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1 Introduction

Exposure to pollution in the environment is a major contributor to disease globally
and has economic impacts on the order of billions of dollars each year [45]. Related
to this, the field of environmental health aims to monitor and understand factors
in the environment that affect human health and disease. This chapter examines
the challenges related to understanding airborne chemical dispersion and human
exposure along with the resulting adverse health outcomes and discusses how AI
contributes to these tasks.

One of the first challenges in environmental health is understanding which air-
borne chemicals are present and at what levels. Physical pollution models are a
standard method to estimate these quantities. Physical models are developed from
domain expertise, along with data on the emission sources and chemicals of interest.
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These are combined with atmospheric and meteorological factors that determine the
transportation and evolution of the pollutants in the environment. Models of this
nature are limited by the complexity in their design and prediction errors resulting
fromabstraction.Alternatively, geo-statistical approaches rely onmulti-variate linear
models that require large-scale spatial monitoring and geographic information sys-
tems (GIS) data to model and predict pollutant concentrations. The GIS parameters
needed formodel development and application are often available on a limited spatial
scale, and models cannot generalise across cities [82]. In cases where the necessary
data does exist, it is often held by separate institutions and corporations with distinct
legal, moral and financial obligations. As a result, the datasets are often small, and
the replications of studies are difficult. Nonetheless, there is a growing awareness in
the environmental health community about the need for high-quality, accessible data
[83]. This shift has opened the door for new and more power data-driven AI methods
to play a role.

In addition to air pollutionmodelling and prediction, there is great need to advance
the understanding of the health consequence of exposure to airborne pollutants. The
chemicals in the atmosphere co-occur and exist as mixtures that interact with each
other. Once inhaled, they persist in the body for varying lengths of time, which,
amongst other things, depends on the chemical makeup. Recent evidence suggests
that mixtures of chemicals can have a toxicological behaviour that differs from the
toxicity of the individual chemicals [20, 77] and may produce greater adverse health
outcomes [64, 71]. As a result, there is a growing movement in the environmental
health community, including regulators, epidemiologists and health practitioners, to
encourage the development of new paradigms of analysis to explore the impact of
exposure to mixtures of airborne chemicals on health outcomes [24, 41, 57, 68]. The
authors in [13, 57, 75] noted that the traditional tools of analysis are often insufficient
to assess the impacts ofmixtures of pollutants. There is a strong need formethods that
can address the unique challenges presented by high-dimensional (multi-chemical)
environmental health data [56]. In addition, there is a need for creative methods to
fill the persistent data gaps related to movement and exposure, along with methods
that can be applied in rural areas where data is even more sporadic.

Artificial intelligence (AI) is the computational process inwhich algorithms learn-
ing from data or experience, and are applied to analyse large datasets, discover pat-
terns, extract actionable knowledge andpredict outcomes of future or unknownevents
[5, 30]. Methods used in this process come from a combination of computational dis-
ciplines including statistics, mathematics, machine learning and database systems.
Prior to the application of the AI algorithms, processing steps are often applied to for-
mat and clean the data. In addition, a post-processing stage is typically employed to
visualise the results of the analysis in an intuitive and easy-to-communicate manner.

AI provides awide array of scalable and reliablemethods that have performedwell
in complex domains with similar challenges to those in environmental health. When
paired with accurate data and domain expertise, AI algorithms have demonstrated
a strong potential to support the advancement of knowledge and understanding in
applications such as in science, engineering and medicine [35, 53, 69]. Moreover,
new frontiers for the application ofAI, which often inspire novel algorithms, analyses



AI Applied to Air Pollution and Environmental Health … 197

and evaluation methods, are being explored everyday. This has inspired collabora-
tions between AI and environmental health researchers aimed at the adapting AI
methods to analyse modern, big datasets in air pollution epidemiology [10, 61, 79,
82]. Researchers are now utilising the unique abilities of AI to incorporate new data
sources, such as satellite and street view images, and social media posts into the
analysis [67, 82]. The flexibility of AI has also been used to develop a better under-
standing of the impact of exposure to airborne chemical mixtures. A recent survey
on machine learning applied environmental health found that 52% of the identified
studies employed machine learning methods to analysing chemical mixtures [61].

The remaining of this chapter is laid out as follows. Section2 presents four areas
of environmental health related to air pollution in which AI has great potential.
Specifically, air quality prediction and forecasting, health outcome analysis, source
apportionment, and decision support. A case study of the use of AI to support the
advancement of a particular application of environmental health is provided inSect. 3.
In particular, result from the DataMining &Neonatal Outcomes (DoMiNO) project1

is presented to illustrate how geo-spacial data mining and data visualisation can be
combined with GIS and traditional epidemiological analysis to generate hypothe-
ses about which mixtures of airborne chemicals negatively impact birth outcomes.
Finally, Sect. 5 discusses implication, future work and challenges related to the use
AI in environmental health related to air pollution and Sect. 6 summarises the finds
of this chapter.

2 AI in Environmental Health

This section highlights four areas of environmental health related to air pollution in
which AI has great potential. These include air quality prediction and forecasting,
health outcome analysis, source apportionment and decision support.

2.1 Air Quality Prediction and Forecasting

A significant portion of the research onAI applied to environmental health deals with
the challenge of forecasting and predicting airborne pollution levels. This includes
predicting the current air quality or pollution levels, forecasting the future values,
given some local or regional input variables, and forecasting the geo-spatial distri-
bution of air quality or pollutants. Predictions of this nature serve to support public
policy, planning and health research by simplifying and improving the accuracy of
pollution estimates and contributing to the understanding of the impact of a potential
future events, such as new highways and factories.

