domains that conform to the manifold property, such
as spectra, text, image and climate change classification. To this end,
we propose a framework for manifold-based synthetic oversampling, and
demonstrate its superiority in terms of robustness to the manifold with
respect to the AUC on three spectra classification tasks and 16 UCI
datasets.

Keywords: Machine learning · Class imbalance · Synthetic oversam-
pling · Manifold and embeddings

1 Introduction

In problems such as radioactive threat classification, oil spill classification, gene
function annotation, medical and text classification, the class distribution is
imbalanced and the minority class is rare [5,6,18]. Rarity, in this sense, breaks
the general assumption of machine learning that demands a representative set
of instances from each class. Failure to satisfy this leads to the induction of a
decision boundary that is biased in favour of the majority class, thereby causing
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weak classification accuracy [15,25]. Given the practical importance, and the
significant challenge posed by domains of this nature, class imbalance has been
identified as one of the essential problems in machine learning [26] and has
spawned workshops, conferences and special issues [8,9].

The obvious solution to this problem is more training samples. This is not
possible in cases of imbalance arising due to domain properties, such as acqui-
sition cost and class probability. Thus, we turn to the generation of synthetic
instances based on the available training instances. Within class imbalance, this
is known as synthetic oversampling, and was originally devised to compensate
for the weakness of random oversampling [10].

Synthetic oversampling offers a means of balancing the training classes with-
out discarding useful instances from the majority class via random undersam-
pling and without risking overfitting by replicating examples with random over-
sampling. Instead, the training instances that belong to the minority class are
used as the foundation from which to synthesize additional training instances.
This avoids overfitting and effectively expands the minority space. How the space
is expanded depends on the bias of the synthetic oversampling method, which
dictates the way in which the probability mass of the training instances is spread
through the feature space.

The state-of-the-art methods in synthetic oversampling are based on the
SMOTE algorithm. The two major criticisms of SMOTE are that in some cases it
synthesizes instances inside the majority class, thus causing the induced classifier
to overcompensate by pushing the decision boundary into the majority space, and
in other cases it does not synthesize instances close enough to the majority class.
This results from the fact that the instances are synthesized in the convex-hull
formed by the minority training points [3]. These negative effects grow quickly
with absolute imbalance and dimensionality. In a well-sampled low-dimensional
dataset, SMOTE can be expected to interpolate synthetic points between training
instances that are in the same local neighbourhood of the feature space. There-
fore, the likelihood that the synthetic instances are representative of the latent
distribution is high. When there are very few samples of the class, however, the
samples are more likely to be dispersed around the feature space. Thus, interpo-
lating synthetic instances between them is likely to be error prone.

In an attempt tomanage this, a set of ad-hocmodifications have been proposed
to remove minority instances generated in the majority space, whilst others have
been proposed to promote the generation of instances close to the majority space
[2,3,14,20].We see these alternatives as addressing symptoms resulting fromagen-
erative bias that is inappropriate for the data rather than treating the root cause of
the weaknesses. Specifically, these methods have been designed and applied with-
out giving consideration to properties of the data to which that are applied.

In order to maximize the likelihood of generating effective instances from a
small training set, we argue that it is essential to design synthetic oversampling
methods with biases that match the properties of the target data. The benefit
of the correct bias is effectively demonstrated with the analogous problem of
inducing a representative function from the training data in Fig. 1. To induce
a function, like a generative model, we start with a bias, such as a linear or
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Fig. 1. Left: Training instance. Right: Approximating a sine function with and without
prior knowledge.

non-linear function, and a set of free parameters that accompany the bias. The
induction process quantifies the free parameters so that they best fit the training
data. Selecting the correct bias, in the case of our example, a sine function,
increases our likelihood of inducing a good representation, whereas selecting an
incorrect bias, such as a linear function with Gaussian noise, will produce a
very weak approximation. Similarly, utilizing an incorrect bias in the context of
synthetic oversampling can lead to inaccurate synthetic instances that negatively
impact classifier induction.

