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Abstract Co-location pattern mining focuses on finding
associations among spatial features. Existing co-location
pattern mining techniques mainly rely on frequency based
thresholds which discard the rare patterns and find the noisy
patterns. This could be avoided by evaluating co-location
patterns based on their statistical significance. Recent stud-
ies focused on association rule mining have successfully
adopted statistical tests to find significant rules. By trans-
forming spatial data to transaction data, the co-location
pattern mining problem can be reduced to an association
rule mining problem and such methods can be used to find
co-location patterns robustly. A transactionization mecha-
nism has been recently proposed to achieve this. However,
this method ignores the effect of general instances, with non-
overlapping buffer regions, on the reference instances in their
proximity. Addressing this, we propose a novel approach,
AGT-Fisher, to robustly transform spatial data to transaction
data and use statistically significant dependency rule search-
ing methods to find co-location rules from them. Our work
is motivated by an application in environmental health to
investigate potential associations between air pollution and
adverse birth outcomes in Canada. We used AGT-Fisher to
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find such associations from real datasets. The discovered co-
location patterns were evaluated based on their statistical
dependency and the empirical evidence, and results showed
that our approach is more robust. Furthermore, we evaluated
the resulting patterns to find spatial common and contrast
sets, which are two special types of co-location patterns, to
compare spatial regions and gain more insights.

Keywords Co-location patterns · Spatial data · Spatial
contrast sets · Spatial common sets · Environmental health

1 Introduction

Co-location pattern mining is an important class of spatial
data mining algorithms which aims to discover relationships
and associations amongvarious spatial features.More specif-
ically, a co-location pattern can be defined as a set of spatial
features whose instances are often located together in spatial
proximity.

Co-location pattern mining has been applied in many
diverse disciplines. In particular, this work is a collaboration
with researchers at theCanadianNeonatalNetwork1 inwhich
we perform data mining in an environmental health problem
involving data from 21 cities. Our aim is to help advance
the research question: “Do industrial air pollutants have
any impact or associations with adverse birth outcomes?”
In particular, we propose that our data mining approach
can serve to generate hypotheses regarding the relationships
between the presence of industrial air pollutants and adverse
birth cases. We are particularly interested in the impact of
chemical combinations, as these are difficult to study with
traditional methods [11]. Environmental health researchers

1 www.canadianneonatalnetwork.org.
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can use these hypotheses in their motivation for their directed
research.

There are many studies suggesting that associations
between air pollutants and Adverse Birth Outcomes (ABOs)
exist [13]. Discovering such associations can be directly con-
verted to a co-location pattern mining problem where the
objective is to find co-location rules of the form X → A,
where X is a set of air pollutants (i.e., chemical compounds)
and A is an adverse birth outcome [e.g. low birth weight
(LBW), small for gestational age (SGA) and preterm birth
(PTB)].

Co-location pattern mining (CPM) and classical associa-
tion rule mining (ARM) tasks have strong similarities. Most
of the existing CPM and ARM techniques primarily rely
on frequency based prevalence thresholds to find “interest-
ing” patterns [17]. Given a strict prevalence threshold, such
approaches could losemany rare but significant patterns [16].
Alternatively, with a lenient threshold, a large number of
noisy patterns are likely to be detected. This leads to ineffi-
cient methods [12] that, in our domain, have a major impact
on the practitioner’s ability to identify valuable hypotheses
to explore.

Quantifying the strength of the statistical dependency
between the antecedents and the consequent is a good alterna-
tive to measuring the significance or the “interestingness” of
a rule. In other words, the antecedents and the consequent of
a rule are associatedwith each other, or truly dependent, if the
dependency in the observed data is notmerely by chance. Sta-
tistical significance tests can be used to quantify this notion
of true dependency. In the past, a few ARM techniques have
been developed to use statistical significance tests to find rel-
evant and rare patterns and also to reduce the number of noisy
patterns [8,9].

If a spatial dataset can be effectively transformed into a
non-spatial transaction dataset, the co-location pattern min-
ing problem can be reduced to an association rule mining
problem [14] and statistically significant association rule
mining techniques can be used to find co-location patterns
robustly. Once again, this is essential in our domain in order
to increase the likelihood of sharing insightful hypotheses
with our collaborators. This transformation process is called
Transactionization. It is worth noting that transactioniza-
tion enables the application of other ARM methods as well
[3,12,20].

The Grid-based Transactionization method (GT) was pre-
viously proposed with the aim of exploiting statistically
significant association rule miningmethods. It addresses var-
ious limitations in the traditional transactionization, such as
reference-centric and window-centric models [11]. Given a
spatial dataset overlaid by a set of square grid cells, trans-
actions are generated based on the features whose spatial
instances’ buffer regions overlap a particular point of inter-
section of two grid cells. However, our application domain

provides an excellent example of a limitation that we have
identified with the GT method.

Our application involves two types of spatial instances:
(a) patients with an adverse birth outcome and (b) air pollu-
tants emitted from industrial facilities. The central feature
of our study is the patient since we are interested in the
effect of air pollution on the occurrence of adverse birth out-
comes. In this domain, situations occur where the patient is
exposed to multiple air pollution regions. When air pollu-
tion regions themselves are disjoint while still overlapping
with the patient’s mobility region, we refer to them as non-
overlapping spatial regions.

The GT transactionization method does not capture the
effect of non-overlapping spatial regions because it gen-
erates a unique transaction each time a patient’s mobility
region overlaps with the buffer region of an individual air
pollutant instance. This ignores the fact that some of the
patient-pollutant combinations involve the same patient. The
transactions should reflect all of the chemical exposures an
individual patient is subjected to.

An example of the above scenario is given in Fig. 1. Here,
A is a patient with an adverse birth case, and B and C are air
pollutant emitting facilities. The circles represent the spread
of the air pollutants and the mobility region of the patient.
TheGTalgorithmderives a transaction indicating that patient
A is affected by both B and C in Fig. 1a, but it cannot derive
such a transaction in Fig. 1b. However, the patient in Fig. 1b
is clearly affected by both B and C. This inhibits the dis-
covery of some associations involving combinations of air
pollutants.

We propose Aggregated Grid Transactionization (AGT)
to address the limitations of grid transactionization. We use
this in conjunctionwith a Fisher’s test-based dependency rule
search technique to find statistically significant co-location
patterns. This combination forms a novel co-location pat-
tern mining method, namely AGT-Fisher, which addresses
many limitations of previous co-location pattern mining
approaches.

Finally, with rich datasets that contain data from multi-
ple spatial regions, it is useful to discover patterns that: (a)
uniquely characterize a specific spatial region and contrast
it with others, and (b) are common in many spatial regions.
For instance, in our application, a valid research question is:
“Are there any specific combinations of industrial air pollu-
tants that are more associated to low birth weight in Greater
Toronto Area than other Canadian cities?” In one of our
previous studies, we proposed techniques to answer these
questions. We refer to them as spatial contrast sets and spa-
tial common sets [1]. Thismethodology canbe appliedwithin
AGT-Fisher to discover spatial contrast sets and spatial com-
mon sets, which enables us to gain unique insight into the
associations between chemicals, ABOs, and regions.
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Fig. 1 The effect of overlapping versus non-overlapping spread
regions when a central feature is given (A is a patient. B and C are
air pollutant emitting facilities. The circles represents the spread of the
air pollution and the mobility region of the patient): a air pollution

spread regions overlap with one another and with the mobility region
of the patient; b air pollution spread regions do not overlap with one
another but overlap with the mobility region of the patient separately

We apply AGT-Fisher on adverse birth datasets collected
by the Canadian Neonatal Network (CNN) from 21 major
Canadian cities to effectively find co-location patterns of
industrial air pollutants and adverse birth outcomes (ABOs)
in Canada addressing our motivating challenge.

To summarize, our contributions in the current work are
as follows:

– We identify a limitation in the existing transactional-
ization algorithm. Specifically, it does not capture the
potential effect caused by instances of multiple general
features (e.g. air pollutants) with non-overlapping buffer
regions on instances of a reference feature (e.g. ABO
cases).

– We propose Aggregated Grid Transactionization (AGT),
to address this problem.

– Experimentally, we show that AGT with Fisher’s exact
test (AGT-Fisher) can find statistically significant co-
location patterns more effectively with a higher lift.

– We apply AGT-Fisher to address a practical environmen-
tal health issue involving adverse birth outcomes and
industrial air pollutants. Within this domain, our results
constitute a resource for hypothesis generation and can
lead to the discovery of new information. A particular
advantage is our ability to generate hypotheses involving
multiple chemicals.