1 Data MIning and Neonatal Outcomes: https://sites.google.com/a/ualberta.ca/domino/.

https://sites.google.com/a/ualberta.ca/domino/
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Some examples of the application of AI in air pollution prediction include [17,
46, 66, 86]. The authors in [66] compared traditional methods, such as generalised
additive models, to the AI methods such as random forest (RF) and support vector
machine (SVM) for predicting PM2.5 during wildfire events. In [46], the authors
evaluated the effectiveness of RF, SVM and artificial neural network (ANN) for
estimating the daily distributions of PM2.5. An ANNwas employed in [17] to predict
the indoor air quality based on data recorded at outdoor air monitors, and the authors
in [49] employed boosted regression trees to improve the accuracy of common low-
cost air pollution sensors.

PM2.5 studies are typically limited to ground-based measurements. As a result,
they often utilise land-use models to estimate the spatial distributions and exposure.
Satellite-based data is expanding the spatial scope of the accessible data and enabling
the incorporation of temporal analyses. Aerosol optical dept (AOD) data, collected
as a part of NASA’s earth observation program, has been used in combination with
meteorological, atmospheric and land-use data to develop spatial-temporal PM2.5

models [14]. In this work, RFmodels were trained to predict daily PM concentrations
at a resolution of 1 × 1km throughout the metropolitan area of Cincinnati, USA.

Whilst the majority of the previous work utilised traditional AI techniques from
supervised and unsupervised learning, the power of deep learning is increasingly
being recognised and exploited in state-of-the-art public health research [82]. Unlike
physical and statistical models, classical methods from machine learning and deep
learning methods have the potential to scale up to global coverage by exploiting
the increasing supply of ground-based and satellite-based imagery, along with other
remote sensing data. This is facilitated by deep learning’s unique ability to efficiently
generalise from large datasets composed of multiple data formats, such as image,
text and sensor. Recently, researchers have utilised deep learning for haze prediction
[52, 54] and for PM2.5 and PM10 classification and exposure prediction [16, 22, 23]

The authors in [51] proposed the deep learning-based long short-term memory
(LSTM) method to predict air pollutant concentrations at fixed locations based on
historical air pollutant concentration data, meteorological data and other time series
data. Their results suggest that the method can more effectively capture spatio-
temporal correlations and incorporates auxiliary data to improve predictive perfor-
mance. In addition to predicting outcomes, the proficiency of deep learning from
image data provides the potential to identify prevalent co-occurring exposure “net-
works” through image recognition and unsupervised learning [62].

2.2 Health Outcome Analysis and Characterisation

Amajor challenge in environmental health is understanding the relationship between
exposure to airborne chemicals and health outcomes. This challenge is exacerbated
by the complexity of co-occurring airborne chemicals, the persistence of chemicals
in the body for varying lengths of time and other risk factors.
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In order to shed more light on the complex relationship between exposure and
health outcomes, researchers are increasingly looking to existing and novel AI meth-
ods for help. The availability of pollutant release data, transfer registries and chem-
ical biomonitoring data has opened the door to the application of AI to analyse
large datasets of chemical exposures. The authors in [7], for example, used frequent
itemset mining to efficiently and comprehensively evaluate relationships between
chemicals and health biomarkers for diseases in the NHANES biomonitoring sur-
vey. In [39, 70], the authors developed a new co-location pattern mining algorithm
AGT-Fisher (Aggregated Grid Transactionization) to discover spatial associations
between mixtures of chemicals and adverse birth outcomes. In [77], an associa-
tion rule mining-based methodology is used to discover patterns with relevant odds
ratios whilst limiting redundancy and control for statistical significance. The author
proposed a combined approach that first used AI to identify a subset of interesting
associations between air pollutant exposure profiles and children’s cognitive skills,
and secondly, the approach utilised traditional statistical methods adjusted for con-
founders in order to estimate the magnitude. The two-stage approach is particularly
effective for generating meaningful hypotheses within high-dimensional exposure
data.

Unsupervised clustering algorithms are another effective method to help under-
stand the relationship between airborne chemicals and health outcomes. The authors
in [63] utilised self-organising maps (SOM) to identify pollutant profiles within the
ambient air and associate themwith health outcomes. This work improved the under-
standing of long-term spatial distributions of multiple pollutants and demographic
characteristics of populations residing within areas with distinct air quality. Alter-
natively, K-means and hierarchical clustering were employed to group days with
similar chemical profiles at a single site in Boston, USA [6]. The clusters described
unique physical and chemical characteristics and are utilised to investigate physical
and chemical conditions posing higher health risks. Bayesian clustering techniques
are particularly interesting in the context of environmental health as they attempt to
account for uncertainty in the data. The authors in [58] utilise Bayesian clustering to
characterise the spatial distribution of multiple pollutants and populations at risk in
Atlanta, USA.

2.3 Source Apportionment

Manycountries regulate and require the reporting of chemicals emitted to the environ-
ment. Once released into the atmosphere, however, complex physical and chemical
processes determine their fate. In addition, many chemical emissions, such as those
frommotor vehicles and aeroplanes, are not directly tracked. As a result, it is difficult
to accurately associate local air quality measurements with the factors causing them.
Source apportionment aims to trace a given decrease in air quality or increase in a
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given pollutant back to its emission source. Amongst other benefits, the ability to
do so accurately can enable regulators to monitor emitters and is helpful for updat-
ing laws and taking steps towards mitigating the impact on humans and the broader
environment.

Existing studies largely focus on outdoor and urban air pollution and apportioning
particular airborne pollutants to potential sources, such as industrial sites, regions
and major intersections. Clustering and data analysis methods have been applied
to identify correlations and the importance of particular meteorological parameters,
traffic, fuel fired equipment and industries to air pollution [18, 19, 73, 76, 80]. The
authors in [87] utilised sequential pattern mining technique to investigate spatial-
temporal patterns of PM2.5.

