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Abstract—The class imbalance problem is a pervasive issue in
many real-world domains. Oversampling methods that inflate
the rare class by generating synthetic data are amongst the
most popular techniques for resolving class imbalance. However,
they concentrate on the characteristics of the minority class
and use them to guide the oversampling process. By completely
overlooking the majority class, they lose a global view on the
classification problem and, while alleviating the class imbalance,
may negatively impact learnability by generating borderline or
overlapping instances. This becomes even more critical when
facing extreme class imbalance, where the minority class is
strongly underrepresented and on its own does not contain
enough information to conduct the oversampling process. We
propose a novel method for synthetic oversampling that uses
the rich information inherent in the majority class to synthesize
minority class data. This is done by generating synthetic data
that is at the same Mahalanbois distance from the majority class
as the known minority instances. We evaluate over 26 benchmark
datasets, and show that our method offers a distinct performance
improvement over the existing state-of-the-art in oversampling
techniques.

Keywords-Class imbalance, synthetic oversampling, classifica-
tion

I. INTRODUCTION

Rare events are often associated with high risks and little
knowledge regarding the source, or the form that they will
eventually take. Exemplary domains include fault detection
[25], disease classification [20], software failures [8] and
customer churn prediction [9]. In these domains and many
others, there is one class that has a significantly larger prior
probability than the other; this is known as the class imbalance
problem. Such situations are known to pose challenging clas-
sification problems that can lead to a significant degradation
in the performance of binary classifiers [5], [15].

Given the frequency and importance of the class imbalance
problem in real-world domains, many approaches to increasing
the robustness of binary classifiers to imbalance have been

studied and proposed. Synthetic oversampling has received
a large portion of the research focus in recent years; it
has been shown to be effective in mitigating the impact of
class imbalance [4], [10], [11] when the imbalance ratios
are not extreme (i.e., typically under 1:100). However, many
real-life applications exhibit extreme imbalance, which can
be both relative, where ratios are very high (over 1:1000),
and/or absolute, when the number of minority class instances
available for training are very low. For example, in the domain
of gamma-ray anomaly detection [21], the datasets for learning
have approximately 25,000 benign signatures, but less than
10 anomalies. In fraud detection domains, fraudulent data is
typically very rare; Wei et. al [26] note that for online banking
fraud detection, there are only 5 fraudulent examples in a
dataset of over 300,000 transactions. The domain of software
defect prediction can exhibit extreme absolute imbalance;
a publicly available dataset by NASA has over 1500 non-
defective samples, but only 16 defective samples [22]. In
such cases, the few instances that we have are usually too
important to be ignored, and they should be utilized in the most
effective manner for classifier induction. Unfortunately, given
their scarcity, there is not enough information to use them as a
catalyst for synthesizing additional training instances; existing
methods that do, such as SMOTE, can harm performance in
these situations [17].

In this work, we ask the question: is there an effective
methodology for synthetic oversampling the minority class
in domains that exhibit extreme imbalance? Our research
demonstrates that the answer is yes, and the key to it is to
utilize the distributional information in the majority class for
generating synthetic minority data. While some variants of
SMOTE utilize the majority class training instances to guide
the generative process for post-hoc cleaning, such as Border-
line SMOTE [14] or SMOTE with the removal of Tomek links
and nearest neighbour editing [23], the oversampling process is
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Fig. 1. Illustration of the generation of synthetic samples within the convex-hull using SMOTE (left), and along the density contours of the majority class
using SWIM (Sampling WIth the Majority), the proposed majority-focused approach (right).

still primarily dependent on the minority class data. In extreme
imbalance, the few samples of the minority class instances
offer minimal distributional information, and what they offer
may be misleading due to rarity, sparsity and noise. This can
cause traditional oversampling methods to generate erroneous
synthetic training instances that may harm the classifier.

We propose a majority-focused strategy to synthetically
inflate the rare class under the moniker of SWIM (Sampling
WIth the Majority). SWIM is intuitive, easy to implement,
and efficient over domains exhibiting extreme imbalance. It
is founded on the intuition that a) the synthetic minority
instances should be generated in regions of the data space that
have similar densities with respect to the majority class as the
real minority instances, and b) that they should be generated in
regions that neighbour the real minority instances. Specifically,
instead of asking: given the minority class data, where should
new minority class instances be generated, we ask: given the
majority class data and the relative position of the minority
class instances, where should new minority class instances
be generated. Our method does not require any knowledge
regarding the distribution of the minority class; the existing
minority samples are simply indicators of the position of the
minority population with respect to the majority class. Thus,
we constrain the generation of synthetic minority samples by
directing the generation in regions strategically positioned with
respect to the majority class.