Based on our practical experience in applying synthetic oversampling meth-
ods to gamma-ray spectral classification problems, we were able to identify the
manifold property as one that has a negative impact on the existing methods.
A dataset conforms to the manifold property when its probability density resides
in a lower-dimensional space that is embedded in the feature space [7]. The
embedded space is thus constructed by combining a subset of features from the
feature space. For data that conforms to the manifold property, the embedded
representation offers a more concise form than the feature space, much like the
grammar and syntax of a programming language provide a much more concise
representation of the program to the computer than the pseudo code intended
for human consumption. Whilst the embedded space resulting from manifold
learning is a form of dimension reduction, it is much more than simple feature
selection. Feature selection can, at best find, a subset of the existing features in
the feature space. Alternatively, manifold learning discovers a completely new
set of features to better represent the data.

Data with the manifold property is common within a diverse set of machine
learning domains, ranging from global climate change to medicine. The bias
applied by SMOTE uses the straight line distance between training points in
the minority class. This is generalized as the Minkowski distance, which is an
inaccurate measure for manifolds. Therefore, choosing SMOTE to synthetically
oversample data that conforms to the manifold property is similar to choosing a
linear model to represent the sine function in Fig. 1; the best we can hope for is
synthetic data that is very weakly related to the target distribution. To address
this, we propose a framework for synthetically oversampling data that conforms
to the manifold property.
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The contributions of this paper include: (1) identifying a general weakness in
synthetic oversampling methods on data that conforms to the manifold property,
(2) illustrating the cause of this weakness for SMOTE, (3) articulating the benefit
of synthetic oversampling with a manifold bias, (4) proposing a framework for
manifold-based synthetic oversampling, and (5) demonstrating the superiority
of the framework using two distinct formalization on artificial data, gamma-ray
spectra data and UCI data that conforms to the manifold property.

2 Problem Overview

Our research was originally inspired by our collaboration with the Radiation Pro-
tection Bureau at Health Canada where we applied machine learning for safety
in regards to radiation. The primary challenges were the high-dimensionality of
the domain and the degree of imbalance. These are features that are common to
a large number of classification domains, such as global climate change, image
recognition, human identification, text classification and spectral classification.

We recognized that domains with this property can often be better repre-
sented in a lower-dimensional embedded space. This concept takes advantage of
the reality that instances are not spread throughout the feature space but are
concentrated around a lower-dimensional manifold. A simple example of a man-
ifold in machine learning comes from handwritten digit recognition, where the
digits are recorded in a high-dimensional feature space, but can be effectively
represented in a lower-dimensional embedded space that encodes the various
orientations and rotations of the digit [12]. Thus, manifold learning provides a
gateway to the embedded space in which all possible handwritten digits can be
encoded.

A significant amount of research has been dedicated to the development
of manifold learning methods [17]. The resulting algorithms utilize a diverse
set of assumptions and biases, such as the complexity of the curvature of the
manifold and the nature of the noise. Classic methods such as PCA and MDS
are simple and efficient. These are guaranteed to determine the structure of
the data on or near the embedded manifold. These traditional methods assume
a linear manifold [21]. Other, more algorithmically complex methods, such as
kernel PCA and autoencoding, enable the induction of non-linear manifolds.
Manifold learning has demonstrated great potential in clustering, classification
and dimension reduction [4,23,27]. However, in spite of their potential, manifold
learning methods have gone unconsidered in problems of class imbalance. We
address this gap in the literature with a framework for manifold-based synthetic
oversampling.

We illustrate the weaknesses of SMOTE using a one-dimensional manifold
embedded in a two-dimensional space. This is visualized in Fig. 2. Because the
more recent methods that have been proposed to improve SMOTE all apply the
same bias, they suffer from the same weaknesses on data that conforms to the
manifold property. For this reason, when we refer to SMOTE, we intend for it
to include its derivatives.
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The top left graphic in Fig. 2 shows the manifold in red with samples from
the manifold appearing as black circles. Each instance can be represented by
its one-dimensional coordinate m in the manifold space. In machine learning,
we often have data in the feature space, not the embedded space. Manifold
learning induces a model of the embedded space, and from this we can focus
the generation of instances in high probability regions. This is visualized in the
top right graphic where the blue shading illustrates the probability mass being
spread along the manifold. In the subsequent section, we demonstrate how this
is achieved with our proposed framework.