– Finally, as an extension to our previous works [1], we
demonstrate how to use AGT-Fisher to find two special
cases of co-location patterns called spatial contrast and
common sets.

The rest of the article is organized as follows. In Sect. 2,we
discuss relatedwork in the literature and in Sect. 3we provide
definitions and outline the preliminary concepts required to
design our methods. We discuss our proposed AGT-Fisher
method and its application in finding spatial contrast and

common sets in Sect. 4. In Sect. 5, we present our exper-
imental results and evaluation with CNN datasets. Finally,
we conclude in Sect. 6.

2 Related work

Early spatial statistics approaches deploy techniques such
as cross K-functions with Monte-Carlo simulations [26],
mean nearest-neighbor distance, and spatial regression mod-
els [28] to evaluate and find co-location patterns between two
features. Disadvantages of these approaches are their high
computational requirements and the difficulty in applying
them to patterns consisting of more than two spatial features.

On the other hand, traditional co-location rule mining
techniques are based on the neighborhood relations and par-
ticipation indices [18]. In such methods, co-location patterns
take the form C1 "⇒ C2(P I, cp), where C1 and C2 are
spatial feature sets, PI is the participation index or the preva-
lence measure for the given rule and cp is the conditional
probability. The given rule is considered prevalent or inter-
esting only when at least PI of the instances of each of the
features in the rule form a clique with the instances of every
other feature in the same rule according to a defined neigh-
borhood relation. To find rare patterns, previous studies have
introduced a new measure called the max participation ratio
max PR. If the max PR instances of at least one of the fea-
tures in the given pattern form a neighborhood relation with
the instances of all the other features in the same pattern, then
that co-location pattern is considered prevalent [15]. Most of
these techniques depend on user-defined thresholds for the
interestingness measure and detect a large number of noisy
patterns when the threshold is too low. Moreover, they miss
rare patterns if the threshold is high.

In contrast to the traditional co-location pattern min-
ing approaches which rely on frequency based thresholds,
more recently, transactionization-based techniques havebeen
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introduced tofind co-locationpatternsmore robustly byusing
statistically significant association rule analysis methods.
Grid-based Transactionization is one such transactioniza-
tion technique introduced to transform a spatial dataset into
a transaction dataset, which addresses the limitations in
early models such as reference-centric and windows-centric
methods [3,11,12]. This approach is used with statistical sig-
nificance tests to find more relevant co-location patterns in
previous studies. One such approach exhaustively generates
all possible patterns up to a certain length and computes the
empirical p value based on the support-confidence value in
the observed dataset against the simulated datasets satisfy-
ing the null hypothesis [3]. Methods for the discovery of
co-location patterns based on computing empirical p values
in simulated datasets have previously been used with non-
transactionized datasets where the participation index (PI) is
used as the preferred prevalence measure [19]. However, an
Apriori-like search technique is not possible in any of the
above cases due to the fact that the statistical significance
is not a monotonic property. Once R number of simulated
datasets are generated using a randomized test, the empirical
p value is R≥Observed_confidence+1

R+1 . Due to the exponential growth
of the computational complexity of this approach, the tech-
nique is not scalable beyond a certain pattern length.

Alternatively, in the past, statistically significant depen-
dency searching techniques have been developed to findmore
relevant and statistically sound association rules. Due to var-
ious issues including redundancy and inefficiency in early
methods, better approaches were suggested in recent years.
StatApriori [8] and its successor Kingfisher [9] are two such
searching methods proposed to find statistically significant
dependency rules. StatApriori uses Z-score to approximate
the upper bound for the p value and then uses Apriori-based
strategies to search the solution space. However, the Z-score
overestimates the p value, which leads to issues in redun-
dancy, affecting the quality of the discovered rules [9]. In
order to avoid these issues, the Kingfisher search method
was proposed. I was proven to be more robust in finding
non-redundant statistically significant dependency rules [9].
Given an association rule X → A, Kingfisher estimates the
statistical significance of the dependency between X and A
using Fisher’s exact test. If X and A are truly independent,
the probability of an observed or stronger dependency occur-
ring by chance, pF (i.e., p value), can be computed using
a cumulative hypergeometric distribution. Kingfisher uses
enumeration trees, efficient search mechanisms, and pruning
heuristics to efficiently search the solution space to find sig-
nificant rules. Besides Fisher’s exact test, the χ2-test can also
be used with Kingfisher to find the statistically significant
dependencies. However, Fisher’s exact test is empirically
proven to be more effective, efficient and scalable compared
to the χ2-test [9].

CMCStatApriori was proposed to address scalability
and efficiency (e.g. fixed size co-location patterns) in the
transactionization-based co-location discovery methods that
use the empirical p value to measure statistical significance.
It uses a constrained version of theZ-score-based statistically
significant association rule searching technique, StatApriori
[8], on a transactionized spatial dataset [12]. However, as
we previously discussed, the Kingfisher algorithm is a more
efficient and effective approach to finding statistically signif-
icant dependency rules using Fisher’s exact test [9]. Based
on this, in our work, we introduce a novel grid-based trans-
actionization technique to use with Fisher’s exact test-based
statistical dependency rules tomore robustly find statistically
significant co-location patterns.

To compare and contrast categories of data, a type of
association patterns called contrast sets were first introduced
through the STUCCO [5] algorithm. STUCCO can find asso-
ciationpatternswhich can contrast instances fromaparticular
group to instances from other groups. Most of the existing
contrast set mining techniques like STUCCO depend on two
threshold values called support and confidence, and are prone
to the limitations imposed by them. Hence, as an alternative,
in a previous work, we proposed to use statistically signifi-
cant association rules to mine contrast sets [2]. This can be
applied in the context of spatial data to compare and contrast
spatial groups as well. Recently, we extended our previous
work to find such contrast sets in spatial data [1]. In the
same work, we also proposed a new algorithm to find a novel
type of pattern called spatial common sets to find patterns,
which are equally (i.e., commonly) strong in multiple spa-
tial groups. These common sets and contrast sets for spatial
data help gain new insights and knowledge which was not
accessible previously.

3 Preliminaries

In association rule analysis, we deal with a transaction
database D such that each sample transaction E in D
can be defined as a vector of size m (Table 1 introduces
the basic notation used throughout this work). Let A =
{A1, A2, . . . , Am} be a set of feature-value pairs (i.e., A1 =
( f1, v f 1) where f1 ∈ F is a feature and v f 1 is its corre-
sponding value) called items. A regular dataset with features
and corresponding values can be discretized and/or binarized
depending on the application to help represent each data
instance as a set of items. Discretization involves converting
a continuous attribute to a discrete or binary attribute. Some
applications first convert continuous attributes to discrete
attributes by defining multiple bins or intervals within the
continuous range, and assigning the corresponding attribute
value to one of the bins. Such a discretized variable can be
further processed to binarize it. In such a case, each {original
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Table 1 Basic notations

Notation Meaning

A, X or Y An itemset or a set of discrete attribute-value pairs where Ai is an item or an attribute-value pair

F Set of features where fi ∈ F and v fi is the value of the feature fi
C Set of classes where ci is a member class

Es A spatial transaction or an itemset

Ds Transactionized spatial dataset where Es ∈ Ds

support(X) or m(X) Frequency of transactions in Ds in which X itemset occur

conf(X → Y ) Confidence of X → Y (i.e., support(Y) / support (X → Y ))

NXA A random variable of the absolute frequency of X and A co-occurrence

pF Fisher’s p value

M(X → A) Goodness measures for the rule (e.g. Fisher’s p value)

Gx,y Is a group where Gx,y = {Cx , Ly}; Cx is the class membership and Ly is the location of the group

attribute, discretized value} pair acts as a new binary/boolean
feature for the dataset. In the context of association rule min-
ing, such binary features can be considered as items where,
if the binary feature is “True”, the item exists and if it is
“False” the item does not exist. Hence, in such an itemized
dataset, a transaction E can be defined as a vector con-
sisting of feature-value pairs or items {Ai , A j , . . . , Am} ⊂
A. Given these, an association rule can be defined as in
Definition 1.

Definition 1 An association rule is an implication of the
form X → Y where X ⊂ A, Y ⊂ A and X ∩ Y = ∅.