In general terms, this can be summarized with the following
steps:

1) Estimate the PDF p̂+() of the large majority class X+

2) Synthesize a minority instances x′− from a random
minority instance x− as x′− = x−+r, such that r shifts
x− to a neighbouring region of the data space where
p̂+(x′−) = p̂+(x−).

This is to say that x′− and x− are in neighbouring regions of
the data space with the same probability densities with respect
to the majority class. This is contrasted with SMOTE [11]
and its derivatives [13], the standard methods for synthetic
minority oversampling, in Fig. 1 for a generic case.

We formalize SWIM using a Mahalanobis distance (MD)-
based approach [19]. The MD of each given minority class

instance corresponds with a hyperelliptical density contour
around the majority class, and we inflate the minority class
by generating synthetic samples along these contours. This
serves to overcome two well-known limitations of SMOTE-
based methods by generation of synthetic samples outside of
the convex-hull formed by the minority class instances, and
prevents them from being generated in higher probability areas
of the majority class. Using the MD to model the majority
class involves the implicit assumption about the Gaussian
nature of the data. While in practice data will not always
strictly satisfy the Gaussian assumption, the MD has been
shown to work well on a wide variety of outlier detection and
classification problems in data mining and machine learning.
This, along with our results, suggests that the method is robust
in spite of its underlying assumption1.

We empirically validate SWIM with respect to SMOTE,
and its derivatives that aim to remove and/or avoid generating
harmful synthetic instances, on 26 benchmark datasets that
have been selected to exhibit both extreme relative (high
imbalance ratios) and absolute (small number of minority
training samples) imbalance. Our results show that our method
has a large advantage on domains with extreme absolute and
relative imbalance. In this space, it outperforms the existing
state-of-the-art methods for synthetic oversampling.

We summarize the contributions of our paper as follows:

• We emphasize that taking the distribution of the majority
class instances into account may significantly benefit the
oversampling process.

• We develop a Mahalanobis distance-based implemen-
tation of SWIM for minority synthetic oversampling
that explicitly uses the majority class in the generative
process.

• We demonstrate that using the proposed approach en-
ables the generation of beneficial synthetic instances for
extreme levels of imbalance.

• We compare the performance of SWIM to the state-of-
the-art methods in synthetic minority oversampling on
highly imbalanced benchmark datasets.

1We discuss this and methods to manage complex non-Gaussian data in
the Section V-B.
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II. RELATED WORK

In this work, we focus on supervised binary classification
problems over highly imbalanced domains. The process of
binary classification utilizes a training set Xn×m ∈ R and
corresponding labels Yn ∈ {0, 1}. The objective is to induce a
function, f(xi)→ yi, that maps the training instances xi ∈ X
to their corresponding class labels yi ∈ Y . This problem is
made more challenging in imbalanced domains where there
are far few examples of the minority class Xmin, y = 1 than
in the majority class, Xmaj y = 0. This has been shown to
cause the induced classifier f(·) to become biased towards the
larger class, thus leading to poor performance [15].

Two paradigms exist for dealing with imbalanced classifica-
tion problems. When the minority class is rare or unavailable,
one-class classification is applied. However, binary learning
quickly becomes advantageous as the number of instances
increases [5]. This has motivated research into extending the
life span of binary classifiers over increasingly imbalanced
domains using both sampling and cost-based approaches [12],
[24]. In this paper, we focus on sampling approaches.

The most basic re-sampling strategies are Random Under-
Sampling (RUS), and Random OverSampling (ROS). These
balance class distributions in the training set by randomly
discarding instances of the majority class, and/or randomly
replicating instances of the minority class. These strategies,
however, suffer from the loss of information and the risk of
overfitting, respectively.

To avoid these shortcomings, and to expand the regions of
the data space occupied by the minority training instances,
the Synthetic Minority Oversampling TEchnique was pro-
posed (SMOTE) [11]. It produces a balanced training set by
interpolating synthetic instances between nearest neighbours
in the set of minority class instances in the training set.
This procedure relies entirely on the minority class training
instances; the outcome is that the resulting synthetic data is
situated within the convex-hull formed by the minority class.
Furthermore, by ignoring the majority instances, SMOTE may
actually increase overlapping between classes. Thus, in cases
of extreme imbalance, the synthesized set has the risk of
harming the performance.