Fig. 2. Erroneous spread of instances away from the manifold with SMOTE.

The bottom graphics demonstrate the result of synthetic oversampling with
SMOTE with k = 7 and k = 3. It balances the training set by interpolating
points between k nearest neighbours in the minority training set [10]. As a result,
the k value indirectly affects the area covered by the convex hull. The convex hull
is represented by the blue area. A larger k value will uniformly spread points
over a larger area, whereas a smaller k value creates dense, small clusters of
synthetic points. This is emphasized with the shading of the convex hulls.

SMOTE uses the straight line distance to calculate the kNN set for each
instance in the minority class, and generates new instances at random points
on the edges connecting these neighbours. Due to the topological structure of
a manifold, this will only produce an accurate kNN set if the query instances
are close together [13]. In problems of class imbalance there are few minority
training instances and as a result, this is unlikely to occur. When SMOTE is
applied in this context, the convex-hull can extend away from the manifold. In
our example, we see that it extends well below the red line representing the
latent distribution that we hope to synthetically oversample.
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3 Framework

Figure 3 presents the three components of our framework for manifold-based
synthetic oversampling. Our objective is to provide a standalone synthetic over-
sampler. Therefore, although the data is generated in a hidden embedded space,
it is provided to the user in the original feature space. Subsequently, the user
can apply a pre-processing method that is appropriate for the classifier.

The first element of the framework induces a manifold representation of the
minority class via a well-suited method, such as PCA, kernel PCA, autoencod-
ing, local linear embedding, etc. Data is synthesized along the induced manifold
during the second phase of the framework, and the final phase maps the synthe-
sized data to the original feature space and returns it to the user.

Fig. 3. General framework for synthetic oversampling.

The number of training examples and the complexity of the latent manifold
are two factors to consider when selecting a manifold learning method to employ
in the framework. If the learning objective involves a linear manifold, or the
training data is extremely rare, a linear method is appropriate. Alternatively,
non-linear problems with more training data are well-suited for methods that
can represent the complexity. Our experiments focus on PCA and denoising
autoencoder because together they can model linear and non-linear manifolds
that are simple or complex. Moreover, they offer effective and easy-to-implement
means of sampling from the induced manifold.

Formalization with PCA: PCA is a linear mapping from the d-dimensional
input space to a k-dimensional embedded space where k ≪ d. The standard
process is a result of calculating the leading eigenvectors E corresponding to the
k largest eigenvalues λ from the sample covariance matrix Σ of the target data.

In the PCA realization of the framework, a model pca = {µ,Σ, E,λ} of
the d-dimensional target class T with m instances is produced. We produce a
synthetic set S of n instances in the manifold-space by randomly sampling n
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instances from T ′ = T × E (T in the PCA-space) with replacement. In order
to produce unique samples on the manifold, we apply i.i.d. additive Gaussian
noise N

(
0, I

)
to each sampled instance prior to adding it to the synthetic set

S. The covariance matrix for the Gaussian noise is a diagonal matrix with each
σi,i specified by βλi, where β is the scaling factor applied to the eigenvalues.
This controls the spread of the synthetic instances relative to the manifold, and
can be thought of as a geometric transformation of points along the manifold,
thereby producing new synthetic samples on the manifold. Finally, we map the
synthetic instances S into the feature space as S′ = S × E−1 and return them
to the user for use in classifier induction.

Formalization with Autoencoders: Autoencoders are a form of artificial
neural networks commonly used in one-class classification [16]. They have an
input layer, hidden layer and output layer, with each layer connected to the
next via a set of weight vectors and a bias. The input and output layers have a
number of units equal to the dimensionality of the target domain, and the user
specifies an alternate dimensionality for the hidden space. The learning process
involves optimizing the weights used to map feature vectors from the target class
into the hidden space and those used to map the data from the hidden space
back to the output space.

Fig. 4. Three steps of synthesization for the autoencoder formalization with generic
points and handwritten 4s. (Color figure online)

A manifold bias is incorporated in the autoencoding process through its map-
ping from the feature space to the hidden-space and back via fθ(·) and gθ′(·),
where:

fθ(x) = s(Wx+ b)
gθ′(y) = s′(W′y + b′).