Confidence conf in X → Y is the percentage of data
instances in D containing X that also contain Y (i.e.,
P(Y |X)). Support sup for X → Y is the percentage of
data instances in D containing X ∪Y . Traditional algorithms
discover strong association rules by verifying that their sup
and conf exceed some user-defined thresholds. Classification
association rules (CAR) are a special case of general associa-
tion rules [6]. Given a set of class labelsC = {c1, c2, . . . , cq}
where each instance E in D is associated with a class label
ci and |C | = q, a CAR can be defined as an association
rule of the form X "⇒ ci . In such a rule X ⊂ A and
ci ∈ C .

Given a spatial dataset S, each instance s ∈ S can be
defined as a vector, s = [long., lat., featurei , other contex-
tual data,…], consisting of longitude, latitude, spatial feature
ID (e.g. Pollutant1, ABO1, . . .) and other contextual data
such as climate information (e.g. average wind speed and
direction). This dataset can be transformed into a transac-
tion dataset Ds using a suitable transactionization algorithm.
For instance, a reference-centric model can be used as such
a transactionization method [25] (other methods include
window-centric models, spatial join-based approaches to co-
location patterns, etc. [11]). This reference-centric model
creates a transaction around a reference feature specified by
the user. Each set of spatial features which forms a neighbor-

hood relationship with an instance of the reference feature
is considered as a transaction. The neighborhood relation-
ship or spatial proximity between the features can be defined
with a user-defined distance threshold. In such a scenario,
Es ∈ Ds is a vector representing a single transaction, where
Es = [I D, f eature1 ∈ {0, 1}, f eature2 ∈ {0, 1}, . . .]. Es

defines a neighborhood relationship based on the s spatial
instances. Furthermore, As represents a set of all the possible
spatial items [e.g. ( f eatures1, 0)] in Ds as well. A transac-
tion represents a set of spatial features whose instances from
S are in the close spatial proximity. Under these conditions,
an association rule mining technique can be applied to Ds

as any other transaction database and find association rules
which would be interpreted as co-location rules, defined in
Definition 2.

Definition 2 A co-location rule is an implication of the form
X → Y where X ⊂ As , Y ⊂ As and X ∩ Y = ∅.

Given a co-location rule, X → Y , the dependency
between X and Y is traditionally measured by using an
empirical p value. When the prevalence measure or the con-
fidence value of a pattern in a certain number of simulated
datasets is larger than the observed confidence, then empiri-
cal p value suggests that pattern is statistically not significant.
This cut-off number is determined by the level of signifi-
cance. The simulated datasets are generated to comply with
the null hypothesis which states that there is no dependency
between the instances containing antecedent features with
the instances containing the consequent features. However,
other statistical significance tests such as Fisher’s exact test
and the χ2 test are more flexible and extensively used in
recent literature to measure the statistical significance of a
rule.

Contrast sets are another class of associative patterns
which are used to characterize a particular class and con-
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trast it with the others. Contrast sets can be defined as shown
in Definition 3.

Definition 3 Contrast sets are conjunctions of attribute-
value pairs, X ⊂ A, defined on mutually exclusive classes
from C such that no Ai ∈ X occurs more than once.

Contrast sets can be discovered using class association rules.
Originally, if a set X in a class association rule X "⇒ ci
meets STUCCO deviation conditions [5] as in Eqs. 1 and
2, then X is considered as a contrast set for class ci which
can distinguish ci from the other classes. The condition in
Eq. 1 imposes that the support of a contrast set is significantly
different across various groups. The second condition inEq. 2
imposes that the difference in support of a contrast set across
different groups is sufficiently large.

∃i, j P(X |ci ) ̸= P(X |c j ) (1)

max
i, j

| support(X, ci ) − support(X, c j )| ≥ min_dev (2)

4 AGT-Fisher to find co-location patterns

We propose an improved co-location pattern mining appro-
ach, AGT-Fisher, based on a new grid transactionization
method and Fisher’s exact test. AGT-Fisher transforms a
spatial dataset into a transaction dataset more effectively
than prior approaches and uses statistically significant depen-
dency rule searching techniques to find “interesting” and
statistically sound co-location patterns. We further elabo-
rate how this method can be used to find spatial contrast
sets and spatial common sets to compare various spatial
groups.

4.1 AGT-Fisher method

The algorithmic process ofAGT-Fisher consists of twomajor
steps: (1) Transactionizing the spatial dataset with AGT
(Aggregate Grid Transactionization); (2) mining for statis-
tically significant association rules with Fisher’s exact test
for statistical significance. Next we explain how this process
can be accomplished.

4.1.1 AGT: aggregated grid transactionization

As we previously discussed, although GT solves the limita-
tions posed by earlier co-location pattern mining methods,
it has certain limitations when a reference or central fea-
ture is given. Specifically, it does not take into account the
“combined effect” caused by instances of non-overlapping
general features within the proximity of the spatial instance
of the given reference feature. In the case of our application,

(a) (b)

Fig. 2 Intersection of neighboring extended spatial objects: a an inter-
section of buffer regions of feature A, B, and C exists; b an intersection
of buffer regions of feature A, B, and C does not exist [11]

this could avoid identifying how the “combination” of chem-
icals/air pollutants can affect the maternal health, leading to
adverse birth outcomes.

To elaborate this further, consider the example scenario
given in Fig. 2. In this example, there are three spatial fea-
tures A, B and C . A2, B2 and C2 are spatial instances of
those features. Static circular buffer regions surrounding the
spatial instances represent the area affected by them. The
scenario given in Fig. 2a represents an occasion where the
buffer regions of all three instances intersect. However, in the
scenario presented in Fig. 2b, there is no intersection among
the buffer regions of all three instances. Assume that fea-
ture C represents a patient (i.e., reference feature) and both
features A and B represent some adverse environmental con-
ditions (i.e., general features). Although the instances of C
are exposed to adverse conditions B and A in both the sce-
narios, the original grid transactionization GT [11] is capable
of capturing this relationship only when there are points in
the overlaid grid which are overlapped by all three buffer
regions, such as in Fig. 2a. Since there are no common over-
laps in the scenario presented in Fig. 2b, GT is unable to
find transactions which have all A, B, and C features. This
leads to discovering less co-location patterns with multiple
antecedents (i.e., combinations of air pollutants). In order to
address this issue, we propose that when a reference feature
such as C is given, the scenario given in Fig. 2b should pro-
duce valid transactions consisting of all A, B and C features.
To achieve this, we propose anAggregated Grid Transaction-
ization (AGT) method.

Our proposed aggregated grid transactionization proce-
dure is outlined in Algorithm 1. Given a spatial dataset S,
Algorithm 1 initially generates a set of points by overlaying
a grid with a suitable granularity level (e.g. 0.5, 1 or 2km)
over the geographic space covering the instances in S, and
taking the points at the intersection of the grid lines (line
2). Each such point in this grid can be seen as a representa-
tion of a specific part of the corresponding geographic space.
Once the grid points are obtained, then Algorithm 1 defines
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Algorithm 1 GetAGTransactions(S)
1: T = ∅: set of transactions
2: G: set of grid points
3: Build buffer zones around spatial objects of S
4: Impose a grid G over the dataset S
5: for all point g ∈ G do
6: t = get a set of features whose instances contain g
7: T = T ∪ t
8: end for
9: if Reference Feature Exists then
10: for all set Tg ∈ {T Grouped By Reference Feature ID} do
11: CombEffS =min| set Tg f ∈ {Tg Grouped ByGeneral Feature

ID(s)}|
12: CombEffT = CombEffS × Aggregate Tg
13: for all set Tg f ∈ {Tg Grouped By General Feature ID(s)} do
14: RemSet = CombEffS × TOP Tg f
15: T = T \ RemSet
16: end for
17: T = T∪ CombEffT
18: end for
19: end if
20: return T

buffer zones around spatial objects in S. Defining such buffer
zones is specific from problem to problem. We show how to
define suchbuffers in the case of ourmotivating application in
Sect. 5. In the dataset of our motivating application, we have
two types of spatial objects: (1) ABOcases, and (2) Chemical
emission points. The buffers are defined accordingly. In the
next step of the algorithm, the constructed grid is imposed
over the dataset S. Figure 3 illustrates an example dataset
with buffers around spatial point instances where a grid is
laid over it. Similarly, buffers can also be created around
linear and polygonal spatial objects. In a two-dimensional
space, points in the grid can represent a square geographical
area with a length of a regular grid cell. Due to the spheroid
shape of the Earth, a grid used for real-world applications
becomes irregular. However, with a careful choice of a grid
granularity, this fact should not considerably affect the accu-
racy of the results.