2.4 Decision Support

As previously stated, accurate predictivemodels have the potential to support science
and drive decision-making related to regulations and urban planning. Given its ability
to incorporate multi-modal data, deep learning may serve as an efficient means of
predicting past and future exposures based on known or anticipated changes in land
use, traffic and the built environment. In addition, it may serve to identify areas to
be prioritised for detailed monitoring and/or surveillance [82].

Existing work focused on discovering associations between chemical mixtures
and health outcomes combined with source apportionment can serve to guide public
policymakers to increase regulations on chemicals association with adverse health
outcomes,workwith neighbouring regions to reduce the impacts of upwind emissions
and change industrial zoning to reduce the risk of the co-occurrence of chemicals that
would formharmfulmixtures. In addition, predictivemodels can be used to determine
staffing and other public health needs. In [25], the authors use data from PMmonitors
to predict hospital admission for cardiovascular and respiratory diseases. Multiple
data sources, including Twitter and Google searches, are utilised in [65] to predict
asthma-related emergency department visits and can guide staffing levels.

3 Case Study: DoMiNO

This case study presents our interdisciplinary research with Data Mining & Neona-
tal Outcomes (DoMiNO) project.2 This work serves to bridge the knowledge gap
between exposure to airborne chemical mixtures during pregnancy and the occur-
rence adverse birth outcomes (ABOs). To achieve this, we utilise state-of-the-art
methodologies from data mining and knowledge discovery. The developed spatial
co-location pattern mining algorithm AGT-Fisher involves transforming the geo-

2 Data MIning and Neonatal Outcomes: https://sites.google.com/a/ualberta.ca/domino/.

https://sites.google.com/a/ualberta.ca/domino/
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spatial pollution and birth outcome data into transactions for pattern mining with the
Kingfisher algorithm. The Kingfisher algorithm discovers dependency rules of the
form A → B, where A is a set of airborne chemicals, and B is a birth outcome [38,
39, 50, 70].

In data-intensive applications, the data mining process often discovers a larger
volume of patterns. The number of discovered patters is often greater than can be
analysed and understood by the knowledge users. This poses a significant barrier to
the effective utilisation of the mining results. In our work, for example, data mining
with the AGT-Fisher algorithm [39] produced over 1700 statistically significant co-
location patterns on our data with antecedents up to the size of three chemicals.
Metrics of interestingness applied to sort the discovered patterns can only partially
address this issue.

In order to facilitate the efficient use of the discovered patterns, we created the
visualisation tool, Visualisation of Association Rules (VizAR). This tool advances
upon the previouswork bydeveloping an interactiveWeb-based software platform for
post-patternmining, exploration and visualisation. Similar to thework of Ltifi et al. in
[55], our goal is to support human intelligence with machine intelligence. Our work,
however, focuses on geo-spatial environmental health data and the identification of
valuable knowledge in mined co-location patterns.

VizAR serves as the final step in the data mining process, as illustrated in Fig. 1.
The essential features of VizAR are (a) interactive exploration and (b) visualisations
at multiple levels of geo-spatial abstraction. It operates on the mined patterns,end
thereby alleviating the end-user from making complex technical decision regarding
algorithms and metrics. It enables users to interactively search, sort, filter, explore
and visualise the patterns and their geographic distribution at multiple levels of
abstraction.

From a domain perspective, VizAR facilitates knowledge translation by enabling
the users to connect the discovered patternwith its roots in themined data. The results
of this can both inspire new research questions and hypotheses and drive new public
policy directions. In our results, we present two use-cases for theVizAR software that
illustrate its ability to identify interesting and epidemiological significant patterns.

Data
Target data

Processed
data

Transformed
data

Patterns
Interactive pattern

analysis

Hypothesis generation

Actionable  outcomes

Pattern visualization

Traditional focus Our focus

Fig. 1 This work focuses on the final step of the data science process. Specifically, the translation
of patterns to actionable user knowledge. This image was inspired by one first appearing in [26]
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We evaluate the meaningfulness of a subset of these patterns using the odds ratio,
which is a standard approach in epidemiology.

Our evaluation demonstrates that the framework enables users to identify patterns
that are pertinent to their work and chemical combinations for which the exposed
group is at a greater risk than the unexposed according to the odds ratio. More
generally, our user-base finds that pattern discovery via AGT-Fisher and presenting
in VizAR enables them to identify new associations that have the potential to initiate
research that could lead to healthier births in the future.

3.1 Related Work

In this work, we are interested in association rules, A → B, where A is a set of
airborne chemicals (i.e. antecedents), and B is an adverse birth outcome (i.e. con-
sequent); in the geo-spatial context, these are referred to as co-location patterns.
A co-location pattern is a set of spatial features whose instances are often located
together in spatial proximity. Due to the significance in multiple fields of study, co-
location pattern mining has gained significant importance recently [48]. We address
the challenge of co-location pattern mining by transforming the geo-spatial data to
a tabular format via aggregated grid transactionization. Transactionization enables
the patterns to be discovered with standard association mining algorithms [4, 33].

Measures of interestingness play an essential role in the data mining process.
These measures are intended for selecting and ranking patterns according to their
potential interest to the user [40]. In addition, they are helpful for saving time and
space costs associatedwith the datamining process [29].Most of the existing associa-
tion mining techniques rely on frequency-based prevalence or statistical significance
to measure interestingness [4, 33, 85]. These include metrics such as support, con-
fidence, lift and the p-value [29]. Because of the exploratory and interdisciplinary
nature of data science, it is often challenging to select a metric that will accurately
rank the patterns according to the users subjective preferences. Thus, to avoid prun-
ing rules that may be of interest to the users, a low selection threshold is often used.
The result of this is a large number of potentially noisy patterns which are deemed
strong or interesting according to the data mining process. A personalised and inter-
active process is essential to support users in identifying the so-called nuggets of
knowledge that are embedded in the discovered patterns.

