
Chapter 7
Emerging Trends in Machine
Learning: Classification
of Stochastically Episodic Events

B. John Oommen and Colin Bellinger

Abstract. In this chapter we report some Machine Learning (ML) and Pat-
tern Recognition (PR) techniques applicable for classifying Stochastically
Episodic (SE) events1. Researchers in the field of Pattern Recognition (PR)
have traditionally presumed the availability of a representative set of data
drawn from the classes of interest, say ω1 and ω2 in a 2-class problem. These
samples are typically utilized in the development of the system’s discrimi-
nant function. It is, however, widely recognized that there exists a particu-
larly challenging class of PR problems for which a representative set is not
available for the second class, which has motivated a great deal of research
into the so-called domain of One Class (OC ) classification. In this chapter,
we primarily report the novel results found in [2, 4, 6], where we extend the
frontiers of novelty detection by the introduction of a new field of problems
open for analysis. In particular, we note that this new realm deviates from
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the standard set of OC problems based on the presence of three characteris-
tics, which ultimately amplify the classification challenge. They involve the
temporal nature of the appearance of the data, the fact that the data from
the classes are “interwoven”, and that a labelling procedure is not merely
impractical - it is almost, by definition, impossible. As a first attempt to
tackle these problems, we present two specialized classification strategies de-
noted by Scenarios S1 and S2 respectively. In Scenarios S1, the data is such
that standard binary and one-class classifiers can be applied. Alternatively,
in Scenarios S2, the labelling challenge prevents the application of binary
classifiers, and instead dictates the novel application of one-class classifiers.
The validity of these scenarios has been demonstrated for the exemplary
domain involving the Comprehensive Nuclear Test-Ban-Treaty (CTBT), for
which our research endeavour has also developed a simulation model. As far
as we know, our research in this field is of a pioneering sort, and the results
presented here are novel.

Keywords: Pattern Recognition, Rare Events, Stochastic Events, Erroneous
Data.

7.1 Introduction

7.1.1 Problem Formulation

A common assumption within supervised learning is that the distributions of
the target classes can be learned, either parametrically or non-parametrically.
Moreover, it is assumed that a representative set of data from these classes is
available for the training of supervised learning algorithms; indeed, the latter
implies the former.

Beyond this commonly-reported method of classification, there exists a
special form of Pattern Recognition (PR), which is regularly denoted One
Class (OC ) classification [11, 13, 14, 16, 25, 26]. This “exceptional” category
of binary classification is noteworthy in lieu of the significant challenge that
it presents. Escalating the difficulty, is the fact that drawing a representative
set of data to compose the second class (ω2), which is fundamental to the
derivation of a binary discriminant function, is abnormally arduous, if not
altogether impossible. The difficulty of acquiring a sufficiently symbolic set
may arise because of:

1. The natural imbalance in the classification task;
2. The difficulty (due to cost, privacy, etc.) of acquiring samples from the ω2

class;
3. The task of obtaining representative samples of the ω2 class is overwhelm-

ing, as a result of the vastness of the distribution.
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PR tasks of this nature have previously been constituted as involving outlier
(or novelty) detection in lieu of the fact that the vast majority of the data
takes, what is assumed to be, a well-defined form that can be learned, and
that samples from the ω2 class will appear anomalously – outside the learned
distribution. Although such problems can be significantly more difficult than
those that involve two well-defined classes of data, the results reported in the
literature demonstrate that satisfactory results can often be obtained (see
[11, 13, 14, 16, 25, 26], for example).

7.1.2 SE Event Recognition

To expand the horizon of the field, we observe that there exists a further,
and yet more challenging subset of the OC classification domain of prob-
lems, which remains unexplored. We have denoted this class of problems as
Stochastically Episodic (SE) event recognition.

The problem of SE event recognition can be viewed in a manner that dis-
tinguishes it from the larger set of OC classification tasks. In particular, this
category of problem has a set of characteristics that collectively distinguish it
from its more general counterparts. The characteristics of this category can
be best summarized as follows:

• The data presents itself as a time sequence;
• The minority class is challenging to identify, thus, adding unwarranted

noise to the one-class training set;
• The state-of-nature is dominated by a single class;
• The minority class occurs both rarely and randomly within the data

sequence.

Typically in PR solutions to so-called OC problems, the accessible class, and
in particular, the data on which the OC classifier is trained, is considered to
be well-defined. Thus, it is presumed that this data will enable the classifier to
generalize an adequate function to discriminate between the two conceptual
classes. This, for example, was demonstrated in [25], where the training set
consisted exclusively of images of non-cancerous tissue. Similarly, in [13], a
representative set of the target computer user’s typing patterns, which are
both easily accessible and verifiable, were utilized in the training processes.

The classification of SE events2 is considerably more difficult because de-
riving a strong estimate of the target class’s distribution is unfeasible due to
the prospect of invalid instances (specifically members of the ω2 class erro-
neously labelled ω1) in the training set. In this work, we present solutions to
this problem based on tradition one-class classifiers.

2 Events of this nature are denoted stochastic because their appearances in the
time-series are the results of both deterministic and non-deterministic processes.
The non-deterministic triggering event could, for example, be the occurrence of
an earthquake, while the transmission of the resulting p- and s-waves, which are
recorded in the time-serise, are deterministic.
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SE event recognition is additionally challenging because the validity of
instances drawn from the target class are suspect, and the occurrences of the
minority class are temporally (i.e. with respect to the time-axis) interwoven
with the data from the majority class.

7.1.3 Characteristics of the Domain of Problems

To accentuate the difference between the problems that have been studied,
and the type of problems investigated in this research, we refer the reader
to Table 1. This table displays an assessment of six one-class classification
problems, which, while only a small subset, cumulatively illustrate the tradi-
tional scope of the problem set. In addition, we include the problem of CTBT
verification, which forms our exemplary SE event recogonition problem. The
first column indicates whether the problem has traditionally been viewed as
possessing an important temporal aspect. The three entries with an asterisk
require special consideration. In particular, we note that while, traditionally,
these domains have not been studied with a temporal orientation, they do in-
deed contain a temporal aspect. The subsequent column signals whether the
manual labelling of data drawn from the application domain is a significant
challenge. This is, for example, considered to be a very difficult task within
the field of computer intrusion detection, where attacks are well disguised in
order to subvert the system.

The following two columns quantify the presence of class imbalance. In
the first of these, we apply a standard assessment of class imbalance, one
which relies on the determination of the a priori class probabilities. Our
subsequent judgement departs slightly from the standard view, and considers
class imbalance that arises from the difficulty of acquiring measurements (due
to cost, privacy, etc.). The final column specifies if the minority class occurs
rarely, and randomly (in time and magnitude), and if it occurs within a time
sequence dominated by the majority class.

Table 1 A comparison of well-known One-Class (OC) classification problems. The
explanation about the entries is found in the text.