A point of two crossing grid lines may intersect with one
or several spatial objects and their buffers. A transaction is
defined as a set of features corresponding to these objects.
Hence, each grid point can be considered as a potential can-
didate to obtain a transaction as shown in the Algorithm 1
(see lines 5–8).

In our experimental setup, we do not face the more chal-
lenging task of mapping continuous variables to multiple
bins, instead we deal with discretizing variables into binary
values. In particular, we consider each spatial object and their
buffers as binary features associated to the grid point with
which they overlap. To elaborate further, each grid point can
only “sense” whether a particular spatial feature exists or not
(i.e., True or False) in its current location. It does not quantify
the size of the impact of that feature. This formalization of
the binarization is based on the target domain. Moreover, it

Fig. 3 Grid Transactionization: A grid with equal size cells is overlaid
on a sample spatial dataset with point feature instances and their buffers.
Three types of spatial instances are shown i.e., ABO cases, Pollutant
1 and Pollutant 2. Buffer regions representing the area of impact of
spatial instances are drawn around them. Grid points, resulting from the
intersection of grid lines, which intersect with those buffers are used to
derive the associated spatial features of the corresponding instances and
create transactions [11]

is required in the next step of mining statistically significant
co-location patterns with Fisher’s exact test.

Although, in the past, clustering-based co-location pattern
mining approaches have been proposed which can handle
continuousdata [21], to our knowledge, no transactionization-
based rules mining approaches have been proposed to find
statistically significant co-location patterns in continuous
data. However, recently, research efforts have been directed
toward finding statistically significant itemsets with G-Test
[22]. If proven effective, the modularity of our AGT-Fisher
method can incorporate such novel methods in future ver-
sions of our approach to directly accommodate continuous
data. Furthermore, the current version of the grid transac-
tionization could also inherently help toward quantifying the
impact of a spatial feature via capturing the spread of it. In
other words, the larger the buffer region or spread of a par-
ticular spatial feature, the more grid points that would turn
out as evidence.

The granularity of the grid should be chosen carefully for
each application, and it may depend on an average size of a
region covered by a spatial object and its buffer. In our previ-
ous work [11], we have conducted extensive experiments
on evaluating two aspects of choosing a grid granularity
level: computational complexity (i.e., the number of trans-
actions) and effectiveness (i.e., the number of discovered
quality rules). In our experiments, we used different grid
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Fig. 4 The transaction
aggregation process within the
AGT method: Once the buffers
are extended and the
transactions are derived as
previously explained,
transactions with common
spatial instances of the reference
feature (i.e., ABO cases) are
identified. Those identified
transactions are aggregated by
taking the union to derive the
aggregated transactions which
represent the combined effect

granularity levels such as 0.5, 1 and 2km. As expected, lower
granularity levels resulted in a higher number of transac-
tions. Tofindmore significant rules, havingmore transactions
could be helpful. However, this can affect the computational
complexity of the algorithm. Hence, selecting a moderate
granularity level was important, especially when dealing
with large spatial regions. Toward this end, we discovered
that rules discovered with both granularity levels 0.5 and
1km have the highest average p value, indicating that rules
detected by them are the most statistically significant ones.
Further analysis [11] revealed that rules detected under 1km
grid granularity were able to capture most of the rules with
lower p value from both the other rule sets detected under 2
and 0.5km grid granularity. This emphasizes that 1km could
be a better grid granularity choice because it captures most
of the rules with lower p values while maintaining an effi-
cient program execution. Our previous work has used the
same dataset for air pollution data. Although the interested
health variables are different in both previous and current
studies, we used the same radius to define the patient mobil-
ity region as well. Given that the majority of the parameter
configurations are similar in both of the applications, we also
define that the grid granularity of our current application as
1km.

Previous GT approach only consists of steps 1–8 in
Algorithm 1. If a reference feature is given (e.g. adverse
birth outcome), in the next part of the algorithm, our AGT
method aggregates the set of obtained transactions to derive
transactions representing the combined effect we previously
explained. To perform that, initially, all the transactions in
T are grouped by the distinct instance IDs of the reference
feature, and the algorithm iterates over the resulting set of
transaction groups (i.e., Tg) to aggregate them (see lines 10–
18). In each iteration, Tg is again grouped by the general
feature IDs other than the reference feature (e.g. chemical1,
chemical2,…) and the minimum size of such a group Tg f
is obtained. This is the maximum number of transactions
(i.e., CombEffS; see line 11 in Algorithm 1) which can be

aggregated to represent the combined effect of all the gen-
eral non-overlapping features which only overlap with the
same reference feature instance. All the features in Tg can
be combined to obtain a single transaction representing the
combined effect. This transaction is addedCombEffS times to
the final transaction set. Finally, CombEffS number of trans-
actions from each of the group Tgf are removed from the
final transaction set to be returned (see lines 13–16 of Algo-
rithm 1).

A visual example of the aggregated grid transactioniza-
tion process is depicted in Fig. 4. Three spatial object types
are shown in Fig. 4: (1) ABO cases, (2) Pollutant 1, and (3)
Pollutant 2. First, Algorithm 1 defines buffer regions around
the spatial objects and overlays a grid covering them. Sec-
ond, from each grid point, features of spatial instances whose
buffer regions overlap with that particular point are derived
as transactions. For instance, in this example, transactions
which only contain the spatial featureABO, transactionswith
the feature ABO and the Pollutant 1 or 2, and transactions
with Pollutant 1 and 2 are derived. Third, in the aggregation
step of the algorithm, it is revealed that two transactions have
a commonABOcase (i.e., pointA andB share the sameABO
source). Hence, we aggregate those two transactions into one
by taking the union to show the combined effect of both the
pollutants to the ABO case.

4.1.2 Fisher’s test to find dependency rules

The usage of traditional association rule mining techniques,
which are primarily based on the support and the confidence
framework, to identify co-location rules, imposes somemajor
limitations as we previously discussed. On the other hand,
association rules can be viewed as dependency rules and the
statistical significance of the dependencymight not be related
to the frequency at all. Hence, to address the limitations in
traditional support-confidence rulemining frameworks, it has
been proposed to adopt an association rule mining approach
based on statistical significance tests. Given a rule, X → A,
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Table 2 2×2 contingency table for the X and A variables in rule X →
A

A ¬A Total

X m (XA) m (X¬A) m (X)

¬X m (¬XA) m (¬X¬A) m (¬X)
Total m (A) m (¬A) m(X)+m(¬X) = n

such tests are designed to test the dependency between X and
A. The null hypothesis in those tests will be “X and A are
independent of each other”. The statistical significance of the
dependency between X and A is tested by computing the p
value, the probability of an observed or stronger dependency
occurring by chance. If this p value is smaller than a given
level of significance α, the null hypothesis can be rejected
and it can be accepted that the dependency between X and
A is statistically significant.

Fisher’s exact test is a statistical significance test which
can assess whether two categorical variables are non-
randomly dependent on each other or not. For instance,
consider the two categorical variables X and A in the rule
X → A. X determineswhether all the items in the antecedent
of the given rule are present in a given transaction, whereas
A determines whether or not the consequent of the rule is
present in a given transaction. This can be represented in a
2×2 contingency table as in Table 2.

Given this table, the hypergeometric probability of obtain-
ing this particular arrangement of values in the observed data
when the null hypothesis is that A and ¬A are equally likely
to be co-occur with X is given in Eq. 3.

p =
( m(X)
m(X A)

)( m(¬X)
m(¬X¬A)

)
( n
m(A)

) (3)

Let NXA be a random variable representing the absolute
frequency of X and A occurring together. The dependency
between X and A is stronger than observed in a given dataset
if NXA > m(X A), where m(X A) is the frequency of event
X A in the observed data. Fisher’s p value can be computed
by accumulating all the probabilities of possible datasets
containing at least m(XA) data instances confirming the co-
occurrence of X A event. Hence, the Fisher’s p value can be
computed using the cumulative hypergeometric distribution
shown in Eq. 4.

pF (X → A) =
J∑

i = 0

( m(X)
m(X A)+i

)( m(¬X)
m(¬X¬A)+i

)
( n
m(A)+i

) (4)

where J = min{m(X¬A),m(¬X A)}, n is the number
of total transactions, and m(.) computes the frequency of
transactions containing the given items. Given a level of

significance (e.g. 0.05) this p value pF could be used to
determine whether a given rule is statistically significant or
not. If the computed p value is lower than the level of sig-
nificance the null hypothesis can be rejected and we can
conclude that the dependency in the rule X → A is sta-
tistically significant. Another important task in statistically
significant rule discovery is to identify redundant rules. A
rule, X → A can be identified as redundant if there exists a
rule Y → A where Y ⊂ X and M(Y → A) is equally good
or better than M(X → A). Here, M is a goodness measure
and in our specific case, can be considered as the Fisher’s p
value.