The success of SMOTE, along with the recognition of its
limitations, has spawned a large number of variants [13].
The main focus of these has been to delete (clean) instances
generated by SMOTE that are deemed to be harmful to the
induction of a classifier, and direct the spread of the synthetic
instances into regions of the data space that will correct the
classification bias. These more recent methods have incorpo-
rated the majority class by using the Euclidean distances to
the k-nearest neighbours and/or calculating the density/class
distribution in the local neighbourhood. This relegates the
majority class information to a post-hoc cleaning process [3],
such as the removal of Tomek links and nearest neighbour
editing [23], or to guiding the generation process based on
a local perspective of the data around the minority class
instances, rather than a global perspective. This is the case

Fig. 2. Illustration of the Mahalanobis distance between two points A and B
from the mean. Both points have the same Mahalanobis distance, but different
Euclidean distances from the mean.

with Adaptive Synthetic Oversampling (ADASYN), border-
line SMOTE, and Majority Weighted Minority Oversampling
Technique [2], [14], [16]; the only majority class information
used is that which is present within the local neighbourhood of
the generated sample. In these methods, the distribution of the
minority class remains the key component of the generative
process. Consequently, an insufficient number of minority
samples will negatively impact the generative process.

In addition to the SMOTE-based methods that rely on
the Euclidean distance to the k-nearest neighbours, Abdi et.
al [1] proposed the use of the MD for synthetic minority
oversampling. The fundamental distinction with our method is
that they do not utilize the majority class information. Rather,
they generate synthetic samples using the MD calculated on
the small, and potentially error prone, minority class training
set; new samples are generated at the same MD as a reference
minority point from the minority class mean. Therefore, this
method is susceptible to failure due to the limitations of the
dearth of minority class data in the training set, as the esti-
mated mean and covariance matrix would be unrepresentative
of the latent minority distribution.

At their core, all current state-of-the-art oversampling meth-
ods still rely on the representativeness of the minority class
instances to produce a beneficial synthetic set. Alternatively,
our method does not make any assumptions regarding what the
minority class represents, except where existing samples are
positioned with respect to the majority class. The information
for generating synthetic samples comes from the populous ma-
jority class, and thus, our method is effective for classification
problems in which the minority class is rare, a situation that
is both common and of great importance [17].

III. METHOD

In this section, we describe and discuss our proposed imple-
mentation of SWIM. We begin by providing a brief overview
of the Mahalanobis distance, followed by a description of our
algorithm for oversampling, as well as a discussion on the
efficacy of our method.

A. Mahanobis Distances

The MD provides a calculation of the distance between the
mean of the distribution, and a query point, that accounts for
the density along the path. Thus, two points have the same MD
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from the mean if they lie on the same hyperelliptical density
contour. This is contrasted with Euclidean distance in Fig. 2.

The calculation of the MD involves knowing the mean µ
and the covariance matrix Σ of the distribution. In practice,
however, the parameters are estimated as µ and Σ on a sample
population. Larger, more representative sets, such as is typical
in the majority class training data, produce better estimates of
these parameters. Once the parameters are estimated, the MD
of an instance x from the mean µ is calculated as:

MD(x, µ) = (x− µ)T Σ
−1

(x− µ)

B. Algorithm

The algorithm is based on the intuition that Synthetic mi-
nority instances should be generated in similar density regions
(contours) relative to the majority class as the real minority
instances. This is because, given only a handful of minority
class instances, there is not going to be enough distributional
information to determine where synthetic instances should be
generated. However, if we look at how this data is distributed
in relation to the vast majority class, synthetic data can be
generated such that it is similarly distributed with respect to
the majority class. In the absence of more minority class data,
this relative distributional information is the most beneficial
knowledge we have for generating synthetic data.

We now explicitly detail the various steps for oversampling
with SWIM. Assuming the parameters of the MD have been
estimated on the majority class A, the steps to generate a new
sample, snew, using a parent sample, x, of the minority class,
B, is outlined below:

Step 1 Centre the majority and minority classes: Centring
the data simplifies the calculation of the distances;
this will be evident in the fourth step, when we
generate a new sample point. Let µa be the feature
mean vector of the majority class A. We centre the
majority class to have ~0 mean, and then centre the
minority class with mean vector of the majority class:

Ac = A− µa

Bc = B − µa

(1)

Step 2 Whiten the minority class: Let Σ denote the covari-
ance matrix of Ac, and Σ−1 denote its inverse. Σ−

1
2

is the square root of Σ−1. We whiten the centred
minority class as:

Bw = BcΣ
− 1

2 (2)

The MD is equivalent to the Euclidean distance
in the whitenend space of a distribution. Thus, by
whitening, we simplify the calculations for generat-
ing synthetic data (as will be evident in Step 4).