Dataset Temporal ID Imbalance Imbalance Interwoven
Challenge Type I Type II

Mammogram No Low Yes Medium No
Continuous typist recognition No Low Yes Medium No

Password hardening No Low Yes Medium No

Mechanical fault detection No* Low Yes Medium No

Intrusion detection No* High Yes High No

Oil spill No* High Yes Medium No*

CTBT verification Yes High Yes High Yes
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To summarize, in this section we have (briefly) both demonstrated the
novelty of this newly introduced sub-category of PR problems, and positioned
the CTBT verification task within it. We additionally note that the fault
detection, intrusion detection, and oil spill problems could be reformulated
to meet the requirements of our proposed category. This, indeed, suggests a
new angle from which these problems can be approached.

7.1.4 Overview of Our Solution

As previously indiated, SE event recognition composes a particular challeng-
ing problem due to the combined affect of the four characteristics that are in-
herent in such problems. Under these circumstances, we envision two possible
techniques for discriminating between the target class and the stochastically
episodic events of interest. If the incoming training data contains a suffi-
cient quantity of accurately identifiable stochastic events, a standard cluster-
ing/PR algorithm could be applied to label both the classes appropriately.
Subsequent to the labelling procedure, a standard binary classifier could be
trained and utilized to achieve the classification of novel instances. In this
body of work, we refer to this scenario as S1, and the subsequent scenario as
S2.

Alternatively, and more applicable in scenarios in which the SE events are
extremely rare, all of the training data can be assigned to the target class,
and an OC classifier can be applied. The details of, and justification for, this
approach are described in the subsequent sections. Our primary objective
in this chapter is to illustrate how standard supervised learning algorithms
can be applied to discriminate rare stochastic episodes, which apart being
unanticipated, are random in magnitude and position within the sequence of
background data.

Put in a nutshell, the novel contributions of the results presented in [4]
and [5] (which we re-iterate here), with respect to PR, are as follows:

• We introduce an important new category of PR, namely SE event recogni-
tion. In particular, we note that this new realm deviates from the standard
set of one-class problems based on the presence of four characteristics: (a)
the data presents itself as a time sequence; (b) the minority class is chal-
lenging to identify, thus, adding unwarranted noise to the OC training set;
(c) the state-of-nature is dominated by a single class; and, (d) the minority
class occurs both rarely and randomly within the data sequence.

• In addition, we present a first attempt at classifying SE events within
the examplary verification problem suggested by the Comprehensive Test-
Ban-Treaty (CTBT). Our initial approach is extremely accessible, as it is
based on “off the shelf” PR solutions.

• More specifically, where the ω2 is sufficiently large, we demonstrate how
clustering/PR algorithms can be applied to label training data for the
development of a sound binary classifier.
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• Finally, in scenarios where training instances cannot be acquired from the
second class (the so-called OC problem), and where the accessible class in
known to contain noise due to labeling issues, we illustrate how, through
novel means, standard OC classifiers can be applied as unsupervised
learners.

We conclude this section by mentioning that our results probably represent
the state-of-the-art when it concerns recognizing SE events.

7.2 Pattern Recognition: State of the Art

This section3 serves to present the state-of-the-art in PR. In that regard,
Duda, et al., in [10] describe pattern recognition as follows:

“The act of taking in raw data and taking an action based on the ‘category’
of the pattern.”

It is, indeed, natural that we should desire to ‘teach’ machines to recognize
sets of patterns that are easily recognizable to humans, such as handwritten
characters, speech and faces, as computers present the possibility of increased
efficiency and do not become tired of mundane tasks. Furthermore, the bene-
fits of training machines to classify complex patterns, typically left to doctors
and scientists with considerable specialization in the domain, are equally ap-
parent. Thus, researchers have continued to push the state-of-the-art in PR
systems since the advent of the modern computer.

7.2.1 Supervised Learning

Prior to application, the PR system must be trained to discriminate between
the objects of interest in its particular application domain. For multi-class
problems, such as discrimination between handwritten characters, the PR
system is said to learn a mapping that discriminates between the individual
inputs by directing them to their corresponding categories. Alternatively, in
the special scenario, which is of primary interest in this work, termed OC
learning, instances of a single target category are available for the training of
the PR system. As a result, the system takes a recognition-based approach,
and attempts to learn a function that maps novel instances of the target
category to the target class, and all others to the outlier class.

Broadly speaking, standard PR systems for supervised learning are trained
on datasets drawn from their prospective application domains, in which each

3 This brief section has been included in the interest of completeness. Although
these issues are considered commonplace for the general PR problem, they are
still fairly non-standard for OC problems - which advocates the necessity of the
section.
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feature vector has been accented with its corresponding class label. The objec-
tive of the training process is the derivation of a set of models that articulate
the individual characteristics of the classes. Thus, while the performance on
the training set is of little interest, rather, the focus shifts to the selection of a
model that will perform well on novel instances in the future. The derivation
of these models is algorithm-specific, however, there exists commonalities be-
tween all learners. Generally speaking, regardless of the learning strategy, the
accuracy of the derived model on novel instances will increase with the size
of the training set. In addition, all learners strive to optimize the balance
between specialization and generalization [18].

Under ideal circumstances, the training procedure for a binary learner
is able to rely on an ample supply of data that has been uniformly drawn
from both classes. As a result, increasingly accurate models of the classes
in question can be constructed, and therefore, an effective classifier of novel
instances is produced.

7.2.1.1 “Traditional” Pattern Recognition

Standard, or rather “traditional” PR problems/solutions typically assume
the existence of data that was drawn independently and identically from the
application domain, and that the data can be divided upon class lines into
representative sets. The availability of such data facilitates the training of
binary classifiers, which have been shown to be proficient at learning class
distributions, and thus at labelling novel instances.

In all brevity, we mention that the binary classifiers used in this study were
the Multi-layer Perceptron (MLP), the Support Vector Machine (SVM), the
Nearest Neighbour (NN), the Näıve Bayes (NB) and the Decision Tree (J48),
all of which are fairly well known, and so their descriptions are omitted here.
However, we mention that their implementations were from Weka4.

Alternatively, OC classifiers rely on instances drawn from a single class in
the derivation of a discriminant function. A broad set of OC classifiers exists
in the literature, each of which applies a slightly different strategy to the
construction of a binary discriminant function from a single class. However,
in simple terms, the process can be articulated as one in which the selected
classifier learns to recognize, in some general terms, novel instances that are
similar to those viewed during the training process. Thus, novel instances
that do not appear to fit into the learned distribution are designated to the
alternate class, ω2 .

The autoassociator (AA), for example, applies a neural network structure
to compress/decompress instances of the concept class exclusively. Thus, an
unsuccessful compression/decompressionresults in the instance being assigned
to the second class [14].

Hempstalk et al., in [13], converted the one-class classification problem
into binary tasks by estimating the distribution of the concept class and

4 Interested readers should refer to [10, 12, 18] for more details of these strategies.
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generating instances of the non-concept, accordingly. Finally, a standard
binary classifier is trained. This process has been denoted the Combined
Probability and Density Estimator (PDEN).

Alternatively, the one-class Nearest Neighbour (ocNN) algorithm [8] learns
a target rejection rate, τ , where τ is the distance between the two nearest
neighbours with the greatest separation in the training data. Subsequently,
all novel instances whose nearest neighbours are at greater distances than
τ are classified as outliers. We have additionally implemented a modified
version of the ocNN in Weka, and denoted it as the scaled ocNN (socNN).
Contrary to the ocNN, the socNN classifier is capable of learning a model
that accounts for the noise in the training set (we refer the reader to [5] for
more details on how this is achieved). Subsequent research also explored the
performance of the often extolled one-class SVM [23].