While Fisher’s exact test can be applied directly to
discover statistically significant dependency rules in transac-
tionized spatial datasets, its application, like other statistical
methods, is severely limited by the complexity of brute-force
computations on large datasets.

To address this, the Kingfisher algorithm [9] implements
efficient branch and bound searchmechanisms on an enumer-
ation tree to detect non-redundant and statistically significant
association rules. In order to render it more efficient, the
branch-and-bound search is supplemented with several prun-
ing properties that significantly expedite the rule discovery
process.

TheKingfisher algorithm is independent of the used good-
ness measure. However, in the original paper, the authors
consider the application of either Fisher’s exact test or χ2.
The study finds that using Fisher’s exact test rather than χ2

produces more reliable rules and leads to a faster search.
Following is a high-level description of how Kingfisher

operates. More details on algorithms, pruning conditions and
lower bounds can be found in [9].

– Prune out all the insignificant individual items / attribute-
value pairs

– Order the rest in ascending order by frequency and add
them to an enumeration tree. Using lower bounds for
Fisher’s p value (as proposed [9]) determine possible
consequents of the rules where antecedents consist of
the significant attributes added earlier to the enumeration
tree.

– Expand attribute sets in the enumeration tree as long as
new non-redundant and significant rules, as defined in
[9], are found.

– Create l-item-sets from (l-1)item-sets.
– For each l-item-set, X, initialize possible conse-
quences in node X in the enumeration tree, given
possible consequences of it’s parent nodes Y ’s, where
X = Y Am; Am ∈ A. Consequent A j is possible in
node X only if it’s possible in all parent nodes’. Ini-
tialize the optimal value for the goodness measure M
(e.g. Fisher’s p value), for each A j ∈ X , using the
values from the parent node.
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– Use lower bounds provided in [9] to determine any
rule XQ → A j can be non-redundant and signifi-
cant.

– If any of the above tested rules are possible, calculate
M(X → A j ) (i.e., Fisher’s p value). If it is suffi-
ciently good (among the best K rules and better than
more general rules with consequent A j ), add it to the
result rule set.

– If minimal rules were found mark all the redundant
consequences as impossible.

– Use the Lapis Philosophorum principle to propagate
consequence information to parent nodes.

Finally, it is worth noting the recent update to the
Kingfisher method [27]. The authors propose a means of
approximating Fishers exact test that can be more efficient.
This newwork dealswith the cost of calculating Fishers exact
p value by offering a bounded trade-off between speed and
accuracy. This approximated test is also applicable in our
framework.

We use a constrained version of this implementation in
the second phase of our AGT-Fisher to successfully detect
non-redundant and statistically significant co-location rules.
We constrained the Kingfisher algorithm to only produce co-
location rules of the form X → A, where A is one of the
desired adverse birth outcomes or groups according to our
motivating application problem. Further information regard-
ing the implementation of the search strategies, proofs, and
mechanisms of the Kingfisher algorithm can be found in [9].

4.2 Discovering spatial contrast and common sets

Some of the statistically significant co-location rules we
detected using the AGT-Fisher approach for various spatial
regions could be used to uniquely characterize and contrast
a particular spatial group from the others. On the other hand,
some co-location rules can be useful to represent patterns
which are consistently statistically significant in many spa-
tial groups or regions. In this context, spatial groups can be
defined as mutually exclusive groups represented by a spe-
cific class and associatedwith a specific geolocation. Preterm
Birth (PTB) cases in Vancouver, Low Birth Weight (LBW)
cases in Edmonton, and Small for Gestational Age (SGA)
cases in Hamilton can be considered as some of the spa-
tial groups from our motivating application. The first type
of rules are useful to discover associations between air pol-
lutants and ABOs, which are specific to a particular spatial
group, leading to take necessary actions to handle the condi-
tion locally. On the other hand, the second type of rules are
useful to recognize co-location patterns between industrial
air pollutants and ABOs, that are common in many spatial
regions, leading to take necessary actions and create policies

to affect many spatial regions or groups. To this end, we ana-
lyze the co-location rules detected previously, and discover
following two novel classes of patterns: (1) Spatial contrast
sets to identify unique patterns which can characterize or
contrast a particular spatial group; and (2) Spatial common
sets to identify patterns which can commonly be seen across
many spatial regions/groups.

We originally outlined the aforementioned problem and
proposed algorithms to mine spatial contrast and common
sets in [1] using a GT-based co-location pattern mining
method. In this work, we apply those proposed algorithms
with AGT-Fisher to discover statistically significant spatial
contrast and common sets.

4.2.1 Spatial contrast sets

As we explained previously, contrast sets can characterize a
particular group of data instances and can be used to contrast
them from the data belonging to other groups. When deal-
ing with spatial data mining problems, identifying contrast
sets for groups in specific spatial regions could be of great
use to understand which unique variables that are associated
with a particular outcome or class in a given spatial region
can contrast the same outcome occurring in other regions.
We propose a novel type of contrast sets called Spatial Con-
trast Sets to achieve this goal. A formal definition for spatial
contrast sets is given in Definition 4.

Definition 4 A spatial contrast set is a conjunction of spa-
tial attribute-value pairs (i.e., Ai = Vi j , . . . , Ak = Vkl
where Ai ∈ A, Ak ∈ A, and in the case of binary variables
Vi j ∈ {0, 1} and Vkl ∈ {0, 1}) defined on mutually exclusive
groups G11, . . . ,G1,p, . . . ,Gq,1, . . . ,Gq,p, where Gx,y =
{Cx , Ly}; Cx is the class membership and Ly is the loca-
tion of the group. Furthermore, q is the number of mutually
exclusive classes and p is the number of mutually exclusive
spatial regions that exist in the given dataset.

Given a statistically significant co-location rule of the form
X → Gx,y , X is a spatial contrast set for the groupGx,y over
any other groups of interest Gp,q ∈ Gs \ {Gx,y}, if Eqs. 5
and 6 hold ∀Gp,q ∈ Gs \ {Gx,y} .

pF (X → Gx,y) ≤ pF (X → Gp,q) (5)

max
p,q

| support(X,Gx,y) − support(X,Gp,q)| ≥ min_dev

(6)

where the pF (X → Gx,y) is the Fisher’s p value for the co-
location pattern and support(X,Gx,y) is the support of X in
the subset of data that belongs to Gx,y . The first constraint
tests whether a candidate contrast set is more statistically
significant in the associated spatial group than in the other
groups. The second constraint tests whether the support of
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a candidate contrast set is sufficiently large in the associated
spatial group than in the other groups. These constraints can
be used to find contrast sets among three different types of
spatial groups as follows:

1. If we fix ∀y = q, we can contrast data which belongs to
the same spatial region but has different classes.

2. If we fix ∀x = p, we can contrast data which has the
same class but belongs to different spatial regions.

3. ∀x and ∀y, we can contrast data which belongs to differ-
ent classes in different spatial regions.

Based on the type of application, these conditions can be used
interchangeably to find interesting spatial contrast sets. Our
proposed algorithm, DiSConS, to mine such spatial contrast
sets is shown in Algorithm 2. DiSConS first discovers statis-
tically significant classification co-location rules of the form
X → Gx,y using the approach we proposed previously for
each spatial region l ∈ L in the dataset (see lines 2–9). Then,
for each group, it searches for contrast sets by imposing the
conditions presented in the Eqs. 5 and 6 on the candidate
co-location patterns found in the previous step.