Visualisation effectively communicates complex ideas and experimental results
across disciplines.A significant number of general purpose data visualisation systems
have been proposed [12, 34, 81]. These are generic approaches that enable users to
load data, cluster it and visualise it in low-dimensional projections. These are limited
by their generality, the need to understand algorithms and computer programming and
are not designed for searching, exploring and visualising the geographic distribution
of mined patterns. Pattern mining researchers have developed some visualisation
tools, however, few of these have been proposed for co-location patterns [21], and
there is no work in the literature on visualising spatial contrast nor common sets
discovered in data mining.
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In general, the AI research into pattern visualisation only offers a static per-
spective on the discoveries; specifically, the user does not have the opportunity to
interactively produce the visualisations that are relevant to them in various levels of
abstractions. Recent application of data science has noted the importance of interac-
tive and exploratory tools for knowledge discovery and decision support in genetic
data and temporal medical data [55, 72].

3.2 Methodology

In this section, we present the datasets, software and evaluation process used in our
work.

3.2.1 Data and Preprocessing

The adverse birth outcomes datasets used in this research were acquired from the
Alberta Perinatal Health Program (APHP)3 and the Canadian Neonatal Network
(CNN).4 In each dataset, there are three main adverse birth outcomes: (1) Preterm
birth (PTB)—abirth that takes placemore than threeweeks before the baby is due; (2)
Low birth weight at term (LBW)—a birth in which the weight of the baby is less than
2500g and the gestational age is on or above 37 weeks and (3) Small for gestational
age (SGA)—birth in which the baby’s weight is in the lower 10th percentile for the
gestational age according to Kramer’s Canada-wide statistics [42].

The APHP database is a rich dataset including mother’s geolocated reported res-
idence by postal code for all live births during the period of 2006–2012 for the
province of Alberta, Canada. Specifically, the dataset contains the birth outcome
(non-ABO, PTB, SGA, LBW) mother’s residence location of 333,247 births. The
distribution of the adverse birth outcomes in this dataset is as follows: (1) PTB 22,733
cases; (2) LBW 5,485 cases and (3) SGA 29,679 cases. The CNN data is collected
from 19 Census Metropolitan Areas (CMAs) in all provinces across Canada through
Neonatal Intensive Care Units (NICUs). This contains mothers admitted to NICUs
during the time period of 2006–2010. In particular, the CNN dataset has the geolo-
cated reported residences of 32,836 mothers along with their birth outcomes. The
distribution of the adverse birth outcomes in this dataset is as follows: (1) PTB 17261
cases; (2) LBW 1476 cases and (3) SGA 5465 cases.

The industrial air pollutant emissions datawere accessedvia theNational Pollutant
Release Inventory (NPRI) ofCanada for the timeperiod of 2006–2012.The emissions
dataset includes estimates of yearly releases of 136 industrial chemicals.

The NPRI map in Fig. 2 shows the distribution of the 6279 industrial facilities
for the province of Alberta. The subsequent maps help demonstrate the distribution

3 Alberta Perinatal Health Program. http://aphp.dapasoft.com/Lists/HTMLPages/index.aspx.
4 http://www.canadianneonatalnetwork.org/portal/.

http://aphp.dapasoft.com/Lists/HTMLPages/index.aspx
http://www.canadianneonatalnetwork.org/portal/
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Fig. 2 From left to right, this figure shows the distribution of NPRI sites and the rates of PTB,
LBW and SGA for in Alberta during the study period

of births by ABO. To protect individual privacy, the actual locations of residences
cannot be shown; therefore, the categories are based on smoothed Bayesian rates
that indicate areas of relatively lower (purple) and higher (orange) than the average
(yellow) provincial rates of PTB, LBW and SGA. The maps were made available in
the Web Mercator projection for knowledge users to access in the visualisation tool.

3.2.2 Transactionization

The above adverse birth outcomes and chemical emission datasets were integrated
and tabulated via the transactionization process [39, 50]. To determine the overlap-
ping regions of chemicals and births, we utilised historic weather data from Envi-
ronment Canada and the Alberta Agriculture weather stations to simulate the atmo-
spheric transportation of airborne chemicals from their point sources. We generated
the dispersion region of an air pollutant from an emission point (facility) as a circular
buffer where the centre was the emission point, and the radius was defined based on
the amount of chemical released. To better reflect the dispersion area, we transform
the circular region into an elliptical buffer region based on the average wind speed
and direction. The lengths of the major axis and minor axis (a and b, respectively)
were computed as follows: a = r + γ |ν|; b = r2/a, where r was the radius of the
initial circle, and it was equal to the natural logarithm of the amount of chemical
released at a given location [r = ln(amounts)]; ν was the wind speed, and γ was
the stretching coefficient (=0.3). Detailed information about this process has been
published by [39].

As a surrogate of the maternal mobility range during pregnancy, a 5km radius
circles centred on the postal code location of the maternal residence are defined.
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Fig. 3 This figure is recreated from [70]. It presents the process of transactionization. The geo-
spatial region includes the maternal residences and mobility buffers, along with the chemical emis-
sion sources and downwind dispersion areas. Transactions record the birth outcomes and chemical
occurrences for each grid point on the map according to the overlapping mobility and dispersion
regions

This is overlaid with the region of interest (map) with a set of uniformly distributed
grid points (1-km grid). This is illustrated in Fig. 3. Each grid point recorded the
occurrence or absence of each event (ABOor non-ABO) and each industrial chemical
at its location. Thus, an example transaction for a grid point is {SGA = True, LBW =
False, ... , benzene = True, chlorine = False, PM = True, ...}. Each grid point is added
to the transaction database for co-location pattern mining. As an example, the grid
point highlighted in the figure records the co-occurrence of chemical C1, C2 and
the ABO. Furthermore, through a transaction aggregation process, this algorithm
also captures more complex scenarios where the mother was exposed to multiple
chemicals, each with non-overlapping buffer regions.