Our previous work, as highlighted here, demonstrated that for extreme
cases of SE event recognition, the application of static OC classifiers is supe-
rior to the static binary classifiers mentioned above. These results, however,
do not preclude those that may be produced through other learning strate-
gies, such as those discussed in the following subsections. Indeed, the failure
to incorporate the time dimension into the hypothesis space is a particu-
lar weakness of both the binary and OC solutions. This is particularly the
case as the temporal nature of the phenomena suggests that valuable infor-
mation may have been lost. Moreover, under certain conditions, sampling,
unsupervised and semi-supervised learning strategies have been shown to be
beneficial. Thus, they also warrant further consideration.

7.2.2 Alternative Learning Paradigms

Under less than ideal circumstances, however, none or very few labelled train-
ing instances are available. The former case, where no labelled instances are
available, is referred to as unsupervised learning. In the context of data cate-
gorization, unsupervised learning typically relies on clustering algorithms [28].
The latter scenario, which is commonly known as semi-supervised learning, is
characterizedby the availability of a small set of labelled training instances.The
objective, here, is to leverage the knowledge stored in the labelled instances to
incrementally categorize the larger unlabelled portion of the training set [7].

In terms of SE event recognition, if we assume the unknown target distri-
butions be static, which we maintain in this early work, then semi-supervised
learning offers a means by which we can extract more labelled SE events from
the training data. These additional SE events can subsequently be applied to
a learn an improved model.

Semi-supervised learning for data labelling has previously been applied in
[7]. Unfortunately, in scenario S2, due to the extreme class imbalance, even
a perfect a priori labelling phase is unlikely to produce a sufficient number
of SE event instances for binary learning. This is, quite literally, a result of
the fact that they do not exist in nature.
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7.2.3 Sampling

Sampling is often applied in multi-class classification problems as a means to
overcome under-representation in one or more of the classes [17]. As previ-
ously noted, significant imbalance in the training set can, very often, lead to
the development of a poor classification model. In addition, some evaluation
metrics are biased by class imbalance [15].

In order to deal with the issue of under-representation in the training data,
two sampling strategies have received considerable attention in the literature.
Oversampling increases the size of the minority portion of the training set by
sampling from that portion, with replacement. As a result, some instances
of the minority class will appear more than once in the regenerated training
set. The oversampling process is continued until a “sufficient” portion of the
training data is drawn from the minority class.

The primary limitation of this form of sampling is that there is a risk of
over-representing noisy and/or outlier instances in the generated training set.
As a result, the learned function may become overly fit to the minority class,
and thus be, possibly, biased in a manner that leads to poor classification.

Alternatively, under-sampling draws a subset of instances (without replace-
ment) from the majority class, to produce a more balanced training set. The
major problem with such an approach is that there is no guarantee that the
most informative instances will, in fact, be sampled. Thus, depending on the
degree to which the majority class must be under-sampled, there is a high
risk of discarding meaningful information.

Modifications to these strategies have attempted to address the above lim-
itations. However, there is no single solution. Moreover, with respect to SE
event recognition, the degree of class imbalance is so great that over-sampling
is very much unadvised. Similarly, the large amount of background data im-
plies that an excessive amount of under-sampling would be required at great
expense to the informativeness of the training set. This is a particular prob-
lem given the complexity of the background class.

7.2.4 Dynamic Classification

Sequential classification algorithms constitute a special form of classifiers,
which are particularly apt at leveraging systematic variations in data, such
as time series data. When applied to the appropriate problem, this advanced
learning process can often produce results that are superior to those obtained
by the static algorithms previously discussed.

In general terms, time series classification is conducted in one of two ways.
The simplest strategy is to convert the sequence into a form suitable for static
learning. This, in essence, ignores the sequential aspect and, thus, loses many
of the desirable features of dynamic classification.

Alternatively, thresholds on the distance between the learned class pattern
and those to be classified can be applied.
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In addition, algorithms based on artificial neural networks and hidden
Markov models can be trained to detect anomalous events and make predic-
tions into the future based on the data seen thus far [19, 20].

Due to the systematic variations in SE event data, times series classifica-
tion and anomaly detection offer considerable promise within this domain.
However, for the present, we leave this for future work.

7.3 Modelling the Problem

To this point, we have described a novel sub-category of PR, which is char-
acterized by the detection of a minute number of SE events interwoven in a
time-series. Indeed, a number of interesting PR problems fit this form, in-
cluding advanced earthquake, tsunami and machine failure warning systems,
to name but a few. In this section, we present a series of experiments based
on the verification of the CTBT. These experiments are designed to both il-
lustrate the domain of SE events, and to exhibit a first attempt at SE events
recognition.

7.3.1 Application Domain

The CTBT aims to prevent nuclear proliferation through the banning of all
nuclear detonations in the environment. As a result, a number of verifica-
tion strategies are currently under study, aimed at ensuring the integrity of
the CTBT. The primary verification technique being explored relies on the
quantity of radioxenon measured continuously at individual receptor sites,
distributed throughout the globe. Radionuclide monitoring, in general, has
been identified as the sole technique capable of unambiguously discriminating
low yield nuclear detonations from the background emissions. More specifi-
cally, verification of the treaty based on the four radioxenon isotopes, 131Xe,
133Xe, 133mXe and 135Xe, has been promoted due to the relatively low back-
ground levels, their ideal rates of decay, and their inert properties [22, 24].

In general, the measured radioxenon levels are expected to have resulted
from industrial activities, such as nuclear power generation and the produc-
tion of medical isotopes. However, they are also the byproducts of low yield
clandestine nuclear weapons tests, which are the subject of the CTBT.

7.3.2 Procuring Data: Aspects of Simulation

While it is generally beneficial to develop and study classifiers on “real” data,
this is, indeed, impossible within the CTBT verification problem due to the
absence of measured detonations, and the limited availability of background
instances. It has, however, been demonstrated that artificial data can be
utilized for PR system development, and to generate controlled experiments
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(generalized case-studies), in the absence of “real” measurements [1, 9]. In
this vein, as a means of acquiring experimental datasets for this research,
we utilized the simulation framework presented by Bellinger and Oommen
in [6]. Their simulation framework models SE events, such as earthquakes,
nuclear explosions, etc., as they propagate through the background noise, in
this case representing radioxenon emitted from the industry into the earth’s
atmosphere.

7.3.2.1 Simulation Scenario

In order to explore the PR of low yield clandestine nuclear tests, we devised a
simulation scenario to capture the effects of a diverse set of detonation possi-
bilities, within a realistic background scenario. In particular, and accordance
with the majority of the CTBT’s International Monitoring Station (IMS), the
IMS in the simulated environment was impacted by a single industrial emit-
ter. In this simulation scenario, the industrial emitter was positioned 3,000
km away from the IMS. Thus, when the atmospheric conditions transported
the emitted radioxenon directly from the source to the receptor, and when
the conditions were not conducive to the dispersion of the radioxenon, the
background concentration could reached significant levels. However, due to
the realistic atmospheric conditions that were built into the model, such as
the fluctuations in wind speed and direction, along with atmospheric stabil-
ity, the background levels were generally low. This fact is displayed by the
histogram in Figure 1. The figure specifically demonstrates that the majority
of the 131Xe concentrations measured at the IMS site during the simulation
were less than 0.5 Bq m−3.