Algorithm 2 DiSConS

INPUT: Database S, Attributes A, Classes C, Locations L, Level-of-
Significance α, Spatial-Groups Gs

1: CANDS=2DHashTable()
2: for all Location l in L do
3: tl = GetTransactions(Sl , A)
4: SC ARl = AGT-Fisher(tl , C, α)
5: for all rule X → Gci ,l in SC ARl do
6: if CANDS[l][ci ] == ∅
7: CANDS[l][ci ] = HashTable()
8: CANDS[l][ci ][X] = M(X → Gci ,l )
9: end for
10: end for
11: CSET=2DHashTable()
12: for all Gx,y in Gs do
13: CSET [Ly][Cx ] = [∅]
14: for all X in CANDS[Ly][CX ].keys() do
15: if ∀ Gp,q ∈ Gs \ {Gx,y} Equation 5 and 6 is TRUE
16: CSET [Ly][Cx ].append(X)
17: end for
18: end for
RETURN CSET

4.2.2 Spatial common sets

Other than spatial contrast sets, which are helpful in con-
trasting a particular spatial group from the others, sets that
can characterize or represent a set of similar spatial groups
are of equal interest. For example, a particular feature value
combination set X can be consistently significant in all or
a majority of the spatial groups, (PTB, Toronto), (LBW,
Edmonton), (SGA, Calgary), etc. Such patterns could be use-

ful to identify important feature sets which are associated
with many adverse birth outcomes in various spatial regions.
We define such sets as Spatial Common Sets, and the same
formal definition for spatial contrast sets (i.e., Definition 4)
can be used to define spatial common sets as well. Given
a co-location pattern X → Gx,y , a set of spatial groups,
Gs , a MinFrac threshold and a maximum deviation thresh-
old, max − dev, X is a spatial common set if ∃Gs′ ⊂ Gs

where for all Gx,y ∈ Gs′ ,Gp,q ∈ Gs′ the constraints given
in Eqs. 7 and 8 can be satisfied and the |Gs′ | > MinFrac
threshold.

pF (X → Gx,y) − pF (X → Gp,q) ≤ max − pF − di f f

(7)

| support(X,Gx,y) − support(X,Gp,q)| ≤ max − dev

(8)

max-pF-diff is a user-defined threshold to control the varia-
tion of the significance of a common set among the given set
of spatial groups. max-dev is the maximum support differ-
ence, allowed between any two different groups in the given
set of groups. These two constraints make sure that the sta-
tistical significance and the support of the common set does
not vary significantly across spatial groups. Similar to spa-
tial contrast sets, we can find common sets for three different
types of spatial groups:

1. If we fix ∀y = q, we can find patterns common in data
which belongs to the same spatial regions but has differ-
ent classes.

2. If we fix ∀x = p, we can find patterns common in data
which belongs to different spatial regions but has the
same class.

3. If, ∀x and ∀y, we can find patterns common in data which
belongs to different classes in different spatial regions.

Our proposed algorithmDiSComS tomine such spatial com-
mon sets is shown in Algorithm 3. DiSComS first generates
all the classification co-location rules of the form X → Gci ,l
for each location l ∈ L using the co-location pattern mining
approachwepreviously discussed.Antecedents of eachof the
retrieved rules are added to the candidate spatial common set
pool. In the next step, the algorithm performs spatial com-
mon set mining by searching for patterns that have at least
one subset of spatial groups Gs′ where |Gs′ | > MinFrac
and each pair of spatial groups in Gs′ satisfies Eqs. 7 and 8.

5 Experiments

Weconducted experiments in order to find spatial association
patterns between air pollutants and adverse birth cases with
our proposed AGT-Fisher method on 19 real spatial datasets
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Algorithm 3 DiSComS

INPUT:Database D, Attributes A, Classes C, Locations L, Level-of-
Significance α, Spatial-Groups Gs , MinFrac

1: CANDS=2DHashTable()
2: CANDP= ∅
3: for all Location l in L do
4: tl = GetTransactions(Sl , A)
5: SC ARl = AGT-Fisher(tl , C, α)
6: for all rule X → Gci ,l in SC ARl do
7: CANDP = CANDP ∪ X
8: if CANDS[l][ci ] == ∅
9: CANDS[l][ci ] = HashTable()
10: CANDS[l][ci ][X] = M(X → Gci ,l )
11: end for
12: end for
13: CSET=∅
14: for all Candidate Set X in CANDP do
15: GrCnt = |Gs′ ;Gs′ ⊂ Gs ,∀(Gp,q ∈ Gs′,Gx,y ∈ Gs′) Equa-

tion 7 and 8 is TRUE}|
16: if GrCnt

|Gs | ≥ MinFrac
17: CSET = CSET ∪ X
18: end for
RETURN CSET

from Canada. We used publicly available air pollution and
climate datasets from Canadian agencies with CNN datasets
to derive these 19 datasets. These association patterns could
help environmental health scientists and pediatricians to find
answers for our motivating application problem. We also
used the patterns found by AGT-Fisher in the DiSConS and
DiSComS algorithms to find spatial contrast and common
sets. This extends the insights gained from the classical co-
location patterns in our application problem, thus providing
knowledge to users and practitioners.

To evaluate the effectiveness of our proposed aggregated
grid transactionization method, we compared the results
obtained with AGT-Fisher to the results obtained when
the non-aggregated grid transactionization mechanism (i.e.,
GT) [11] is used with Fisher’s test-based dependency rule
search (i.e., GT-Fisher). We evaluated the effectiveness of
using Fisher’s test-based dependency rules by comparing
the results obtained with AGT-Fisher to the results obtained
when AGT is used with χ2-test (AGT-Chi2) instead of
Fisher’s test to find dependency rules. This comparison
allows evaluating the robustness of using Fisher’s test-based
dependency rules. Although in the literature Z-score-based
techniques have been used to find dependency rules to
discover co-location patterns [12], latest empirical and the-
oretical studies have proved that Z-score can overestimate
the p value, and the rules obtained by it could be redundant
[8,9]. These studies suggest that Fisher’s and χ2 tests could
be more robust than other tests to find statistically significant
rules. Hence, we focus on these two tests in our experiments.
In our evaluation, we mainly focused on evaluating the pro-
posedAGT-Fishermethod. Further experiments, evaluations,

and discussions on spatial contrast and common sets can be
found in our previous works [1,2].

5.1 Data and preprocessing

We carried out experiments on 19 real spatial datasets com-
ing from 19 census metropolitan areas (CMAs) in Canada,
to evaluate our approach while answering our motivating
research question: “what are the relationships between air
pollutants released by industries and adverse birth outcome
in Canada?” These datasets were collected by the Canadian
Neonatal Network and are about babies admitted to Neona-
tal Intensive Care Units (NICUs) across 21 major cities in
Canada during the period of 2006–2010. We compiled the
original CNN dataset and obtained 32,836 adverse birth out-
come cases with geolocations. In this dataset, there are three
main ABOs of interest: (1) Preterm birth (PTB); (2) low birth
weight at term (LBW); and (3) Small for Gestational Age
(SGA). To obtain the air pollutant information of the above
CMAs of interest, we used the datasets from the National
Pollutant Release Inventory (NPRI) [7] of Canada. More
specifically, we chose industrial facilities within a 100km
radius of each of the CMA polygons.We only considered the
air pollutant emissions from each of the industrial facilities
within the time period of 2005–2010. This dataset contains
data on estimated yearly releases of 81 chemicals. Finally,
to model the air pollutant dispersion and to extend chemical
release points to regions, we used wind speed and direction
data from Environment Canada. We obtained this data from
47 National Air Pollutant Surveillance stations.

In our application problem, we deal with two types of
point spatial data objects: (1) ABO cases, and (2) chemical
emission points. We extend these two types of point objects
to represent the maternal mobility range of ABO cases and
the dispersion region of the air pollutants emitted more accu-
rately. For ABO cases, we define a circular buffer regionwith
a fixed radius (e.g. 5km) originating from thematernal geolo-
cation to represent the maternal mobility range during the
pregnancy. On the other hand, the distribution of a particular
pollutant in a given region is not uniform. It could depend on
the type of the pollutant, the amount of release, weather con-
ditions (wind, precipitation) in the region, topography, etc.
We considered some of these factors such as pollutant release
amount, toxicity, wind speed and direction when defining the
buffer zones of chemical emission points. However, we do
not intend to reinvent a comprehensive air pollution distribu-
tion model which requires considering many other variables.
Instead, we attempt to capture some important real-world
attributes with available data to improve the overall accuracy
of our findings. Firstly, we use the yearly amount of average
chemicals released by a facility in a given location to deter-
mine their buffer sizes. Based on previous work [11], we
defined the radius of these buffers as the natural logarithm
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Fig. 5 Extending spatial objects: a an example spatial dataset (A—ABO, B and C—Pollutants); b buffer sizes of pollutants vary depending on the
amount of release; c buffer shapes of pollutant emission points change with the wind direction and speed (as indicated by arrows) [11]

function of the amount of chemicals released at the given
location. Then, we morph this circular buffer region into
an elliptical buffer region based on the average wind speed
and direction in that location to more realistically model the
chemical dispersion. In themodel we used, it is assumed that,
although the affected region can be different, the area affected
by the pollutant is the same [11]. We obtained the average
wind speed and direction at chemical emission points from
the Environment Canada dataset. Given that information, the
lengths of the major semi-axis a and minor semi-axis b of
the new elliptical buffer region can be computed using the
following Eq. [11].

a = r + γ |v|, (9)

b = r2

a
, (10)

where r is the radius of the original circle, v is the wind
speed, and γ is the stretching coefficient. In our experiments,
we have used 0.3 as the stretching coefficient. An example
scenario for extending the point objects is given in Fig. 5.