Step 3 Find feature bounds: These are used to bound the
spread of the synthetic samples. For each feature f
in Bw, we find its mean µf and standard deviation
σf . We then calculate an upper and lower bound on

its value, uf and lf , as follows:

uf = µf + ασf

lf = µf − ασf
(3)

α ∈ R controls the number of standard deviations
we want the bounds to be. Therefore, larger α
values cause a greater amount of spread along the
corresponding density contour.

Step 4 Generate new samples: For each feature f , we
generate a random number between uf and lf . Thus,
we obtain a sample point, s, where each feature sf is
lf ≤ sf ≤ uf . This process can be repeated t times,
where t is the desired number of artificial instances
to be generated based on the reference datum x. For
each minority reference datum in the whitened space,
we generate samples that are at the same Euclidean
distance from the mean of the majority class2. Since
we centred the data, this implies that the new sample
will have the same Euclidean norm as the minority
datum. Therefore, we transform s as:

snorm = s
‖x‖2
‖s‖2

(4)

Step 5 Scale sample back to original space: snorm exists
in the whitened space of the minority class, with the
same Euclidean distance from the mean vector ~0 as
x in the whitened space. We now have to transform
the point back into the original space. This is done
as:

snew = (Σ−
1
2 )−1snorm, (5)

where the synthetic sample snew will be in the same density
contour as its parent minority instances x.

As the method involves the computation of matrix inverses,
if there are linearly dependent columns, the calculations will
fail. To handle this case, we check the rank r of the majority
class A. If r < d, where d is the dimensionality of A, then we
calculate the QR-decomposition of A. The non-zero values of
the resulting upper-triangular matrix correspond to the linearly
independent columns of A. Using the steps outlined above,
we can then oversample and classify the data in the sub-space
defined by the features represented by these columns.

C. SWIM versus SMOTE

We now examine the generative processes of SWIM and
the SMOTE-family3 of algorithms in extreme imbalance.
Specifically, we examine where artificial data is synthesized
by each method; in order for a robust binary classifier to be
induced, data must be synthesized in areas corresponding with
the real minority class distribution.

The key differences between the methods are that SMOTE
and all its variants rely on the nearest neighbours in the

2This takes advantage of the whitening done in Step 2, as instead of dealing
with the Mahalanobis distance, we can use the Euclidean distance.

3While our analysis in this section is focused on SMOTE, the insights apply
to all neighourhood-based sampling procedures. These insights are empirically
validated in the experiments conducted in this paper.
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minority class to determine where the synthetic instances
should be generated, whereas SWIM uses the distribution of
the majority class and the relative positions of the minority
instances. The results of these fundamental differences can be
striking in cases of extreme imbalance. For this demonstration,
we created a complex, highly imbalanced artificial dataset with
three minority training instances and 300 majority training
instances. In order to produce representative results, we created
a balanced test set with 300 instances in each class. The
demonstration is presented in Figure 3; the figure shows
the results of synthetic oversampling using SWIM (top left),
and SMOTE (top right) on an extremely imbalanced toy
domain. For completeness, we also show the result of the
binary classifier without synthetic oversampling (bottom). The
majority class training instances are shown as red squares with
black outlines, and the corresponding test instances are shown
as red circles. The minority class training instances are shown
as blue squares with white outlines, and the corresponding
test instances are shown as blue circles. In the top two plots
where synthetic oversampling was applied prior to training
the binary classifier, the synthetic instances are shown as blue
squares with black outlines.

The instances synthesized by SMOTE are limited to a small
area formed by the convex-hull of the minority training data.
Alternatively, using SWIM causes the synthetic instances to be
spread along the density contours corresponding to the MDs
of the minority data from the majority class. The result can
be seen in terms of the decisions surfaces (represented by the
shading in the plots) induced by the three classifiers. Using
the information in the majority class, our method produces
samples that lead to a more representative decision surface,
and thus, better classification performance.