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5
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Fig. 1 This figure displays a histogram of the measured concentrations of 131Xe
at the IMS, resulting from the background source during the simulation.

It is, however, highly probable that a clandestine detonation will occur at
distances beyond the industrial source, thus, causing no, or only a minute,
change in the radioxenon concentrations measured at the IMS, depending on
the angular direction to the detonation site, and the prevailing meteorological
conditions. Therefore, the classification of this type of SE event is extremely
challenging.

With the above fact in mind, we considered the performance’s of the PR
systems as a function of distances. This is to specifically assess the probability
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of detecting detonations at various distances. In particular, 23 subcategories
of datasets were generated. In each case, the modelled environment contained
the same industrial source and IMS at the receptor site. As a result, for each
simulation the background readings can be assumed to follow the distribution
displayed in Figure 1. The 23 subsets formed a series of incremental detona-
tion ranges, which commenced with all detonations occurring between 500
km and 1000 km, as illustrated in Figure 2.

Iterations

1n

Industrial

Receptor

emitter

site

Random Explosion

Fig. 2 This figure demonstrates the iterative composition of the simulated domain.
In each iteration of the simulation, a fixed number of explosions are probabilistically
generated as uniform, random events in time, space and magnitude, and dispersed
according to the prevailing meteorology, which may or may not carry the pollutant
cloud past the receptor site

The detonation range was iteratively increased by 500 km for each succes-
sive set. This incremental approach enabled the examination of performance
as a function of distance, in addition to the more general considerations of
performance.

As a binary classification problem, the generated sets were composed of
two classes, in this case a background class and a detonation class. In addition
to the class label, each instance was composed of the concentrations of the
four isotopes measured by the IMS at the receptor site over the period of an
hour. The simulation system contains two phases, the first phase simulates
the effect of the background emission source on the receptor sites, thereby
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producing instances of the background class (labelled 0). Thus, an instance
measured over hour i, takes the following form:

xi,0 = 131Xei,0,
133Xei,0,

133mXei,0,
135Xei,0, 0. (1)

The second phase generates the data for the detonation class (labelled 1).
This is done by generating random (in time, space and magnitude) low yield
explosions, and measuring their impact on the receptor site. Subsequently,
the effect of the detonation is combined with that of the background source
over the appropriate period of time, and written to the dataset with the
detonation label. Therefore, a detonation instance measured over hour j,
takes the following form:

xj,1 = xj,0 + 131Xej,1,
133 Xej,1,

133m Xej,1,
135 Xej,1, 1. (2)

7.3.3 Generated Datasets

A total of 230 datasets were derived and applied to scenario S1 and S2,
according to the simulation procedure previously described. More specifically,
10 datasets were generated for each of the 23 detonation ranges, each of which
was subsequently divided into training and testing components.

Intuitively, the first scenario presents a slightly easier classification prob-
lem, because a set, albeit small, of SE events can be extracted from the
application domain and applied to train and/or test the PR systems. More
specifically, within this scenario, we assume that the ω2 class is both identi-
fiable and available in quantities that facilitate the training of binary classi-
fiers. However, in many ways, the classification problem still presents itself
as a so-called OC classification task, and thus warrants exploration on both
fronts. The datasets specifically contain a 90% background data (ω1) and
10% explosion data (ω2).

Alternatively, each set involved in the S2 scenario is divided with 99%
background data (ω1) and 1% explosion data (ω2). In order to simulate the
challenge of manually labelling the instances drawn from class ω2, and in
accordance with the disguised nature of the SE events, all of the ω2 training
instances were erroneously labelled ω1.

Alternatively, the test sets included appropriately labelled instances from
both classes, with proportions following the predefined states-of-nature. This
enabled us to assess each classifier’s ability to generalize the “real” back-
ground data from the noisy training set.

7.4 PR Solutions

In this section, we present a series of experiments designed to both illustrate
the demonstration domain, and to exhibit a first attempt at classifying this
sub-category of PR problems.
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7.4.1 Classification Scenarios

As mentioned in the introductory section, within this challenging domain of
classification problems, there exist two conceivable scenarios, which we have
denoted as S1 and S2. These scenarios explicitly influence the choice of the
classification scheme applied to the task of recognizing the SE events.

Intuitively, the first scenario presents a slightly easier classification prob-
lem, because a set, albeit small, of SE events can be extracted from the
application domain and applied to train and/or test the PR systems. More
specifically, within this scenario, we assume that the outlier class is both
identifiable and available in quantities that facilitate the training of binary
classifiers. However, in many ways, the classification problem still presents
itself as a so-called OC classification task, and thus warrants exploration on
both fronts.

Alternatively, the second scenario presents itself as a much more difficult
PR task, and in many ways more accurately reflects the PR problem sug-
gested by the detection of SE events, in general, and the verification of the
CTBT, in particular.

In accordance with the general domain characteristics, as they were orig-
inally defined, the data presents itself as a time-series of background mea-
surements that are interwoven with a minute number of SE events. However,
unlike the ideal scenario depicted in S1, here we attempt to assume a state-of-
nature that is more appropriate for the CTBT task. In particular, we assume
that there is a 1% a priori probability of a detonation, which, while still an
overestimate, is a more accurate depiction, while it still provides insight into
the behaviour of PR systems on the class of SE events.

Raising the difficulty further, is the recognition that, in practice, the clan-
destine nature of the SE events are such that manually identifying a distant
clandestine occurrence in the acquired time-series of readings is extremely
difficult, if not impossible. Thus, this prohibits the derivation of a labelled
training set, which dictates that practitioners are left to utilize a training
set composed largely of background instances, but with a minute number of
unidentifiable members of the SE event class.

In the absence of a labelled training set, we propose the application of stan-
dard OC learners as unsupervised classifiers. When applying OC classifiers
to an unlabelled training set, the practitioner must rely on the knowledge of
a domain expert to acquire estimates of the a priori class probabilities.

In particular, estimates of the state-of-nature are required to appropriately
specify the parameters of the OC classifiers, such as the rejection rate, or error
rate. This technique aims to prevent the inclusion of the SE event instances in
the generalized description of the background class. Our reliance on an error,
or rejection rate, presumes that the SE events will reside on the periphery of
the background class, and thus, by marginally tightening the generalization
of the background class, those instances of the SE event class will no longer
be included.
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7.4.2 Classification

Standard PR problems typically assume the existence of data that was drawn
independently and identically from the application domain, and that the data
can be divided upon class lines into representative sets. The availability of
such data facilitates the training of binary classifiers, which have been shown
to be proficient at learning class distributions, and thus at labelling novel
instances.

In all brevity, we mention that the binary classifiers used in this study were
the Multi-layer Perceptron (MLP), the Support Vector Machine (SVM), the
Nearest Neighbour (NN), the Näıve Bayes (NB) and the Decision Tree (J48),
all of which are fairly well known, and so their descriptions are omitted here.
However, we mention that their implementations were obtained from Weka.