5.2 Results

When AGT-Fisher is applied on the datasets prepared for
each CMA, the identified co-location patterns are of the form
X → ABOi where ABOi ∈ {SGA, PTB, LBW} and X
is a combination of industrial air pollutants. The level-of-
significance we used is 0.05. The summary of our obtained
results is provided in Table 3.

On average, we discovered 730 co-location rules per cen-
sus metropolitan area. The maximum number of co-location
rules obtained for a single CMAwas 6511 for Hamilton. For

Table 3 Co-location rules
found with AGT-Fisher

CMA # of Rules

Calgary 259

Edmonton 376

Fredericton 26

Halifax 345

Hamilton 6511

Kingston 59

London 1108

Moncton 28

Montreal 771

OttawaGatineau 258

Quebec 209

Regina 250

Saint John 433

Saskatoon 156

St. John’s 13

Toronto 2310

Vancouver 283

Victoria 4

Winnipeg 481

the given level of significance defined by the experts (i.e.,
0.05), a minimum number of rules, 4, were obtained for the
CMA of Victoria. It should be noted that with the previous
GT method we were not able to find any strong and statisti-
cally significant co-location patterns for Victoria irrespective
of the fact that it had sufficient cases of adverse birth out-
comes and air pollutant emitting facilities. Interestingly, our
AGT method increased the evidence and support for four
previously insignificant rules, thus increasing their statisti-
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cal significance, leading to their discovery with AGT-Fisher.
We also observed that the average number of rules found by
AGT (i.e., 730) is larger than the average number of rules
obtained with GT method (i.e., 495). This is due to the fact
that, through aggregation, AGT increases the support and
significance of previously insignificant patterns, while the
support or evidence for current rules and patterns remains
the same.

Interestingly, Total Particulate Matter (i.e., TPM - Air-
borne Particulate Matter with an upper size limit of approx-
imately 100 microns) is present in 1797 co-location rules
from all the rules discovered with AGT-Fisher for differ-
ent CMAs associating with one of the three adverse birth
outcomes. Some of the other most common antecedents in
the rules were NO2, CO, Lead, Methanol, Toluene, Xylene,
PM2.5 (Particulate Matter ≤ 2.5 microns) and PM10 (Par-
ticulateMatter≤10microns), Arsenic, 2-Butoxyethanol, and
Isopropanol. All these are well-known air pollutants causing
many adverse health effects including adverse birth outcomes
[4,10].

5.2.1 Spatial contrast sets

Based on the location set L and the class set C , we focus on
two out of three variations of interesting spatial contrast sets
described in Sect. 4.2. Those are as follows.

1. Patterns contrasting ABO groups in the same location
2. Patterns contrasting same ABO in different locations

Let us consider the CMA of Vancouver as an example of the
first type. In the Vancouver data, two contrast sets are found
from the 81 unique antecedents (2.4%) included in statis-
tically significant rules involving PTB as the consequence
(i.e., X → PT B in Vancouver). Those two contrast sets are
{Methanol, Toluene, Isopropanol, COl} and {Toluene, Iso-
propanol, CO}. In other words, when X is one of these two
pollutant sets, X → PTB is more significant than X → SGA
or X → LBW rules. The significant reduction in patterns
using this method can be helpful in efficiently locating spe-
cific associations for a particular adverse outcome in a given
location. For the LBW cases, we found two contrast sets
out of 92 (2.0%) air pollutant itemsets for LBW in Vancou-
ver. Those two are as follows: {Methanol, Toluene NO2}
and {PM, Cadmium}. Similarly, these contrast sets can be
reported for the CMAs with all three ABOs as well.

On the other hand, as an example of the second type,
let us consider the CMA of Vancouver and the class PTB
again. When contrasted with PTB cases in other 18 CMAs
in Canada, we discovered five contrast sets for PTB cases
in Vancouver out of 81 candidates (6.1%). Some of them
are as follows:{Methanol, NO2, Benzene}, {Benzene, CO,
PM10}, and {Benzene, PM2.5, Methanol}. These five sets

can contrast PTB cases in Vancouver from PTB cases in
other CMAs. Similarly, we can detect spatial contrast sets
of type 1 and type 2 for any set of spatial groups of interest
to locate more specific patterns, effectively narrowing down
the hypothesis space.

5.2.2 Spatial common sets

Based on the location set L (i.e., 19 CMAs in Canada) and
the class setC , we focus on a single type of interesting spatial
common sets out of the three described in Sect. 4.2. That is
to find common sets for a specific ABO in different CMAs.
To find such common sets, in addition to the MaxSig thresh-
old, we use a MinFrac threshold of 0.3 (30%) to specify
the minimum number of spatial groups a particular com-
mon set should exist in. For instance, let us consider the
task of discovering common sets for PTB cases in different
CMAs. We fond 42 spatial common sets which are asso-
ciated with PTB cases in at least 30% of the CMAs. One
such significant spatial common set we discovered is that
{Lead (and its compounds)} is associated with PTB in 12 of
19 CMAs (63%) such as Toronto, Vancouver, Ottawa, Que-
bec, Montreal, Edmonton, etc. Other than that, in these 42
sets, interesting spatial common sets such as {PM10, CO},
{TPM, CO}, PM2.5, Toluene, Xylene and {Arsenic} exist.
Weobserved that these common sets are also commonly asso-
ciated with other ABO types as well.

5.3 Robustness evaluation of AGT-Fisher

There are many measures introduced in the association rule
mining literature to quantify the “interestingness” or signif-
icance of a pattern and filter useful rules based on that [24].
These measures can be used to filter out interesting patterns
andmeasure the quality of the filtered out patterns, thus effec-
tively evaluating the performance of the pattern discovery
method. The majority of these measures are based on the
frequency of the items in the database (e.g. support). In our
work, we use Fisher’s p value to filter out the interesting
patterns and evaluate the robustness of AGT-Fisher using a
measure known as lift, as shown in Eq. 11. The lift is an
interestingness measure used in the association rule mining
community which can measure the dependency between the
antecedent and the consequent of a pattern. If the lift is 1, it
means that the antecedent and the consequent are indepen-
dent of each other, whereas if it is larger than 1, they are
dependent on each other. In other words, a higher depen-
dency means better positive statistical dependency between
the antecedent and the consequent.

The lift measure aligns well with our goal to find co-
location rules in which the consequents and the antecedents
are strongly dependent on each other. While the p value can
measure whether a rule is statistically significant or not based
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Fig. 6 Average lift of the co-location patterns obtained by AGT-Fisher
and GT-Fisher in CNN datasets from 19 CMAs in Canada

on apredefined level of significance, fromadifferent perspec-
tive, the lift can help to evaluate the statistical significance
of the filtered rules by quantifying the statistical dependency
between their antecedents and the consequents. Moreover,
previous statistically significant association rule searchmeth-
ods have also used p values to filter the rules, and lift to
evaluate the effectiveness of the proposed approach [9,23].
Selecting an evaluation measure and a filtering criterion is
primarily a domain specific problem. In our application,
using p value-based rule filtering and lift-based evaluation
was also well supported in discussions with our interdisci-
plinary collaborators.

lift(X → A) = support(X ∪ A)
support(X) × support(A)

(11)

WhenweappliedAGT-Fisher andGT-Fisher on the spatial
datasets from 19 CMAs, the average lift of the rules found
from each method is given in Fig. 6. It is clear that in all 19
datasets, AGT-Fisher achieves a higher lift than GT-Fisher,
indicating the aggregated grid transactionization can find co-
location patterns which are more statistically dependent. In
all the datasets, both the approaches achieved an average lift
greater than 1.