3.2.3 Data Mining with AGT-Fisher

After the transaction dataset of birth outcomes is created, pattern mining with the
Kingfisher dependency rule search technique is applied. Our previous work [39]
demonstrated that the Kingfisher algorithm [33] finds non-redundant statistically
significant co-location patterns between chemical mixtures and ABO. Kingfisher
judges the statistical significance of the association between chemical mixtures and
ABO using Fisher’s exact test.

The Kingfisher algorithm enumerates trees to search and prune the co-location
patterns, thereby discovering likely patterns in a computationally efficient manner.
The AGT-Fisher algorithm discovered a set of co-location patterns of the form chem-
ical set → ABO or chemical set → non-ABO, where the pattern satisfied a p-value
threshold. A p-value cut-off of 0.05 is used in this work. As previously stated, a
common challenge in data mining is that the list of discovered associations remains
large (i.e., hundreds). Moreover, it is highly likely that only a small subset of these
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patterns is of interest to knowledge users. As a result, a subsequent interactive and
exploratory processes is needed to enable end-users to understand and isolate the
most valuable knowledge in the discovered associations.

3.2.4 VizAR

VizAR is a formalisation for personalised rule identification that enables users to
interact with, explore and visualise the discovered co-location patterns at three levels
of abstraction:

1. Overview level
2. Pattern level
3. Instance level.

System Architecture: The architecture of VizAR is presented in Fig. 4. VizAR com-
municates with a central database that stores the previously mined patterns. By min-
ing and storing the patterns in advance, we achieve three desirable outcomes: (a)
the technical complexity of data mining is removed from the end-user, (b) the user
experience is separated from the time complexity of the data mining, and (c) patient
data is securely kept offline. In addition to the patterns, the pattern database includes
the anonymised transactions on which the patterns were mined, the corresponding
measures of interestingness and meta-data that enables geo-spatial visualisation and
exploration of the discovered patterns. VizAR interacts with cloud services to access
various kinds of resources such as maps and customised context on adverse birth
outcome rates and socio-economic status.

Fig. 4 System architecture of the VizAR framework
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VizAR Data Views: The overview level has two components. Users can visualise the
geo-spatial distribution of all of the co-location patterns and/or search, sort and filter
for a subset of co-location patterns.

The geo-spatial distribution is depicted in the form of an interactive bubble chart
in Fig. 5. It enables policymakers and other users to identify common or contrasting
trends in sub-regions (CMAs). The CMAs are listed on the y-axis with spacing
approximately scaled to the distance between their physical locations. The x-axis
specifies the unique identifier of each discovered co-location pattern.

The occurrence of a pattern at a CMA is represented by a circle. In cases where
an individual pattern (rule x) is discovered at multiple CMAs, circles are drawn at
the intersection of the rule ID on the x-axis and the CMA on the y-axis. For each
CMA, the size of the circle indicates the support in the dataset for that rule at that
CMA. The colour indicates the statistical significance of the pattern at the CMA in
terms of Fisher’s exact test (log(pF )) [39].

EX1 in Fig. 5 illustrates an example of contrasting regions (cities in this case) that
can be discoveredwith this view. In this example, Toronto andMoncton are identified
as contrasting regions because Toronto has significantly more co-location patterns
associated with it than Moncton does. In a similar manner, users can easily identify
regions that have association rules in common, such as Toronto and Montreal. We
refer to these as geo-spatially common regions, which occur when regions have simi-
lar sets of rules. Policymakers can, for example, use this view to identify CMAs with
similar issues and initiate working groups to develop focused research on specific
chemicals and mixtures in order to support future development of solutions.

Co-Location Pattern Number

Log

,
(p-value)

EX1

52

EX2

32

EX3

Fig. 5 Regional level visualisation: Bubble sizes represent the support of a rule in a particular
spatial region, and the color code represents the log(pF ) range



208 C. Bellinger et al.

Fig. 6 Search, sort and filter view. This enables the user to find patterns involving chemicals and
birth outcomes related to their research

EX2 and EX3 in Fig. 5 demonstrate that users can discover common or contrast-
ing patterns. For instance, EX3 depicts a pattern which is uniformly statistically
significant in multiple sub-regions (i.e. common set), whereas EX2 has divergent
degrees of significance in different CMAs. Specifically, pattern 52 (i.e. EX2) has
strong support and significance in Toronto and weak support elsewhere; thus, it is
a contrasting pattern. This can lead policymakers to address the question, why is it
prominent in Toronto and nowhere else? Alternatively, pattern 32 is a geo-spatially
common pattern with significance and support similar across many CMAs.

The tabular frame in the overview level enables users to find and analyse the
occurrence of patterns involving subsets of chemicals and/or adverse birth outcomes.
It is shown in Fig. 6. Users can use this feature to reduce the scope of the bubble chart
prior to analysis or drill down into the distribution of a specific pattern. In addition,
summary statistics describing the number of patterns meeting a search requirement
are produced. This includes the bar chart showing the number of patterns of each size
that were found. Here, the pattern size refers to the number of chemicals involved.
This is depicted on the right-hand side of the view.