Alternatively, OC classifiers rely on instances drawn from a single class in
the derivation of a discriminant function. A broad set of OC classifiers exists
in the literature, each of which applies a slightly different strategy to the
construction of a binary discriminant function from a single class. However,
in simple terms, the process can be articulated as one in which the selected
classifier learns to recognize, in some general terms, novel instances that are
similar to those viewed during the training process. Thus, novel instances
that do not appear to fit into the learned distribution are designated to the
ω2 class.

Although these classifiers were briefly outlined earlier, to summarize:

• The autoassociator (AA), for example, applies a neural network structure
to compress/decompress instances of the concept class exclusively. Thus,
an unsuccessful compression/decompression results in the instance being
assigned to the second class [14].

• Hempstalk et al., in [13], converted the OC classification problem into
binary tasks by estimating the distribution of the concept class and gener-
ating instances of the non-concept, accordingly. Finally, a standard binary
classifier is trained. This process has been denoted the Combined Proba-
bility and Density Estimator (PDEN).

• Alternatively, the one-class Nearest Neighbour (ocNN) algorithm [8] learns
a target rejection rate, τ , where τ is the distance between the two nearest
neighbours with the greatest separation in the training data. Subsequently,
all novel instances whose nearest neighbours are at greater distances than
τ are classified as outliers.

• We have additionally implemented a modified version of the ocNN inWeka,
and denoted it as the scaled ocNN (socNN). Contrary to the ocNN, the
socNN classifier is capable of learning a model that accounts for the noise
in the training set.

• Subsequent research also explored the performance of the often extolled
one-class SVM [23]. However, due to the poor results which were generally
equivalent to those yielded by the ocNN, it is not included in the present
discussion.
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7.4.3 Classifier Assessment Criteria

As discussed in the previous section, this research considers the performance
of the classifier within two distinct scenarios. Within each of the scenarios,
namely S1 and S2, we considered the performance of the classifier according
to a set of criteria. These criteria are discussed in greater detail.

In particular, we examined the general performance of the classifiers across
all of the simulated detonation ranges. Performance in this category is particu-
larly important, as, in practice, the detonation ranges are largely unpredictable.
The results of this assessment are presented in Sections 7.5.1 and 7.6.1. In addi-
tion,we explored the performance of the classifierwithin two shorter detonation
ranges, the result of which is presented in Sections 7.5.2 and 7.6.2.

The performance of the classifier, as a function of distance, was also exam-
ined. The results of this comparison are detailed in Sections 7.5.3 and 7.6.3.

Finally, in light of the inherent challenge of distinguishing these two very
similar classes according to the four radioxenon isotopes, we were motivated
to explore an expanded CTBT feature space. Based on the significant role
held by meteorology in affecting the pollutant levels at the receptor site, we
surmised that the inclusion of meteorological features would improve the per-
formance of the classifiers. The results of our experiments with an expanded
feature space are provided in Sections 7.5.4 and 7.6.4. Indeed, subsequent
research by Bellinger and Japkowicz, in [3], further demonstrated that the
inclusion of a simple wind direction feature can significantly increase the
prospect of classifying challenging detonation events, and suggests the pre-
dictive power of meteorological features in general. In doing so, they presented
classification results from four complex simulated scenarios.

7.5 Results: Scenario 1

In this section, we present the results that were obtained according to the four
assessment criteria that were motivated in the previous section, on the first
classification scenario, S1. We commence our exploration of PR performance
by examining the Area Under the ROC Curve (AUC) scores produced by
each classifier over the 23 detonation ranges.

7.5.1 General Performance

In this section,we present a general overviewof the performance levels of each of
the considered classifiers on the simulatedCTBT domain.More specifically, we
present an assessment of the five binary classifiers and the four one-class classi-
fiers, in terms of their AUC scores averaged over the 230 datasets that spanned
the 23 detonation ranges. In light of the fact that the SE events, which are to be
identified, will, in practice, occur at random and unpredictable distances, these
results are a particularly insightful overview of the general performance levels.
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Fig. 3 This figure displays the performance of the nine classifiers, in terms of their
AUC scores on the 230 generated CTBT datasets, in the form of a series of boxplots.

The results depicted in Figure 3 were compiled as a series of boxplots; one
for each classifier.

The solid lines that bisect the boxes represent the median AUC score
produced by the particular classifier. The box itself indicates the distribution
of the middle half of the AUC scores produced by the classifier. Thus, it
stretches from the 25th percentile (at the lower hinge) to the 75th percentile
(at the upper hinge). The boxes that are evenly divided indicate that the
classifier’s scores are evenly distributed throughout the central region. This
is, indeed, the case for AA and NB.

The fact that there is no box around the median indicator for the SVM,
suggests that nearly all of the AUC results were equivalent, and in this case,
approximately 0.5. The relatively large number of circles extending up from
the median, individually identify outliers. This suggests that, in general, the
SVM classifier performed poorly, but that it occasionally produced anoma-
lously strong results, which stretched slightly beyond 0.8.

Alternatively, the scenario where the median does not produce an even
bisection of the box indicates that the distribution of the inter-quartile range
is skewed. This is the case, for example, with PDEN, where the upper-quartile
is large, indicating that the points composing the upper-quartile are spread
over a larger distance.

The dashed lines, or whiskers, stretch to either the maximum and minimum
values, where outliers do not exist, or to 1.5 times the range of the inter-
quartile region in scenarios with outliers, such as in the case with the SVM
classification results.
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The SVM classifier is, surprisingly, by far the worst-performing classifier
on this data, and in spite of its bias, it is, on average, worse than the OC
classifiers, AA and socNN. This is reiterated in Table 2, which contrasts the
mean AUC scores of AA and socNN as 0.656 and 0.603, respectively, with
the mean value for the SVM classifier being 0.528. Moreover, all four OC
classifiers appear to be superior to the SVM when considered in terms of
their maximum AUC scores.

When assessing the classifiers according to the boxplot, the median value
provides a good indication of their performances, in general. However, most
interesting are the ranges of the inter- and outer-quartiles along with the
presence of the outliers, when combined with a high median value, as these
components provide a strong indication of how likely it is that the classifiers
will reproduce the median result.

In these terms, the binary classifier, the MLP, stands out as the superior
classifier, with J48, NN, and NB contending for the intermediate positions.
The results posted in Table 2 confirm that the MLP is the strongest of the
classifiers considered here. Furthermore, it indicates that the J48 and NB are
very similar, and that the NN is the fourth-ranking binary classifier according
to the mean and maximum scores. However, the NN is second when ranked
according to the minimum AUC scores.

Table 2 This table displays the general classification results, in terms of AUC.

Mean Max Min STDV

NB 0.772 0.939 0.504 0.074
MLP 0.869 0.976 0.674 0.067
NN 0.741 0.913 0.584 0.071
J48 0.774 0.98 0.500 0.148
SVM 0.528 0.813 0.500 0.065
ocNN 0.540 0.875 0.496 0.087
PDEN 0.487 0.943 0.182 0.156
socNN 0.603 0.842 0.405 0.094
AA 0.656 0.970 0.251 0.140

Notably, of the set of OC classifiers, the PDEN produced the most variable
range of the AUC scores. It is our suspicion that this variability resulted from
the PDEN’s generation of an artificial second class in its training process.
However, further exploration of this matter is required.