Each of the visualized binary support vector classifiers
were tested on 300 minority and majority class instances.
Because this is an artificial classification problem that has
been crafted to demonstrate the competing methods, we have
access to a balanced test set. Given the balanced test set,
we can confidently compare the methods using accuracy. The
baseline classifier achieved a low accuracy of 0.69. Adding the
instances generated by SMOTE to the training set improved
the performance to 0.86. Alternatively, adding the instances
generated via SWIM improved the accuracy to 0.95.

IV. EXPERIMENTAL FRAMEWORK

To evaluate the proposed system, we compare the perfor-
mance of binary classifiers induced on data re-sampled with
state-of-the-art re-sampling methods and SWIM.

Data sets: Table I lists the 26 benchmark datasets4 utilized
in our evaluation. These were selected because they have high
imbalance ratios (> 1 : 100) at extreme absolute imbalance
levels (less than 10 minority training samples), as well as
a wide variety of dimensionalities and sizes so as to reflect
the real-world. We randomly down-sample the minority class

4http://archive.ics.uci.edu/ml/index.php
http://homepage.tudelft.nl/n9d04/occ/index.html

in the training sets to simulate different levels of extreme
imbalance. Specifically, we test at three different levels, with
minority training set sizes of 4, 7 and 10.

Classification: Our experiments involve binary classifiers
and sampling methods. The binary classifiers used are Naı̈ve
Bayes (NB), Nearest Neighbour (IBK), Decision Trees (J48),
Multilayer Perception (MLP) and Support Vector Machines
(SVM). With respect to the sampling methods, we employ
random oversampling and undersampling, SMOTE [11] (K =
3, 5, 7), Borderline SMOTE (B1,B2) [14], SMOTE with one-
sided selection with Tomek links [18] and adaptive synthetic
sampling [16]. We use the sklearn package in Python for our
experiments; all classifiers are run with their default settings.
Data is normalized before training and testing.

Evaluation: The geometric mean of the true positive (ma-
jority class) and true negative (minority class) rate is used
to evaluate classifier performance [18]. It is given by g −
mean =

√
TPR× TNR, where TPR is the true positive

rate, and TNR is the true negative rate. Because each class
is treated separately, it is immune to imbalance. Evaluation
is done by randomly dividing the data into equal training
and testing portions, and then randomly removing minority
class training instances to achieve the desired level of absolute
imbalance. This process is randomly repeated 30 times to
ensure accurate estimations of the g-mean given the potential
for large variances caused by the small minority training sets.

V. RESULTS

We begin by examining the primary question we con-
sider in this paper: at extreme imbalance, how does our
proposed method, SWIM, compare to existing state-of-the
art re-sampling methods. Table II lists the g-means obtained
over the various datasets by our method, SWIM, and the
best performing re-sampling method (ALT), and the baseline
classifier (Baseline), when no sampling is performed. We are
interested in comparing SWIM to best alternative re-sampling
method, and thus report the average g-mean for the best
performing combination of classifier and SWIM, along with
the average g-means of the best performing combination of
classifier and alternative re-sampling.

These results demonstrate the superiority of SWIM over the
best alternatives for extreme imbalance. In particular, SWIM
outperforms the competing methods on 23 of the 26 datasets.

In addition, we evaluate the cases of imbalance involv-
ing 7 and 10 minority training instances; while they repre-
sent extreme absolute imbalance over all datasets, they have
marginally less extreme imbalance ratios. Specifically, less
than half the datasets have imbalance ratios greater than 1:100
at these minority training set sizes.

Figure 4 depicts the relative performances over the three size
categories. We plot the difference in performance (g-mean)
between SWIM and the best alternative re-sampling method.
The datasets are sorted in order of an increasing performance
advantage for SWIM at size 4 in the training set. For each
size, we make the following observations:
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Fig. 3. Illustration of classifiers produced by using SWIM (top left) and SMOTE (top right). For reference, the bottom plot shows the binary support vector
classifier induced over the imbalanced training set

• Size 10: Alternative sampling methods have a higher g-
mean on 14 out of 26 datasets. However, most of the
relative advantages are small; 10 of these are less than
0.05.

• Size 7: At this size, SWIM gains a significant advantage,
as it is superior on 17 out of 26 datasets. Five of these
offer improvements that are greater than 0.05.

• Size 4: At this extreme case, SWIM is very prominent.
In particular, it outperforms alternatives on 23 of the 26
datasets. On 6 datasets, the difference in performance is
over 0.1, whereas its over 0.05 on 14 datasets.