(1)

Here, θ and θ′ represent the induced encoding and decoding parameter set,
respectively. Specifically, W is a d × d′ weight matrix and b is a d-dimensional
bias vector. The function s, is a non-linear squashing function, such as the sig-
moidal. In the decoding parameter set, W′ and b′ represent the weight matrix
and the bias vector that cast the encoded vector back to the original space. The s′
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function is typically linear in autoencoders. As is standard with artificial neural
networks, the weights are learnt using backpropagation and gradient descent.
In addition, we utilize denoising during the training process as a form of regu-
larization to promote the learning of key aspects of the input distribution [24].
We add Gaussian noise to the input and the network learns to reconstruct the
clean instances.

The learning processes prioritizes the dual objective of a reconstruction func-
tion g(f(·)) that is as simple as possible, but capable of accurately representing
neighbouring instances from the high-density manifold [1]. This promotes accu-
rate reconstruction of points on the manifold, whilst the reconstruction error
|x − g(f(x))|2 rises quickly for examples orthogonal to the manifold. Given a
point, p, on the manifold, the output g(f(p)) remains on the manifold in essen-
tially the same location. Conversely, when an arbitrary point, q, is sampled from
off the manifold, the output g(f(q)) is mapped orthogonally to the manifold.
This is demonstrated in Fig. 4 as g(f(x̃)) → x, where x̃ is a point off the mani-
fold, with the manifold depicted in red.

The mapping g(f(x̃)) → x is key to the formalization of the autoencoder
version of our framework. The basic objective is to induce the manifold repre-
sentation of the minority class and use its ability to perform orthogonal mappings
to the manifold to generate samples. Generally speaking, we take an arbitrary
minority class instances x, apply a non-orthogonal mapping off the manifold
x → x̃ and map it orthogonally back to the manifold via g(f(x̃)) → y. The result
is a transformation along the manifold from a training instances x to synthetic
instances y. This is illustrated graphically in Fig. 4. The non-orthogonal map-
ping is produced by adding noise to the training instance x. A greater amount
of noise leads to a larger transformation along the manifold. By sampling n
instances from the minority class with replacement and performing the transfor-
mation, we produce the synthetic set. We note that g(·) maps the synthetic set
returned to the user into the target feature space. Algorithm 1 formalizes the
method.

Prior to calling Algorithm 1, we perform model selection with the recon-
struction error by randomly searching the parameter-space using the minority
training data X . This facilitates a simple and effective form of model selection
and is the standard means of model selection for autoencoders. Nonetheless, we
are exploring alternate forms of model selection for this novel application of the
autoencoder. The model selection process of the autoencoder provides the abil-
ity to set the free parameters according to the target class, whereas this is not
possible with the SMOTE-based methods. As a result, the user cannot know
if they have specified a good value for k until they apply the classifiers after
synthetic oversampling.

Given the few training instances in problems of class imbalance, we prefer a
simple model rather than an overly complex model of the manifold. To encourage
this, we conduct the parameter search over a relatively small number of hidden
units and training epochs. For the spectra data, we searched 5–30 hidden units
with fewer than a thousand epochs of training.



256 C. Bellinger et al.

Algorithm 1. dae-SyntheticOversampling(X , DAE{W,b}, n, σ)
Input:

i) X , an m by d dimensional data matrix.

ii) DEA{W,b}, a trained denoising autoencoder with weight matrix W and bias b.

iii) n, the number of instances to synthesize.

iv) σ, variance of the Gaussian sample initiation noise.

Output:

i) Y, the synthetic samples.