In general, the AA classifier is identified as the strongest OC classifier,
both with respect to its mean and median values. While the socNN classifier
achieved the second highest mean, it is more stable than the AA, and does
not produce any anomalous results. Indeed, the socNN has a lower standard
deviation, and furthermore, its boxplot spans a smaller range.
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7.5.2 Performance on Short- and Long-Range
Detonations

In Figure 4, we present the AUC results produced over two detonation ranges
of particular interest. The Boxplot on the left in this figure contains the
results for the datasets that included detonations ranging from 1,000 km and
5,500 km, while the Boxplot on the right has those with detonations between
5,500 km and 10,000 km. Together, these plots contrast the performance of
the individual classifiers in the various detonation ranges. This experimental
setup demonstrates one technique through which the performance of various
receptor network topologies can be examined. For example, if PR within the
second range is found to be a considerable challenge, the shorter range may,
perhaps, be considered an upper bound on the acceptable distance between
receptors.

There are two factors at play when hypothesizing about classifier perfor-
mance within these ranges. Intuitively, detonations closer to the receptor site
will be more visible at the receptor site, provided the meteorological condi-
tions are such that the emissions are advected in the direction of the receptor.
Conversely, detonations that occur farther afield are likely to have a smaller
influence on the pollutant levels at the receptor site, leading to a more chal-
lenging classification problem. On the surface, then, it appears that nearby
detonations should be easier to detect. Indeed, the very near detonations are
often easily identifiable. However, the scenario is made more complex by the
fact that during the simulation, the industrial source was positioned approx-
imately in the middle of the shorter range. Thus, there was, in a sense, a
great deal of competing background noise to distort the signal.
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Fig. 4 In this figure, Boxplot (i) displays the performance of the nine classifiers, in
terms of their AUC scores for detonations occurring between the distances of 1,000
km and 5,500 km, and Boxplot (ii) displays their performances for detonations
between the distances of 5,500 km and 10,000 km.
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Indeed, Figure 4 demonstrates that within this scenario it is possible for the
performance of the classifiers to improve when detonations occur at greater
distances. However, the fact that this only occurred for the binary classifiers,
highlights the importance of the second class in the learning process. It turns
out that the majority of the binary classifiers are able to, through the training
process, utilize the low concentration instances of the detonation class, which
resulted from explosions at great distances, to specialize their models to the
counter-intuitive point where many of the instances with low concentrations
were correctly identified as explosions.

Alternatively, the figure suggests that neither the one-class classifiers, nor
the SVM, were able learn a model with this characteristic. Moreover, the
SVM exclusively produces AUC scores of 0.5 within the second range, and
the ocNN’s performance was nearly equivalent. Finally, at greater distances,
the PDEN’s performance fell even further, with only a minute number of
instances exceeding an AUC of 0.5.

Within the shorter range, it is notable that the stronger OC classifiers,
namely the AA and socNN, are very comparable with most of the binary
classifiers. However, the distinction in favour of the binary learners is empha-
sized for the larger detonation range.

7.5.3 Performance as a Function of Distance

In this sub-section, we present the performance of the classifier as a function
of distance, where the performance is assessed both according to the AUC
and the False Positive Rate (FPR).

A false positive occurs when the classifier mislabels a novel instance as a
member of the positive class (in this case, a member of the background class),
when it is, in fact, a member of the negative class (specifically, a member of
the SE event class). Thus, the FPR is the total number of false positives over
the total number of negative instances. As a metric, the FPR provides insight
into whether the model is overly biased towards the positive class, which is
a significant risk when the problem is extremely imbalanced.

These results are particularly interesting, as they provide greater insight
into performance trends. Moreover, these suggest a performance scale for
successively sparser receptor networks, and enable the interested parties to
weigh the cost of receptor stations against the probability of detection.

The performance plots depicted both in Figure 5 and Figure 6 were pro-
duced by calculating the ensemble mean of each classifier’s performance at the
23 detonation ranges, and then through the extrapolation of a performance
function.

Within Figure 5, the MLP classifier is identifiably the superior classifier
when compared to the remaining four binary learners in terms of the AUC,
across the range of detonation distances. In addition, it is not subject to the
abrupt fluctuations that J48, and to a lesser extent, NB, incur.
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Fig. 5 In this figure, the plot on the left displays the performance of the five binary
classifiers, in terms of their AUC scores, as a function of distance. Similarly, the plot
on the right displays the performances of the four one-class classifiers as a function
of distance, according to their AUC scores.

All of the classifiers, with the SVM appearing as the sole exception, have
notable hulls in their performance curves that extend over varying distances
and to distinct depths. In each case, a slow descent begins immediately, and is
subsequently accompanied by a slow ascent. Alternatively, the SVM classifier
suffers from a similar initial decline. However, it fails to recover from the
degradation at greater distances.

In each case, the position of the performance hull roughly corresponds
to the radial distance between the industrial source of radioxenon and the
receptor site. Thus, this suggests that detonations occurring at approximately
the same radial distance as that of the primary background emitter are a
significant challenge for the detection systems.

The plot on the left in Figure 5 confirms our previous findings, which
identified the MLP as the top classifier in this domain, the SVM as the
worst, and the remaining three classifiers as contenders for the inner rankings.
Indeed, while there are notable differences in the AUC plots for the J48,
the NB, and the NN, the fact that their functions cross at numerous points,
prohibits the derivation of a general ranking over the entire range of distances.
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Fig. 6 In this figure, the plot on the left displays the performance of the five binary
classifiers, in terms of their FPR scores, as a function of distance. Similarly, the plot
on the right displays the performances of the four one-class classifiers as a function
of distance, according to their FPR scores.

The plot on the right in Figure 5 presents the performance of the one-class
learners as a function of distance. In general, the plot demonstrates that all
of the one-class classifiers follow a similar downward trend from their initial
peaks, which occurred between 0.8 and 0.9, towards, or beyond in the case
of the PDEN, an AUC of 0.5.

Moreover, the performance functions are broadly divisible into two cate-
gories. Both the ocNN and the PDEN descend relatively quickly, while the
AA and the socNN degrade in a slower, more linear fashion. Therefore, the
AA and the socNN are the more suitable of the four one-class learners, with
the AA appearing generally superior to the socNN.

The performance of the nine classifiers, measured in terms of the FPR
metric, are plotted as a function of distance in Figure 6. In this figure, the
plot on the left emphasizes the significant challenge incurred by the binary
learners when the detonations occur at a distance similar to the noise source.
Although we previously identified the MLP as the strongest binary classifier
on this domain, for a relatively broad range (roughly between 25,000 km and
65,000 km), the vast majority of instances, which are truly of the detonation
class, were assigned to the background class. The results are similar for J48.
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Interestingly, NB has the smallest area under its FPR curve. Thus, it least
often identified members of the SE event class as background noise. While
we do not consider the FPR results to be individually sufficient for model
selection, they do provide some very intriguing insight into the behaviour of
the classifiers.

The trends for the one-class classifiers in the plot on the left follow much
the same trends previously seen in Figure 5. In particular, the AA and the
socNN are superior to the PDEN and the ocNN. However, the distinction
between the AA and the socNN is less clear.