A. Statistical Significance

We use the Bayesian signed test [6] to evaluate the results
presented in the previous section. The Bayesian signed test is
alternative to the frequentist sign and signed-rank test, which is
based on the Dirichlet process [7]. It enables the comparison of
two classification methods over multiple datasets. In this case,
we are comparing the use of SWIM for synthetic oversampling
to the best alternative method over each of the datasets
reported in Table I. The comparison is performed for training
sets with 10, 7 and 4 minority instances.

Using the Bayesian method enables us to ask questions
about posterior probabilities, which we cannot answer using
null hypothesis tests. These include questions such as: is
method A better than B? Based on the experiments, how
probable is that A is better? How high is the probability that
A is better by more than 1%? Indeed, these are the questions

that we are actually interested in when comparing classifiers
in data mining.

Based on the assumption of the Dirichlet process, the
posterior probability for the Bayesian signed test is calculated
as a mixture of Diracs deltas centred on the observation.

Figure 5 presents the three posterior plots of the Bayesian
signed test for the comparison of SWIM to the best alternative
method. The posteriors are calculated with the prior parameter
of the Dirichlet as s = 0.5 and z0 = 0 as suggested by the
authors in [7]. The posterior plots report the samples from
the posteriors (cloud of points), the simplex (the large orange
triangle) and three regions. The region on the bottom left
indicates the case where it is more probable that SWIM is
better than the best alternative, the bottom right indicates the
opposite, and the top region indicates that it is more probable
that neither method is better. To summarize the plots, the more
points that are close to one edge of the triangle, the better,
statistically, the method associated with the region is. The
closer the points are to the base of triangle, the bigger the
statistical difference is.

The plots in Figure 5 validate that the relative probability of
SWIM performing better than the best alternative re-sampling
method increases with the decrease in the number of minority
training samples. In the left most plot, corresponding with
size 10, the point cloud is roughly centered in the triangle
indicating that methods are approximately equally likely to
perform better. The point clouds in the plots for size 7 and 4
shift down and to the left. This indicates that SWIM becomes
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TABLE I
LIST OF DATASETS, THE DIMENSIONS (DIMS), MAJORITY CLASS SIZE (MAJ. SIZE), AND IMBALANCE RATIOS OF THE DATASETS. R4, R7, AND R10 ARE

THE IMBALANCE RATIOS WHEN 4, 7, AND 10 MINORITY TRAINING INSTANCES ARE USED.

Dataset Name Dim. Maj. Size R4 R7 R10
D1 Abalone 9-18 8 689 1:173 1:99 1:69
D2 Ada Agnostic 48 3430 1:858 1:490 1:343
D3 Alphabets 15 3077 1:770 1:440 1:308
D4 Analcat Data DMFT 7 642 1:161 1:92 1:65
D5 Diabetes 8 500 1:125 1:72 1:50
D6 Forest Cover 54 2970 1:743 1:425 1:297
D7 KDD Synthetic Control 61 500 1:125 1:72 1:50
D8 Mfeat Karhunen 64 1800 1:450 1:258 1:180
D9 Delft pump AR 160 531 1:133 1:76 1:54
D10 Spambase spam 57 2788 1:697 1:399 1:279
D11 Waveform 0 21 600 1:150 1:86 1:60
D12 Page Blocks 10 4913 1:1229 1:702 1:492
D13 PC4 37 1280 1:320 1:183 1:128
D14 Piechart 37 644 1:161 1:92 1:65
D15 Pima Indians 8 500 1:125 1:72 1:50
D16 Pizza Cutter 37 609 1:153 1:87 1:61
D17 Ring Norm 20 3736 1:934 1:534 1:374
D18 Thoracic Surgery 37 400 1:100 1:58 1:40
D19 Vehicle 0 18 647 1:162 1:93 1:65
D20 Vehicle 1 18 629 1:158 1:90 1:63
D21 Vehicle 2 18 628 1:157 1:90 1:63
D22 Vehicle 3 18 634 1:159 1:91 1:64
D23 Vowel 10 13 898 1:225 1:129 1:90
D24 Wine Quality Red 4 11 1546 1:387 1:221 1:155
D25 Wine Quality White 3 vs 7 11 880 1:220 1:126 1:88
D26 Wisconsin 9 444 1:111 1:64 1:45

TABLE II
G-MEAN OBTAINED BY USING THE BEST COMBINATION OF CLASSIFIERS WITH OUR PROPOSED SAMPLING METHOD (SWIM), ALTERNATIVE

RE-SAMPLING METHODS (ALT), AND WITHOUT SAMPLING (BASELINE), IN THE EXTREME CASE OF 4 MINORITY CLASS TRAINING INSTANCES.