Method:

1: X ′: column normalization of X between [−1, 1].
2: normParams: column normalization parameters of X .
3: Z: normalized X plus sample initiation noise N (0,σ).
4: Y ′ = DAE{W,b}(Z): samples Y ′ from the induced manifold.
5: Y: denormalization of Y based on normParams.
6: Return(Y)

End Algorithm

Computational Overhead: The degree to which the framework will add com-
putational overhead depends on the manifold learning method selected. Building
a PCA model, for example, requires eigenvalue decomposition of the covariance
matrix of the feature vectors. Using Jacobis method for diagonalization requires
O(d3 + d2m) computations; however, the efficiency can be improved [19]. More
sophisticated manifold learning methods, such as autoencoders, that involve iter-
ative learning can take longer. The key point to remember here is that learning
is being performed on a small training set. This significantly limits the training
time because there are few examples to look at, and we want to avoid overfit-
ting. This applies to SMOTE as well. Although SMOTE has the potential to be
very slow due to its nearest neighbour search, the small training set means that,
in practice, it is reasonable fast. Unlike our proposed framework, however, the
adaptions of SMOTE take significant performance hits because they search for
nearest neighbours in the entire training set.

4 Gamma-Ray Spectral Classification

Spectra classification for the Radiation Protection Bureau at Health Canada
sparked our initial interest in the relationship between manifolds and synthetic
oversampling.

4.1 Data

Two gamma-ray spectra datasets from the Canadian national environmental
monitoring system, and one collected as part of event security at the Vancou-
ver Olympics are utilized in our experiments. The environmental monitoring
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datasets were recorded at Thunder Bay and Saanich. These cities were selected
for testing because they are geographically, geologically and atmospherically very
distinct. This provides for very distinct data distributions.

During a four month period, 19, 112 spectra were recorded at Saanich, 44 of
which were from the minority class. At Thunder Bay, 11, 602 spectra instances
were recorded, with 29 belonging to the minority class. The Vancouver Winter
Games data was recorded and monitored to ensure that no radioactive material
entered the venue. There are 39, 000 background instances in the dataset and
39 isotopes of interest in the minority class. The two environmental datasets are
250-dimensional and the Vancouver data is 500-dimensional.

Through discussions with our colleagues at the Radiation Protection Bureau
at Health Canada, we inferred the conformance of this data to the manifold
property. In particular, we know that the radioactive occurrences that form the
minority class will affect subset specific energy levels in the spectra, forming an
embedded space.

4.2 Evaluation

We utilize the SVM, MLP, kNN, näıve Bayes and decision tree classifiers in the
following experiments. Synthetic oversampling is performed by the autoencoder
and PCA formalizations of the framework. These are compared to SMOTE and
SMOTE with the removal of Tomek links [22]. The latter is performed in order to
remove synthetic instances generated in, or too close to, the majority class. This
will potentially assist SMOTE by removing erroneously synthesized instances.

We perform 5 × 2-fold cross validation and report the mean and standard
deviations of the AUC performance. This form of cross validation method is ideal
for large datasets such as these, and has been shown to have lower probability
of issuing a Type I error as compared to k-fold cross validation [11].

4.3 Experimental Results

The mean and standard deviation of the AUC after the application of manifold-
based synthetic oversampling and SMOTE-based synthetic oversampling is
reported for each classifier on each dataset in Table 1. We specifically show the
results of the best manifold-based (PCA or autoencoder) and SMOTE-based
(SMOTE or SMOTE with the removal of Tomek links) synthetic oversampling
implementation in these tables. This is done to emphasize the relative perfor-
mance of the two approaches, and shows that the manifold-based framework
is superior on the gamma-ray datasets. The combination of the manifold-based
method with each classifier produces higher mean AUCs on the Vancouver and
Thunder Bay datasets. This is also the case on the Saanich dataset for all except
with the SVM classifier. In addition, we report the mean AUC across all clas-
sifiers. This shows that our framework is generally superior regardless of the
classifier.
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Table 1. The mean AUC results for each method on the gamma-ray dataset.