7.5.4 Expanded Feature-Space

Through our exploration of this most interesting of classification problems,
we recognized both the inherent challenge presented in the classification of SE
events that are interwoven in background noise, and the role of meteorology
in effecting the very noise levels that make the task so difficult. Our extensive
consideration of this application domain has led us to identify the particularly
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Fig. 7 This figure contrasts the performance of the binary classifiers, in terms of
the AUC as a function of distance, on the standard feature-space (see the plot on
the left), and when the feature-space is extended to include an assessment of the
wind direction (see the plot on the right).
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strong relationship between the wind direction and pollutant levels at the
receptor, which suggests a possibly informative feature.

By expanding the standard CTBT feature space to include wind direction,
we have produced a significant increase in the AUC. In particular, the top
classifiers (MLP, AA, socNN), now demonstrate the ability to detect det-
onations that, when considered solely on the basis of the four radioxenon
measurements, fit into the background distribution with a high probability.
This fact is, indeed, depicted for many of the binary and one-class classifiers
in Figure 7 and Figure 8.

In particular, while the depth to the hull in the performance of the MLP
decreases only slightly, the J48’s hull is entirely removed when the wind
direction feature is added. Thus, the J48 classification ceases to be affected
by the detonation distance when the new feature is included. In addition, its
mean AUC is significantly improved.
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Fig. 8 This figure contrasts the performance of the one-class classifiers, in terms
of the AUC as a function of distance, on the standard feature-space (see the plot
on the left), and when the feature-space in extended to include an assessment of
the wind direction (see the plot on the right).
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Fig. 9 This figure utilizes a series of boxplots to compare the performance of the
nine classifiers and the standard feature-space, and with the extended feature-space,
which is augmented by a wind direction indicator.

The NN and SVM classifiers also benefit from the inclusion of the wind
direction feature. However, the new feature has a slightly negative effect on
the NB. It has been noted in the literature, that many of the PR algorithms,
including the MLP, SVM and NB may benefit from normalization of the
features [10, 27]. Thus, it is conceivable that the performance of these classifier
may be improved to some degree. However, these results provide a good
baseline from which the individual classifiers can be compared.

By expanding the feature-space to include the wind direction, the OC
learner, socNN, improves significantly, and becomes, in general, the top
learner amongst its peers. The classifier, AA, also improves as a result of
the new feature. However, its AUC scores do not increase to the same extent
as the socNN.

Similar to the socNN, the PDEN’s initial performance is lower in the newly
expanded feature-space. However, the majority of its performance function is
elevated. Finally, the ocNN benefits the least from the new feature, although,
its initial performance is improved.



186 B.J. Oommen and C. Bellinger

Thus, in the worst case, the wind direction feature produces marginal
improvements in the performance of the four OC learners. However, it signif-
icantly improves both the AA and the socNN’s ability to perform in scenarios
where the detonations occur at distances equivalent to, and beyond the radial
distance to the background source.

In Figure 9, a series of boxplots are utilized to facilitate the comparison of
classifier performance in the two feature-spaces. Indeed, these results confirm
the trends that we have previously identified. Particularly noteworthy is the
depiction of J48’s performance; this plot emphasizes both the significant in-
crease in the J48’s median AUC score, and the impressive stabilization of its
classification results when the wind direction feature is added. The benefits
to the SVM are also well visualized in this figure.

It is, indeed, well demonstrated in Figure 7, Figure 8, and Figure 9 that
the additional information has assisted many of the classifiers to overcome
the significant challenges inherent in identifying SE events within the field of
background noise.

7.6 Results: Scenario 2

In this section, we present the results that were produced on the four assess-
ment criteria that were motivated, and utilized in the previous sections. In
this section, however, we explore the very intriguing classification scenario,
which we previously denoted S2. This exploration follows the same struc-
ture that was previously applied in the exploration of the first classification
scenario. Thus, we begin by examining the AUC scores produced by each
of the one-class classifiers over the 23 detonation ranges; we then proceed
to consider the performance over the two successive, smaller distances, the
performance as a function of distance, and finally the benefit of expanding
the feature-space to include an additional wind direction feature.

7.6.1 General Performance

In this section, we present a general overview of the performance of the set
of one-class classifiers on the simulated CTBT domain. More specifically, we
present an assessment of the four one-class classifiers, in terms of their AUC
scores on the 230 datasets that covered the 23 detonation ranges.

Once again, in light of the fact that the SE event will, in practice, occur at
random and unpredictable distances, these results are particularly insightful.

The results that are depicted in Figure 10 were compiled as a series of
boxplots; one for each classifier. In addition, Table 3 contains a compilation of
the mean, maximum, minimum and standard deviation of the each classifier’s
overall results.
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Fig. 10 This figure displays the performance of the four classifiers, in terms of
their AUC scores on the 230 generated CTBT datasets, in the form of a series of
boxplots.

Table 3 This table displays the general classification results, in terms of AUC.

Mean Max Min STDV

ocNN 0.505 1 0.496 0.042
PDEN 0.507 1 0.075 0.185
socNN 0.587 1 0.292 0.171
AA 0.621 1 0.024 0.225

Our assessments of both Figure 10 and Table 3 reveal that, similar to our
findings on the S1 scenario, the AA classifier is superior, in terms of its mean,
and median scores, to the other OC classifiers. Indeed, on this, which is a more
challenging task, its mean andmedian values are only slightly lower than in the
previous task. However, within this second scenario, it has the lowestminimum
AUC scores, which appear as outliers in the boxplot. In addition, it is extremely
unstable, with results ranging from perfect to near zero.

The socNN classifier ranks second after the AA according to its median
and mean, and was considerably more stable, while the ocNN and PDEN
classifiers produced values that were near or below 0.5.

7.6.2 Performance on Short- and Long-Range
Detonations

In Figure 11, we present the results produced over two detonation ranges of
particular interest. Specifically, the Boxplot on the left in the figure contains
the results for the datasets that include detonations between the distances of
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Fig. 11 In this figure, Boxplot on the left displays the performance of the four
classifiers, in terms of their AUC scores for detonations occurring between the
distances of 1,000 km and 5,500 km, and the Boxplot on the right displays their
performances for detonations between the distances of 5,500 km and 10,000 km.

1,000 km and 5,500 km, while the Boxplot on the right has those with deto-
nations between 5,500 km and 10,000 km. Together, these plots demonstrate,
contrary to the previous results, that there is little change in performance at
greater distances.

7.6.3 Performance as a Function of Distance

In this sub-section, we present classifier performance as a function of distance.
As in the previous section, performance is assessed both according to the AUC
and the FPR.

The AA and socNN are, once again, roughly identifiable as the best of the
four classifiers in Figure 12 and Figure 13. However, all of the classifiers, with
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Fig. 12 This figure displays the performance of the four one-class classifiers as a
function of distance, according to their AUC scores.
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Fig. 13 This figure displays the performance of the four one-class classifiers as a
function of distance, according to their FPR scores.
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Fig. 14 This figure contrasts the performance of the one-class classifiers, in terms
of the AUC as a function of distance, on the standard feature-space (see the plot
on the left), and when the feature-space is extended to include an assessment of
the wind direction (see the plot on the right).
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the exception of ocNN, which rapidly converges to 0.5, suffer from significant
and essentially random fluctuations. These fluctuations in performance sug-
gest that the classifiers’ results were as dependent on the nature of the SE
events in the 230 datasets, as on the distance at which the events originally
occurred.