Dataset Baseline ALT SWIM Dataset Baseline ALT SWIM
D1 0.481 0.612 0.723 D14 0.455 0.516 0.576
D2 0.451 0.445 0.539 D15 0.276 0.479 0.509
D3 0.27 0.451 0.620 D16 0.468 0.506 0.552
D4 0.279 0.440 0.440 D17 0.442 0.614 0.799
D5 0.259 0.509 0.580 D18 0.414 0.428 0.453
D6 0.561 0.554 0.550 D19 0.534 0.758 0.814
D7 0.958 0.965 0.996 D20 0.450 0.549 0.560
D8 0.274 0.933 0.899 D21 0.541 0.739 0.791
D9 0.569 0.872 0.903 D22 0.402 0.505 0.569
D10 0.440 0.550 0.685 D23 0.724 0.738 0.812
D11 0.301 0.701 0.688 D24 0.224 0.502 0.535
D12 0.647 0.679 0.793 D25 0.451 0.572 0.730
D13 0.572 0.559 0.611 D26 0.874 0.956 0.958

increasingly more likely to be the best method with high
significance. For size 4, nearly all of the points fall inside
SWIMs region; therefore, it is almost always better than the
best alternative.

B. Discussion

Figure 4 highlights two distinct categories of datasets. The
first group includes a set of 3 datasets on which an alternative
re-sampling is best at each level of absolute imbalance. The
second group includes the datasets on which SWIM was
superior on at least the most extreme level of imbalance. By
examining the PCA plots of the datasets in each group we are
able to see the great advantage of the majority-focus strategy,
as well as the situations where the alternative re-sampling
methods remain strong even in extreme absolute imbalance.

Figure 6 shows the PCA plots for two example datasets
from the group of three on which the alternative re-sampling
were always better. The plot on the left shows a situation in
which there is little overlap between the two classes, and the
minority class is uni-modal. The results is that the convex-hull
formed by the minority training points (off-white stars) only
covers regions representative of the minority class, and does
not spread into higher density regions of the majority class.
This leads to good performance using SMOTE-based methods.
The plot on the right has significant overlap, but the minority
class remains a cohesive unimodal group, which enables
SMOTE-based methods to populate an area representative of
the minority class.

In both cases, the minority distribution is relatively compact,
and uni-modal, and therefore, regardless of the extent of
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Fig. 4. Relative differences in g-mean between SWIM and ALT (best performing alternative re-sampling method) for each dataset di ∈ D = {d1, d2...},
where the differences is calculated as diff(SWIM(di) − ALT (di)). The colours of the bars correspond to training with 4, 7 and 10 minority training
instances.

Fig. 5. Posteriors for SWIM (L) vs. the best alternative (R) on the data sets with size 10, 7 and 4 minority class training sets for the Bayesian sign-rank test.
Higher concentration of points on one of the sides of the triangle shows that a given method has a higher probability of being statistically significantly better.
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Fig. 6. PCA plots of example datasets for when alternative re-sampling is always better. The plot on the left is for D11, and the plot on the right is for D8.
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imbalance, algorithms based on SMOTE are able to populate
in the representative regions of the minority class. Using the
equi-density neighbourhood approach, SWIM, has the ability
to generate data outside the compact minority space regions,
thereby negatively impacting classification.

Figure 7 shows example PCA plots of datasets from the
group in which SWIM is better. In this cases, the minority
class exists as a cluster of points, but also includes a large
number of points that are spread away from the cluster. In
such cases, SMOTE is easily mislead by the spread. This can
cause it to synthesize instances in directions that overlap with
higher density regions of the majority class and/or in directions
that do not help shift the decision boundary. Alternatively,
our majority-focused approach benefits from using the relative
position of the minority training instances in the majority class
to spread the synthetic instances into neighbouring regions
of similar densities. In the case of the plot on the left, for
example, SMOTE will only fill the small triangle formed
by the minority class training instances, whereas SWIM will
spread this synthetic instances further down into th distribution
of the minority class, represented by the orange dots. This
leads to better coverage of the minority space, and thus, better
generalization on the part of the induced classifier.