Pattern Level Visualisation: Users can drill down to the pattern level view, depicted
in Fig. 7, by selecting a pattern of interest at the overview level. This view presents
a map of the entire geo-spatial region of interest annotated with the existence of the
selected pattern. This gives a perspective on distribution of the pattern of interest
across the CMAs in Canada. Once again, the occurrence of the pattern is depicted as
a circle, where the support and significance are represented by size and colour. The
example in this figure presents another way of identifying geo-spatially common and
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Fig. 7 Visualising a pattern’s prevalence/significance in different CMA regions. Size of the bubbles
represents the support for the pattern in a particular region, and colour code represents the log(pF )
(i.e. log of the Fisher’s p-value) range

contrasting pattern. In this case, the pattern hasmuch greater support and significance
in Vancouver than the other CMAs (i.e. a contrasting pattern/set).

In addition to themap-based analysis, strategies for pattern level analysis based on
wind rose plots are provided. A wind rose is typically used to visualise the relative
frequency of wind speed at a specific location. It is used here to emphasise the
disagreements in the support or significance of a particular pattern across the CMAs.

A spatial-temporal perspective on the patterns is also possible and very useful.
This can be achieved using the wind rose plot. Figure8, for example, demonstrates
the visualisation of a pattern across spatial regions in different months. With this
visualisation, users can, for instance, discover temporal changes and population shifts
leading to a change in the distribution of the pattern.

Instance Level Visualisation: The lowest level of abstraction is formulated as the
instance level view. It focuses on exploring a specific pattern in a specific CMA.
This view presents the individual occurrences of the pattern on an interactive map.
Figure9 depicts the distribution of the occurrence of the pattern (PM2.5, Methyl
ethyl keyton, Xylene) → PTB in the Edmonton, Canada CMA. Users can zoom in
and out on the map in order to gain perspectives on the distribution of the pattern
down to the neighbourhood level. In addition, the view allows users to overlay other
pertinent information, such as location of the emitting facilities, the interpolated
dispersion regions of the chemicals, along birth outcome rates and socio-economic
informationbrokendownbydenomination area. These help users to better understand
the population under study.

4 Results

In order to demonstrate the efficacy of our framework, we present a summary of
patterns identified through VizAR by our user-base. In addition, we describe two
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Fig. 8 Demonstration of spatial-temporal analysis by geography and birth month with wind rose
plots. This shows a mock-up of the support distribution of contrast sets for January (top left),
February (top right), December (bottom left) and annual average (bottom right)

exploration strategies employed by our users and conduct a thorough epidemiological
assessment of one of the identified patterns. This is done by calculating the odds ratios
of exposure and the outcome [70].

4.1 Identified Patterns of Interest

The user-base includes researchers in environmental health, epidemiology, neona-
tology, paediatrics and public health. Users were trained to use VizAR and given
an opportunity to use it to explore the co-location patterns discovered by our AGT-
Fisher algorithm on the datasets. A summary of the chemical mixtures of interest
identified by the users via VizAR is provided in Table1.



AI Applied to Air Pollution and Environmental Health … 211

Fig. 9 Instances level visualising of the co-location pattern (PM2.5, Methyl ethyl keytone, Xylene)
→ PTB in the Edmonton CMA. Green colour bubbles represent the places where only the
antecedents exist (i.e. air pollutants), whereas the red bubbles represent the places where both
the ABO and air pollutants coexist

Table 1 This table presents some chemical mixtures discovered to be associated ABOs via VizAR

Cmemicals Outcome

Lead + Toluene ABO

Lead + Xylene ABO

Lead + Nitrogen dioxide + Particulate matter ABO

Mercury + Phenanthrene PTB

Metals + Polycyclic aromatic hydrocarbon ABO

Toluene + Xylene + Methanol + Carbon
monoxide

ABO

Ethylbenzene + Methyl isobutyl ketone ABO

PM2.5 + Methyl ethyl ketone + Xylene PTB

Themixtures are either associatedwith general adverse birth outcomes (ABO), or a specificoutcome,
such as PTB
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4.2 Discovery Techniques

Use-case 1 (geo-spatial exploration): This use-case is focused on identifying patterns
of the form (chemical mixture) → ABO that have high lift values at multiple CMAs
(geo-spatial common patterns). The discovery process analyses the bubble chart to
find the rule with greatest significance for each CMA. The rules for each CMA
are tabulated, and the most frequently occurring pattern is identified as a significant
common pattern. In this case, it identifies that the pattern Lead→ SGA to is the most
significant common pattern of size one. It has the highest lift in 13 out of 19 CMAs.
This indicates that the association between lead and SGA should be a significant
question of interest in the majority of cities in our study area.

Use-case 2 (tabular search, sort and filter): The objective of this use-case is to
efficiently find subsets of airborne chemical mixtures for which the exposed group
has a significantly greater risk of having an adverse birth outcome than not having it.
This requires searching and sorting to produce two ordered set P and N . P is a set
of patterns X → A = a that is sorted according to lift, where the birth outcome is
always A = a, and X is a set of chemicals. Alternatively, N is a sorted set of negative
patterns Y → A = a. A score of the exposure risk is calculated from these sets using
the lift ratio:

LR(X, A = a) = lift(X, A = a)/lift(X, A = a) (1)

The lift ratio utilises the intuition that all of the mothers in the CMA are exposed to
the chemicals X . Thus, the larger the lift ratio, the more significant the association
between the exposure and the ABO. The lift ratio is calculated for each pattern in
Pi , {Pi : Xi → A = a} ∈ P that has a corresponding pattern N j , {N j : Y j → A =
a} ∈ N , such that the chemical mixtures are equivalent, Xi = Y j .