7.6.4 Expanded Feature-Space

In this final section, we consider the benefits of extending the feature space to
include a wind direction indicator. In Figure 14, both the original plot of the
four classifiers’ performances as a function of distance, and their performances
on the extended feature-space are plotted. For an alternate view, the com-
parison is composed of a series of boxplots in Figure 15.

These figures illustrate that both the AA and the socNN significantly ben-
efit from the expanded feature-space. Indeed, the socNN benefits the most,
as it becomes superior to the AA for the vast majority of distances, and the
variability in its results are significantly dampened.
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Fig. 15 This figure utilizes a series of boxplots to compare the performance of the
four classifiers and the standard feature-space, and with the extended feature-space,
which is augmented by a wind direction indicator.
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7.7 Discussion

In this section, we consider the results previously reported for the OC
classifiers in comparison to those reported for the binary learners. In par-
ticular, Section 7.7.1 compares the two classification strategies within the
first scenario, namely S1. Alternatively, the OC classifiers are considered
in comparison to the set of standard binary classifiers on scenario S2 in
Section 7.7.2.

7.7.1 Results: S1

The relatively low mean and median AUC scores produced by the OC clas-
sifiers, combined with the considerable variability in their results on the
standard CTBT feature-space, particularly in comparison with the top bi-
nary learners, clearly illustrate the many challenges inherent in applying OC
learning to the derivation of a binary classifier. However, Hempstalk et al., in
[13], previously identified similar comparisons between binary and OC learn-
ers as “näıve” comparisons, when applied to scenarios that are accurately
identifiable as OC problems.

In particular, in so-called OC problems, such as the detection of SE events,
the second class is inherently ill-understood due to the fact that a character-
istic set cannot be drawn from it. Thus, training and testing a binary learner
as if one could draw a representative set from the second class, which is gen-
erally assumed when training a binary classifier, provides an upper bound on
the classifier’s future performance.

The key differences in the performance of the two forms of classifiers is well
illustrated in Figures 4 and 5. While the OC classifiers are very competitive on
the initial radial ranges, when the detonation occurs further afield, their AUC
scores drop considerably in comparison to all of the binary classifiers, with the
exception of the SVM. The initial success of the OC classifiers suggests that
they are very capable of associating anomalously high levels of radioxenon
with the SE event class.

However, the binary learners are not only well adapted to classifying
anomalously highly levels as members of the SE event class, through the
binary learning process they are also capable of drawing on the anomalously
low levels, which commonly result from detonations that occurred well be-
yond the radial distance to the background source, to specialize their decision
boundaries such that similar events are recognized as belonging to the SE
event class in the future.
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The results of expanding the standard CTBT feature-space to include an
indicator of the prevailing wind were, in general, very favourable, and lead to
improved AUC scores for most of the classifiers, with the NB being the sole
exception.

In its essence, the wind direction feature enabled the classifiers to learn the
direction of the background source. As a result, the classifiers were able to
identify detonations, which occurred at similar radial distances to the receptor
site as the background emissions, and thus, had signatures that were similar
to the background levels, but were transported from a different direction.
This result is identified very clearly in Figure 7, and suggests that the further
expansion of the feature-space might additionally improve performance.

7.7.2 Results: S2

A considerable portion of the previous analysis is applicable to this second,
more challenging, classification scenario. Most importantly, the benefits of
the extended feature-space were witnessed within S2 as well. However, due
to the nature of the problem, only the OC classifiers were applied to this first
attempt at performing PR within this new domain.

As a result of the formulation of the problem, we proposed the use of
standard OC classifiers as unsupervised learners, and relied on inner mech-
anisms of the individual classifiers to facilitate the derivation of a model
that segregated those instances of the training set that were accurately of
the background class from the näıvely/erroneously labelled instances of the
outlier class.

It is clear that the instability in performance that is depicted with respect
to distance, and which is significantly more apparent in S2 than S1, results
both from the erroneous instances in the training sets of S2, and the vari-
ability in classification challenges presented by the few members of the SE
event class in the test sets. Indeed, the generation of random SE events over a
domain as vast as the simulated CTBT domain, will inevitably produce both
very easy, and nearly impossible classification tasks. Thus, when randomly
including only a minute number of these events in the test sets, it is probable
that performance on the SE event class will fluctuate significantly. This is, of
course, why a large number of receptors are required in the global receptor
network.

However, while the ensemble mean performance fluctuates considerably
over the successive radial ranges, when considered in terms of the overall
means, or medians, the performance of the OC classifiers on the S2 task is
only slightly lower than on the S1 task. In addition, this is true if in Figures
5 and 12, we were to conduct our analysis according to a series of best-fit
lines.

Finally, as is depicted in Figure 14, in addition to elevating the performance
of the top classifiers, the inclusion of the wind direction in the feature-space
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significantly dampens the variability in their performance. Moreover, Saey, in
an extensive study of background radioxenon concentrations in Europe and
North America, found that a few outliers representing significant increases in
the background concentrations can be expected [21]. These outliers are at-
tributed to alternate background sources, and can be assumed to have arrived
at the receptor site via short-lived, and anomalous alterations in meteorol-
ogy. Based on the standard CTBT feature space, such events, undoubtedly,
suggest the detonation of a nuclear weapon. However, provided a sufficient
quantity of training data is available, it is conceivable that PR systems func-
tioning with the wind direction feature may appropriately identify outliers of
the background class.

7.8 Conclusions

This book chapter is a comprehensive overview of the work that is reported
on the recognition of Stochastically Episodic events (like clandestine nuclear
explosions), which was earlier reported as in [5] and [4]. In this research
endeavor, we extended the frontiers of novelty detection through the intro-
duction of a new field of problems open for analysis. In particular, we noted
that this new realm deviates from the standard set of one-class problems
based on the presence of three characteristics, which ultimately amplify the
classification challenge. They involve the temporal nature of the appearance
of the data, the fact that the data from the classes are “interwoven”, and that
a labelling procedure is not merely impractical - it is almost, by definition,
impossible.

To set the background, the paper first contained a brief overview of two-
class and one-class classification methods. Thereafter, as a first attempt to
tackle these problems, we presented two specialized classification strategies
as demonstrated within the exemplary scenario intended for the verification
of the CTBT. Here, we applied the simulation framework presented in [6],
to generate CTBT inspired datasets, and demonstrated these classification
strategies within the most challenging classification domain. More specifically,
we have shown that OC classifiers can be successfully applied to classify SE
events, which are unknown, although present, at the time of training.

Finally, we have added a weighting parameter to the OC nearest neighbour
algorithm, thereby significantly increasing its performance on our experimen-
tal domain. We have also demonstrated that the expansion of the CTBT
feature space significantly improves classifier performance on our simulated
data, thus, motivating further exploration of the expansion of the standard
CTBT feature space to include meteorological measurements [5], [4]. This
result was further verified in [3] based on a complex set of new simulation
scenarios.
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