Thus, sampling methods, such as SMOTE, that primarily
rely on the minority class are less impacted by extreme
imbalance if the distributions are relatively compact with
respect to the majority class. However, when there is multi-
modality and spread, they are severely impacted by extreme
imbalance, whereas SWIM is robust, as it primarily utilizes
the majority class distribution to guide the sampling process.

We now look at the important task of setting the single free
parameters, α, in our method, and K for SMOTE5. Figure 8
presents a comparison of the variability of the choice of α
for SWIM, and k for SMOTE across the datasets considered.
The left pie chart shows the proportion of datasets for which
setting α = {1, 1.5, 2} produced the best result for SWIM, and
the right pie chart shows the proportion of datasets for which
setting K = {3, 5, 7} produced the best results for SMOTE.
For SWIM, α = 2 produced the best performance over most
of the datasets; we found this to be the case across all levels of
absolute imbalance, and thus we recommend this as an initial
setting. For SMOTE, the choice of K is less clear cut, with
both 5 and 7 being viable options depending on the dataset.

Finally, as we noted in the introduction, the Mahalanobis
distance implicitly includes a Gaussian assumption about the
distribution of the data. Regardless of the fact that many
domains do not conform to the Gaussian assumption, methods
such as naı̈ve Bayes classifiers and the Mahalanobis distance
for outlier detection have shown to be very successful in
machine learning and data mining applications. In addition,
we have shown SWIM to be superior over a wide variety
of domains with various levels of complexity. Although it
did not occur here, one can imagine a situation arising in

5The parameter that controls the amount of samples to generate is the same
for both methods. Specifically, we generate enough samples to make both the
majority and minority class sizes equal.

which the majority class is composed of a complex, non-
parametric distribution with multiple cluster in the data. In the
case that SWIM fails to a achieve sufficient performance on
such datasets, the majority class can be pre-processed into a
set of k simplified clusters prior to synthetic oversampling;
a similar approach has been successfully applied to one-
class classification in Sharma et. al [21]. In this case, we
propose that SWIM be applied to each cluster of the majority
class, which the Mahalanobis distance will be better able to
represent, separately in order to generate synthetic instances.

VI. CONCLUDING REMARKS

We present a method for synthetic oversampling, SWIM
(Sampling WIth the Majority) in domains exhibiting extreme
imbalance that utilizes the rich information offered by the
majority class. Using the distribution of the majority class
in the generation process enables us to synthesize in regions
of the minority space that would otherwise be inaccessible.
This is an essential feature in cases of extreme imbalance,
as it enables the induced classifier to both decreases its
bias and increases its generalization over the minority class.
Alternatively, classical methods of re-sampling fail in such
domains as they do not sufficiently take advantage of the
information in the majority class; by using only the minority
class, a very limited space is explored and sampled. We
demonstrate the efficacy of our method over 26 benchmark
datasets which include a wide variety of real-world properties.
Our results show that SWIM has a significant advantage when
the relative and absolute imbalance is very high.

Synthetic oversampling by explicitly using the majority
class data opens the doors for many interesting research areas.
Using the Mahalanobis distance (MD) has some key advan-
tages, such as mathematical and computational efficiency, ease
of sampling, and interpretability. Currently, in the synthesiza-
tion process, we use all known minority class instances for
synthesizing artificial data. However, it may be more prudent
to select a beneficial subset of instances, or assign weights to
instances based on the regions of the data space in which they
lie. Alternative strategies for generating synthetic data in the
whitened space are also an avenue for future research. Instance
generation is also vital for other domains like incremental
and online learning [27], and the application of our method
in these areas will be explored. Finally, one-class classifiers
are the other alternative employed for handling extremely
imbalanced datasets. We will extend our work to compare and
evaluate our proposed method against state-of-the art in one-
class classifiers.

The core idea of SWIM, as outlined in Sections 1 and 3, is
that we generate minority samples that have the same relative
probability density with respect to the majority class as the
known minority points. In the approach presented in this paper,
we use the MD to this end. However, any appropriate density
estimation method can be used to harness this insight and
generate samples. The discovery of other sampling algorithms
under this framework is an exciting area of future research.
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Fig. 7. PCA plots of exemplar datasets for when Mahalanobis synthetic oversampling is better. The plot on the top is for D12, and at the bottom is for D16.

Fig. 8. The number of datasets on which a specific free parameter choice was
best for SWIM (left) and SMOTE (right), when 10 minority class instances
are available for training.
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