Vancouver Thunder Bay
Manifold-based Smote-based Manifold-based Smote-based
Mean SD Mean SD Mean SD Mean SD

MLP 0.829 0.056 0.721 0.059 0.948 0.011 0.771 0.059
NB 0.820 0.023 0.762 0.073 0.945 0.010 0.733 0.073
DT 0.778 0.031 0.761 0.077 0.942 0.013 0.723 0.077
SVM 0.802 0.042 0.710 0.060 0.945 0.010 0.728 0.060
KNN 0.854 0.062 0.500 0.056 0.934 0.010 0.784 0.056
Mean 0.817 0.691 0.943 0.739

Saanich
Manifold-based Smote-based
Mean sd Mean sd

MLP 0.739 0.067 0.727 0.059
NB 0.829 0.041 0.699 0.073
DT 0.791 0.031 0.714 0.077
SVM 0.627 0.042 0.714 0.060
KNN 0.677 0.062 0.625 0.056
Mean 0.733 0.696

With respect to the specific methods, the autoencoder formalization is better
than PCA on the Vancouver and Saanich datasets, whereas the PCA implemen-
tation is superior on the Thunder Bay dataset. Interestingly, SMOTE is always
the better than its counterpart using the removal of Tomek links.

5 UCI Classification

In order to generalize our findings, we now shift to examine the impact of the
manifold on synthetic oversampling over benchmark datasets from the UCI
repository. To paint a clearer picture of the impact of the manifold, we arti-
ficially control the degree of conformance of the datasets to the manifold prop-
erty. This is done using a process that we refer to as manifold augmentation,
which we detail later in this section. Performing manifold augmentation on the
UCI datasets enables us to run experiments where we gradually increase the
conformance in order to witness the impact of the manifold on each synthetic
oversampling method, whilst holding the other aspects of complexity, such as
modality and overlap, constant. This enables us to demonstrate the causal link
between the increase in conformance and the change in performance.

5.1 UCI Data

The sixteen UCI datasets specified in the first column of Table 3 were selected
to ensure a diverse range of dimensionalities and complexities. When required,
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the datasets are converted to a binary task by selecting a single class to form
the minority class, and the remaining classes are merged into one.

For each experiment, we train on 25 minority training instances and 250
majority training instances; thus, we render each domain as an imbalanced clas-
sification task involving the concept of absolute imbalance. We have selected
constant values for the training distribution, rather then specifying a percent-
age for the minority class, in order to ensure that the performance differences
between datasets are not the result of having access to different numbers of
minority instances. If we set the minority portion to 10%, for example, then
a dataset with 1, 000 instances would have many more examples in the train-
ing set than a dataset with 200 instances. This can have a great impact on
performance. Finally, we perform a series of augmentations to each dataset to
increasingly strengthen the conformance to the manifold property.

5.2 Manifold Augmentation of UCI Data

Our manifold augmentation process is contingent on the notion that the prob-
ability mass resides in a lower-dimensional space. We introduce this by adding
columns of uniformly distributed random variables that span both classes to the
data matrix. In this case, the augmentation is suggestive of a feature selection
problem; however, feature selection is not an effective means of solving manifold
problems. This is because they will only find a subset of the features. A mani-
fold space is a more general subspace that is formed from combinations of the
original features. These combinations may be simple linear combinations:

f ′
i = a1f1 + a2f2 + ...+ adfd, (2)

where f ′
i i ∈ {1, .., k} is one of k components of the manifold-space embedded

in the d-dimensional feature space; other manifolds are formed of much more
complex combinations. In these cases, no subset of the original feature-space
will represent the manifold.

5.3 Evaluation

In this set of experiments, we apply the same synthetic oversampling methods
that were used in the previous section to balance the training sets prior to the
application of the five classifiers. Our primary interest in this set of experiments
is to elicit the affect of the manifold. In order to achieve this, we apply the
augmentation method described above, in which each UCI dataset is augmented
to increase conformance to the manifold property with:

p = {0%, 15%, 30%, 45%, 60%, 75%, 90%}, (3)

where p = 0% is the unchanged UCI data and p = 90% returns a modified
dataset with the dimensionality increased by 90%. Therefore, for each of the
16 UCI datasets, we create 7 augmented versions, where the increasing p values
indicates increasing conformance to the manifold assumption.
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Thirty repeated trials are run for each augmented dataset. Because we have
limited space and we interested in studying the impact of the manifold, we record
the mean performance for each synthetic oversampling method on each dataset
and calculate the average over all of the classifiers (similar to what we reported
in the last row for Table 1). We provide these aggregated results to demonstrate
the relative strength of our proposed method. Our analysis of the individual
classifiers is postponed for a longer paper.