Another major aspect in the robustness evaluation is that
the quality of the rules found should be held in unseen
datasets as well. This quality may depend on the type of
significance test being used. Hence, we performed exper-
iments using Fisher’s test and χ2 test to find dependency
rules with the AGT technique to evaluate the robustness of
using Fisher’s test. In particular, we performed a fivefold
cross-validation test, as proposed in previous studies [8,9].
Specifically, each of the 19 spatial datasets is randomized and
divided into five partitions. Fivefold cross-validation is an

Fig. 7 Average RMSElift of the fivefold cross-validation comparison
of AGT-Fisher and AGT-Chi2 in CNN datasets from 19 CMAs in
Canada

iterative process in which each partition is treated as the test
set in exactly one iteration, and all other partitions aremerged
into a single training set for that iteration. Subsequently,
AGT-Fisher and AGT-Chi2 are applied on this training data
to obtain the best set of co-location rules. Finally, the lift
of these rules is calculated in the testing data and the root
mean squared error of the lift was obtained (RMSElift). We
calculated this RMSElift as follows. First, the rules with the
highest statistical significance are obtained from the training
data. Then, their lift values are obtained for the training data
and the test data. The RMSE is calculated for the difference
of these train and test lift values for all of the statistically
significant rules obtained from the training data. The goal
behind this approach is to evaluate whether the statistical
dependency of the significant rules obtained from the train-
ing data would hold over future / unseen data (i.e., test data).
We averaged the obtained RMSElift to obtain the error in
the cross-validation experiment. This average RMSElift is
reported for all 19 spatial datasets as shown in Fig. 7. These
results indicate that AGT-Fisher maintains a low or similar
average RMSElift in all 19 datasets compared to the AGT-
Chi2 approach. This indicates that AGT-Fisher is more stable
and is capable of discovering rules which can also be strong
over the unseen data.

Efficiency is another important aspect to consider. All the
algorithms we experimented had execution times below five
seconds with the CNN datasets. However, previous studies
have shown that when more demanding datasets are used,
Fisher’s test is muchmore efficient than the χ2 test in finding
dependency rules. Our results and these results from previ-
ous studies can prove that AGT-Fisher can be a more robust
algorithm than other approaches by efficiently obtaining a set
of co-location rules with better statistical dependency which
will also hold in unseen data.
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Fig. 8 Relationship of number of rules with higher number of antecedents: a AGT-Fisher versus NGT-Fisher; b AGT-Chi2 versus NGT-Chi2

One of the main objective of the proposed AGT transac-
tionization method is to find associations between combina-
tions of chemicals and the adverse birth outcomes. Hence,
we evaluated the capability of AGT to find co-location pat-
terns withmore than one chemicals. As depicted in Fig. 8, the
AGTmethod clearly outperformsNGT by findingmore rules
with a larger combination of chemicals. This is an indication
that AGT is successful in detecting the “combined effect” of
non-overlapping air pollution buffer regions ignored by the
NGT.

5.4 Empirical evidence based evaluation

Associations between chemical exposure and adverse health
effects have been a well-studied area in the environmen-
tal health and toxicology literature. To validate the quality
and the impact of the associations we find between air
pollutants and ABOs, we utilize these known associations
from the literature. Comparative Toxicogenomics Database
(CTD)2 provides a comprehensive collection of manually
curated known associations between chemicals and disease
or adverse health conditions. We use these CTD associations
to validate our methodology.

We considered 81 chemicals (i.e., air pollutants) from the
NPRI database in our study. We queried these chemicals for
known associations with adverse birth conditions in CTD.
Out of the 81 chemicals, CTD has recorded 43 chemicals
as known chemicals which form associations with adverse
birth outcomes such as premature birth and low birth weight.
The co-location rules we found, which are of the form X→A
(i.e., X is a set of chemicals and A is an ABO), have 62
unique chemicals out of 81we considered fromNPRI in their
antecedents associating with adverse birth outcomes such as
low birth weight and premature birth. Our rules only missed
9 chemicals (i.e., we missed 21% of the 43 chemicals CTD
recorded to have known chemical-abo associations) from the

2 www.ctdbase.org.

known associations from CTD. This could be due to a lim-
itation in the dataset or other geographical factors. On the
other hand, in the rules we found, there are 28 new chem-
icals indicating a potential association with ABOs which
CTD does not indicate any known associations. Hence, from
the co-location rules, we found that 54% of the chemicals
conform to the known knowledge, whereas the remaining
45% can be considered as potential new knowledge which
could be used to build research hypotheses to perform fur-
ther research. We emphasize that our contribution is not only
that we find these new potential associations of 28 chemicals
with adverse birth cases, but we also find many mixtures of
chemicals which could be associated with ABOs from our
co-location rules with antecedents consisting of more than
one item. Information on such chemical mixtures are not
common in public databases such as CTD. Hence, the 45%
of the chemicals missing from the CTD database could also
be chemicals, of which the toxicity is activated when it is
mixed or co-emitted with other known harmful chemicals.
Identifying the toxicological impact of chemical mixtures
on health is a major challenge that is receiving considerable
attention in recent times. Manual curation of such combina-
tions could be an arduous, and a sometimes impossible task.
However, with the help of our co-location pattern mining
algorithm, this task could be accomplished and the results
might be used to assist researchers in the environmental
health/toxicogenomics domains to narrowdown the hypothe-
ses space.

We also queried the chemicals from the rules discovered
using the alternate methods (i.e., NGT-Fisher, NGT-Chi2,
and AGT-Chi2). The results indicate that the difference
between the outcome is insignificantwhen comparedwith the
outcome of AGT-Fisher. This is expected as CTD primarily
focuses on the hand curated relationships between individ-
ual chemicals and ABOs. Hence, we aggregated all the rules
we found (indicating any type of ABO) and obtained the set
of chemicals from each method which indicates any rela-
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tionship to ABOs. This set of chemicals is then used against
the CTD database for comparison. This, however, effectively
discards all the information on the combination of chem-
icals. Hence, AGT-Fisher shows a similar behavior to the
other methods. However, evaluation with the ground truth
has provided us enough confidence on our approach in find-
ing relationships between individual chemicals and ABOs
so that we can use the multiple combinations of chemicals—
which we discover more than others (as shown in Fig. 8)—to
build new hypotheses.

6 Conclusion

In this work, we proposed a new co-location pattern mining
technique, AGT-Fisher, to robustly find statistically signifi-
cant co-location patterns. In AGT-Fisher, we addressed two
major challenges in finding co-location patterns. First, we
addressed the challenge of effectively transforming a spatial
dataset into a transaction dataset by proposing an improved
transactionizationmethod calledAGT. Second,we addressed
the challenge of robustly finding statistically significant
co-location patterns by using constrained versions of exist-
ing statistical dependency rule searching techniques based
on Fisher’s test to analyze the transactionized dataset. We
extended the usage of AGT-Fisher by using it to find spatial
contrast sets, a special type of co-location patterns which can
discriminate one spatial group from another, and spatial com-
mon sets, another special type of co-location patterns which
are commonly significant in many spatial regions. Our work
is motivated by an important research problem in environ-
mental health to find spatial associations between industrial
air pollutants and adverse birth outcomes. However, the
applicability of our methods extends to solve problems in
many other domains including business, ecology, and trans-
portation. To address our current application problem and to
evaluate our approach, we performed experiments by apply-
ing the proposedAGT-Fisher on 19 real spatial datasets about
adverse birth cases and air pollution in various spatial regions
of Canada. In those experiments, we discovered a number
of potential and interesting air pollutant(s) associations with
adverse birth outcomes. The results we obtained with spatial
contrast sets and common sets were able to provide insights
beyond the traditional co-location patterns to help practition-
ers and knowledge users to further understand the application
problem. Especially, we found that air pollutants such as
NO2, PM, CO and heavy metals such as Lead, Cadmium,
andArsenic are commonly associated with adverse birth out-
comes in many spatial regions. We evaluated these findings
with the known associations found inComparative Toxicoge-
nomics Database and the evidence from the literature. These
evaluations suggest that majority of our findings conform
to the existing knowledge while the others, especially the

combinations of chemicals associated with adverse birth out-
comes, could behelpful in formingnewhypotheses leading to
new knowledge. Our experiments further indicate that AGT
can achieve better statistically dependent co-location patterns
by having a higher lift in all the datasets we tested. The five-
fold cross-validation experiment confirms that by having a
better RMSElift, AGT-Fisher can discover rules which are
similarly strong in unseen datasets as well. This proves that
our approach is more robust than the other approaches.

For future research, we are currently working on extend-
ing our technique to work with uncertain or probabilistic
datasets. In addition to that, if the necessary data are available,
using the temporal factor could reveal interesting association
patterns based on the seasonality. We are currently work-
ing on extending our co-location pattern mining methods to
address such complex scenarios as well.
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