Five patterns were discovered using this method, and the pattern (PM2.5, Methyl
ethyl ketone, Xylene) → PTB was selected to evaluate using odds ratio, which is
a standard metric for risk assessment in epidemiology. The odds ratio is defined as
the ratio between odds of adverse birth outcome among exposed versus unexposed
groups. Thus, an odds ratio greater than 1 indicates a positive relationship between
the exposure and the adverse birth outcomes. This pattern has an odds ratio of 1.14,
which means that the exposed group is at greater risk than the unexposed group.

Figure10 gives a relative perspective on the significance of this pattern. It shows
the odds ratios, with 95% confidence intervals5 for smoking and PTB, low socio-
economic status (SES) and PTB, our discovered chemical mixture and PTB, along
with the combination of all three (smoking, lowSES status, rule 1) and PTB.The odds
ratios for smoking and SES were calculated using maternal data form the APHP and
Census data. In addition to showing that this chemical mixture poses a similar risk as
other known factors, it demonstrates that the combination of the chemicals, smoking

5 Adjusting for maternal confounders including smoking, substance use, past-preterm, mothers’
age, socio-economic status, etc.
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Fig. 10 Comparison of odds ratio (adjusted for relevant maternal confounders and socio-economic
status) for an association discovered for preterm birth with other risk factors

and low SES status poses an even greater risk than the individual components. This
finding has, in fact, inspired future work and a grant proposal.

5 Discussion

There is a growingbodyof literature andpractical examples that demonstrate the great
potential for AI to support the advancement of environmental health. Nonetheless,
numerous challenges exist, such as access to a sufficient amount of high-quality data,
how optimally pair AI with existingmethods in environmental health, appropriate AI
algorithm evaluation and parameter tuning methods and techniques to report results
in manner that is understandable and reproducible by an interdisciplinary audience.
These and related topics are discussed in the subsections below.

5.1 Pattern Filtering and Hypothesis Generation

As demonstrated by the DoMiNO case study, data mining is particularly powerful
in contexts involving mixtures of airborne chemicals. The number of patterns dis-
covered by data mining methods, however, can be large and intractable for human
analysis. As a result, pattern filtering and visualisations approaches are needed to
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reduce the volume of discovered patterns. In the DoMiNO project, the lift ratio is
utilised to filter the output of the AGT-Fisher algorithm, and hypothesis generation
is performed via the interactive visualisation provide by VizAR. The authors in [77]
developed two post-pruning criteria to filter the output of the basic Apriori algorithm.

The exploratory nature of data science implies that users are often looking for
new insights without a-priori knowledge of the form that the patterns might take.
When filtering is applied, it is important to recognise that it risks removing asso-
ciations between rare, but critical, mixtures and outcomes [62]. Researchers must
be careful to achieve the satisfactory balance between reducing the number of pat-
terns and maintaining good sensitivity. The combination of filtering and interactive
visualisation can facilitate a better in this respect. Viewing data mining results with
GIS tools has also been demonstrated to be a effective way to discover meaningful
patterns [63]. Nonetheless, additional research on best practices for pattern filtering
and hypothesis generation in the context of environment health is needed.

Because the AI algorithms generally find associations rather than causation, they
are better suited to serve as the first step in the hypothesis generation process. The
authors in [75] demonstrate AI coupled with traditional methods to narrow the search
space. The benefit of such a combined system is that the AI can be applied to
high-dimensional, continuous exposure variables, and traditional epidemiological
methods control for confounding, assess effect size, investigate various contrasting
exposures and identify chemical mixtures of interest.

5.2 Data

Exposome [83] and other ambitious projects are expanding the size and scope of
what is traditionally studied in environmental health. To support the characterisation
of the breadth of exposures that humans encounter from birth to death necessitates
the design and evaluation of novel AI methods for exceptionally high-dimensional
spatial-temporal datasets. Advancements, such as those seen in natural language
processing with LSTM and transformer networks, are needed in order to discover
critical links between events with significant temporal separation.

Regardless of the above-mentioned efforts, the authors in [62] note that the pub-
licly available data remains a significantly limited. Challenges with respect to data
access include the cost and complexity of pollution monitoring and dispersion mod-
elling, along with inconsistent collection and privacy concerns related to health
records. Whilst the number of potential exposure combinations is immense, the
pollution monitoring and health outcome data remain sparse. As a result, the authors
claim that the current data may not allow for reproducible findings. New research
focused on the application ofAI to small, high-dimensional and sparse environmental
health data is needed.

Moreover, the quality of the available data is an issue that requires attention. The
accuracy of the available data can be compromised on many fronts. This includes
due to human error and the accuracy of sensors or the dispersion models used. In
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addition, the imperfect output of AI algorithms is used as the input to subsequent AI
models. This can add a degree of uncertainty to the data that most AI methods cannot
account for [74]. AI algorithms that are robust to noise and provide well-calibrated
confidence scores will be a great use.

5.3 Robustness and Validity

Unlike traditional statistics, the focus in much of AI is on designing and develop-
ing accurate predictive models and discovering frequent, but unknown, patterns. It
is critical that collaborators in interdisciplinary application, such as environmental
health, understand the implicit assumptions and objectives being optimised by the
AI algorithms used (e.g. finding associations versus causal relationships). In many
cases, terminology may be used or understood differently between fields. For col-
laborations to be successful, issues of this nature should be identified in advance and
clarified in subsequent publications.

As discussed in [84], interdisciplinary collaborations betweenAI and environmen-
tal health researchers can serve as a gateway to new results and discoveries. These
collaborations require that the participants commit time to relationship building,
continuous learning and engagement in order to mitigate conflicts and misunder-
standings. DoMiNO utilised an iterative process of learning and familiarisation to
establish a common ground with regards to data mining methodologies and termi-
nologies. This was found to increase the likelihood of success by providing collab-
orators from across disciplines with the skill set necessary to proactively participate
in the design and undertaking of the data mining process.