The first set of results reports the ranking of each synthetic oversampling
method based on the AUC. The rankings are tabulated for the performance on
the original UCI datasets (p = 0) and for the mean of the AUC produced on the
augmented datasets (p = {15, .., 90}). This demonstrates how the relative per-
formance of the methods changes when conformance to the manifold assumption
is increased up to p = 90.

In the second set of experiments, we include only the best manifold-based
method and SMOTE-based method for each dataset in our results. We compare
the change in the performance resulting from the increased conformance to the
manifold property from p0 to p90. We refer to this as the loss score for each
dataset D, where:

loss(Dp0 ,Dpk) = AUC(Dp0) − AUC(Dpk). (4)

This shows the degradation caused by the manifold. If the manifold has no
impact, then the loss score is zero. The loss score increases with the relative
impact of the manifold

5.4 Experimental Results

AUC Results: Table 2 presents the number of times each synthetic oversam-
pling system produced the highest mean AUC on the UCI datasets. In the case
of a tie between two methods, 0.5 is attributed to each. The first column (p = 0)
refers to the original UCI datasets, and the last column shows the results after
augmentation with p = {15, .., 90}. In both cases, the manifold-based methods
are superior. For p = 0 the manifold-based methods are better 7 + 4 = 11 times
out of 16 and tied once with a SMOTE-based method. The real strength of the
manifold-based method, however, is shown when the conformance to the mani-
fold property is increased. The manifold-based methods are always better when
the conformance to the manifold property is increased. Specifically, the autoen-
coder is the best on 13 of the 16 datasets and PCA is superior on the others.

Loss Results: Table 3 displays the mean loss values for the manifold-based sys-
tem and the SMOTE-based system on the 16 UCI datasets. Specifically, we report
the loss for each dataset with respect to loss(Dp0 ,Dp90) as described in Eq. 4.
Fourteen of the sixteen datasets have lower loss scores when the manifold-based
system is applied; these are highlighted in grey. This shows that in addition to
its superiority in terms of the AUC, the proposed framework is more robust with
respect to loss caused by the manifold. Specifically, the manifold causes less of
a decrease in performance for the manifold-based approach than it causes for
SMOTE.
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Table 2. Total number of AUC wins for each synthetic oversampling method on the
augmented UCI data.

Dataset Wins

p = 0 mean (p = {15, .., 90})
SMOTE 1 0

Tomek 3.5 0

PCA 7 3

AE 4.5 13

Table 3. The degradation between p = 0 and p = 90 of the classifiers after the
application of synthetic oversampling.

Dataset Manifold-Based SMOTE-Based

Letter 0.078 0.116
Musk2 0.018 0.133
Opt Digits 0.001 0.014
Ozone 1hr 0.051 0.055
Pima 0.018 0.028
Sonar 0.061 0.074
Vehicle 0.056 0.062
Wave Form 0.038 0.074
Yeast 0.018 0.063
Satlog 0.067 0.085
Breast 0.002 0.001
Ecoli 0.016 0.022
Heart-Statlog 0.001 0.008
Ionosphere 0.055 0.033
Pen Digits 0.016 0.031
Segment 0.035 0.040

6 Conclusion

We demonstrate that the existing methods of synthetic oversampling based on
SMOTE do not achieve their full potential on data that conforms to the manifold
property, and argue that a manifold-based approach to synthetic oversampling is
required. We address this by proposing a framework for manifold-based synthetic
oversampling, which enables users to incorporate the wide variety of methods
from manifold learning into the framework. We demonstrate the framework with
a PCA and autoencoder formalization. These are selected for their simplicity in
use and their abilities to represent a wide variety of manifolds.

We show that the implementations outperform the SMOTE-based methods
in terms of the AUC on three gamma-ray spectra datasets that conform to the
manifold property. In order to generalize our findings, we use 16 UCI datasets
and show that the framework outperforms SMOTE in terms of the AUC and
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that it is more robust to the manifold property in terms of the loss score. In
addition to its strength on data that conforms to the manifold property, these
experiments suggest that the framework is generally a good choice for synthetic
oversampling.
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