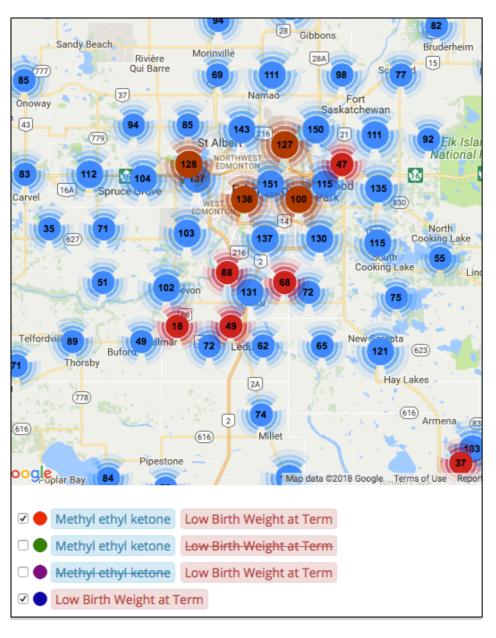


UNIVERSITY OF ALBERTA FACULTY OF SCIENCE Department of Computing Science

VizAR: A Software Tool for Epidemiological Hypothesis Generation with Geo-Spatial Data Mining

Bellinger C¹, Jabbar MSM¹, Hojjati S¹, Zaïane O¹, Osornio-Vargas A², and the DoMiNO Team 1. Computing Sciences, University of Alberta 2. Pediatrics, University of Alberta

Welcome to VizAR
colin
Let me in.
Forgot your password/don't have one?


elect Antecedents 🔞					Select Consequents				
	saits)				2	Still Birth			
88	Polymeric dip diisocyanate	henylm	ethane		3	Not Small for C	Gestational Age		
89	PM10 - Particulate Matter <= 10)	4	ational Age				
	Microns				5	Not a Preterm Birth			
90	PM2.5 - Particulate Matter <= 2.5 Microns				6	Preterm Birth			
94	Acenaphthen	7 Normal Birth Weight at				Veight at Term			
95	Acenaphthyle		н		8	Low Birth Weig	ght at Term		
↓₹ s	Sort -	er -	Chemi	cal Info		♥ Smart Searce Lift		lu	
ţ₹ s				_	3	_			

Once a rule of interest is identified, the *geospatial distribution* of the rule can be *visualized* in a Google

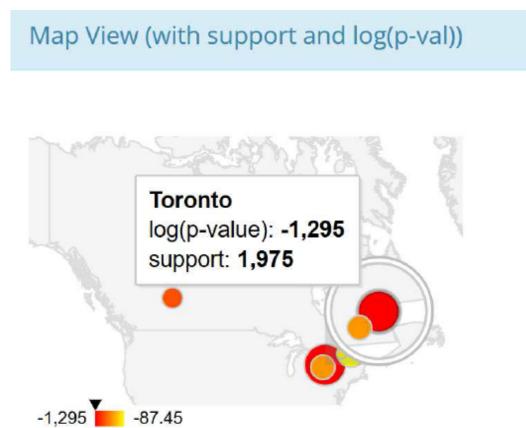
		Viz
ta Merger	Software Development Process: Each researcher is interested in a unique subset of the association rules discovered.	Level 2: • Us co
ns Merged Dataset	We developed a visualization framework for association rules (VizAR) in order to facilitate exploration and the identification of new hypotheses.	ind all
Is	Our interdisciplinary team established a set of functional and non-functional requirements to support hypothesis generation with VizAR.	
	We employed an iterative process of software development, and user feedback was applied to ensure requirements were met.	
estable sociation Rules		Level 3: • Us sig re
ional datas Igorithm for		ac
value<0.05)	from ~1.6 million potentially interesting relationships	
ociati	on Rules	
≡ Summary	Visualize geospatial distribution	Cor

Visualize geospatial distribution

VizAR enables efficient and effective knowledge transfer from the 1,700 associations rules discovered via geospatial data mining.

Acknowledgements

• Data – Alberta Perinatal Health Program (APHP) www.aphp.ca National Pollutant Release Inventory (NPRI) www.ec.gc.ca/inrp-npri • Team – Data Mining and Neonatal Outcomes (DoMiNO) Project


• Funding – CIHR/NSERC Collaborative Health Research Program (2013-2016)

UNIVERSITY OF ALBERTA FACULTY OF MEDICINE & DENTISTRY

izAR - Levels 2 and 3

Pattern/Regional level

sers can discover, regionally, common and ontrasting association rules by selecting an ndividual rule and visualizing its occurrence across ll regions

3: High-level perspective

Jsers can gain insights into the frequency and significance of rules in a region and across all regions by visualizing all association rules discovered across all regions.

Conclusions

The application of geospatial data mining to integrated multi-modal data:

APHP, NPRI and AAWS

enabled the discovery of novel associations between chemical mixtures and adverse birth outcomes not possible with standard epidemiological methods.

• VizAR facilitates users to explore the mined association rules and discover potential hypotheses to evaluate in their research.

> Contact e: cbelling@ualberta.ca w: www.ualberta.ca/~cbelling w: https://sites.google.com/a/ualberta.ca/domino/