In order to promote robust and appropriate use of AI in environmental health, it is
advised that practitioners explicitly state the goal of the study in advance, explainwhy
AI is needed and what the assumptions and risks are. Simulation studies and analyses
of the AI on artificial datasets that replicate key properties of the target domain are an
excellent means of building trust in and understanding of the proposed method. The
authors in [44] used a simulated study to assess boosted regression trees’ ability to
detect relationships between chemicalmixtures andmetabolic syndrome. This serves
to simplify the identification of the limitation of the method, evaluate its robustness
to training sets size, noise and correlated exposures.

Results of the AI algorithms and the hypotheses generated from them ought to be
considered in the context of the representativeness of the data used.Much like science
and society in general, it has been shown that the results of AI algorithms suffer from
bias [11, 15]. Recent work has also discussed racism in algorithms deployed in health
care [60]. Whilst the representativeness of the data is a major point of consideration
in environmental health, it is often overlooked in AI where the academic focus has
typically been on theoretical considerations of algorithmic learning. It is only now
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becoming a critical point of consideration in academic and industrial AI [88]. In
the context of AI applied to environmental health, spatial variability in exposure
profiles, demographics and contextual characteristics of the subjects in the data must
be considered.

5.4 Transparency and Trust

Transparency and trust play an important role when it comes to health and medical
applications. The most powerful AI algorithms tend to be complex and are less
transparent. This is particularly the case formodern end-to-end deep learning system.
Hence, achieving transparency and maintaining trust whilst building a successful
AI system is a challenging task, especially in an interdisciplinary setting. In part,
the DoMiNO project accomplished this through dialog and mutual learning, but
also by facilitating a human-machine interactive process where end-users actively
become part of the knowledge discovery process with VizAR. Rather than passively
consuming patterns/knowledge provided by the algorithm, the users interactively
explored them to understand their foundation and meaningfulness.

5.5 Deep Learning

Artificial neural networks date back to the 1960s. As a result of significant improve-
ments in computing power and dataset size, along with refinements in the learning
algorithms, the modern incarnation of artificial neural networks (deep learning) can
achieve human-level performance in a wide variety of applications including health
[30, 36].

In environmental health, deep learning algorithms designed for object recogni-
tion tasks, such as convolutional neural networks (CNNs), have a great potential [43].
Supported by the growing availability of ground- and satellite-based imagery, CNNs
provide the potential to simplify and improve large-scale pollution modelling and air
quality prediction [82]. A large portion of environmental health data, including that
from air pollution senors and medical records, is sequential. Like image recogni-
tion, deep learning has made significant breakthroughs in modelling and predicting
sequential data, such as natural language [32, 78]. With the growing availability of
sequential environmental health data, deep learning architectures, such asLSTMsand
transformers, have a great potential to improve the predictive performance beyond
the current standard.

Missing data is a common problem in both statistics and AI. In general, it may be
handled by removing records with missing values or filling the missing values with
estimates and data imputation [5]. However, domain-specific approaches may be
devised that produce better results. Missing values, for example, occur in AOD data
due to cloud cover and other atmospheric conditions. In [14], the authors addressed
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this by training two deep learning models, one with and one without AOD data. In
other settings, however, training two models may not provide satisfactory perfor-
mance in all conditions. Deep generative networks, such as generative adversarial
networks (GAN) [31], can serve as more powerful data imputation and augmentation
methods [37, 47].

Other important challenges in environmental health relate to limited, sparse and
class imbalanced data. This includes the lack of pollution data from rural areas
and in marginalised and low-income communities. As a result, there is a dearth of
knowledge about health issues that are specific to these communities. It is critical
that the growing potential of AI in environmental health is utilised to benefit these
communities that have traditional been under-served. In addition to new algorithms
and data sources, this will require working with communities to better understand
their environmental health wants and needs.

Learning from limited data is a challenge that transcends many deep learning
applications. It is a quickly developingfield of study that has generated a great amount
of interest [1–3]. Some exemplary methods with potential in environmental health
include data augmentation, transfer learning, domain adaption, few-shot learning
and meta-learning. Data augmentation methods serve to correct for class imbalance
and artificially inflate the number of samples from underrepresented populations [8,
9, 59]. Few-shot learning and meta-learning aim to utilise knowledge from earlier
phases of training to quickly learning new predictive capabilities [27, 28]. In the
context of environmental health, this offers the potential for the model to quickly
adapt to new health outcomes and new prediction settings. Transfer learning and
domain adaption, on the other hand, are techniques that enable models pre-trained
one dataset to be quickly refit to new, but typically related, dataset. This can enable
better generalisation in the transferred domain and faster learning [30]. A possible
application is to develop models for cities with limited data by pre-training on data
from cities with a large, representative network of air quality sensors.

6 Summary

Exposure to pollution in the environment is a major contributor to disease globally.
There remains, however, a dearth of knowledge about the levels, distribution and
types of airborne pollutants in the environment, along with how exposure to complex
mixtures of airborne chemicals impacts health outcomes. Research in environmental
health aims to monitor and understand factors in the environment that affect human
health and disease. Recent collaborations between AI researchers and environmental
health have demonstrated a great potential to help advance the science of air pollution
epidemiology, urban planning and public policy.

In this chapter, we discussed AI in the context of environmental health related to
air pollution. We outlined the importance of the field of study, the challenges that it
currently faces and the opportunity for AI to contribute to the advancement of the
field. In addition, we presented a case study on the DoMiNO project, which utilised
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AI algorithms in combination with pattern visualisation via VizAR and traditional
epidemiological analysis to generate hypotheses about which mixtures of airborne
chemicals have the greatest impact on birth outcomes. Our results highlight both
the great potential for AI in this field along with some interesting challenges for AI
researchers to address in future work with environmental health researchers.
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