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Abstract. Monitoring the levels of radioxenon isotopes in the atmo-
sphere has been proposed as a means of verifying the Comprehensive
Nuclear-Test-Ban Treaty (CTBT). This translates into a classification
problem, whereby the measured concentrations either belong to an
explosion class or a background class. Instances drawn from the explo-
sions class are extremely rare, if not non-existent. Therefore, the result-
ing dataset is extremely imbalanced, and inherently suited for one-class
classification. Further exacerbating the problem is the fact that the back-
ground distribution can be extremely complex, and thus, modelling it us-
ing one-class learning is difficult. In order to improve upon the previous
classification results, we investigate the augmentation of one-class learn-
ing methods with clustering. The purpose of clustering is to convert a
complex distribution into simpler distributions, the clusters, over which
more effective models can be built. The resulting model, built from one-
class learners trained over the clusters, performs more effectively than a
model that is built over the original distribution. This thesis is empiri-
cally tested on three different data domains; in particular, a number of
artificial datasets, datasets from the UCI repository, and data modelled
after the extremely challenging CTBT. The results offer credence to the
fact that there is an improvement in performance when clustering is used
with one-class classification on complex distributions.

1 Introduction

Compliance verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT)
provides a challenging and an interesting domain for classification. Amongst the
technologies used for compliance verification, namely hydro acoustic, infrasound,
seismic and radionuclide monitoring [17], the latter provides the only means for
unambiguously discriminating a low-yield, clandestine nuclear explosion from
other, background events. Thus, in support of the CTBT, monitoring stations
with the capability of sampling and measuring the active concentration of four
radioxenon isotopes, namely 131mXe, 133Xe, 133mXe, and 135Xe by SPALAX
technology [15,5], have been installed at numerous sites across the globe.
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The verification challenge lies in discriminating background measurements
from those derived from anthropogenic nuclear explosions. The problem is fur-
ther exacerbated by the fact that measurements from explosions are, in essence,
non-existent. Thus, the resulting datasets are, at best, highly imbalanced.

Traditional classification algorithms, which are discriminatory in nature since
they rely on discriminating between all data classes to build models, are known
to suffer when presented with imbalance [11]. As a result, one-class (OC) clas-
sifiers become more appealing. These methods use data from a single class to
build a model, and are based on recognition, since they learn to recognize data
from a particular class, and reject data from all other classes.

For the purposes of compliance verification,OC classifiers aim to learn a descrip-
tion of background data. However, this data comes from a highly complex distri-
bution, andmodelling all the various nuances in order to correctly recognize/reject
future instances becomes increasingly difficult. This inevitably leads to ineffective
performance. A remedy to this problem is to cluster the complex distribution into
simpler distributions, and buildOCclassifiers on these clusters.The resulting com-
bined model should perform more effectively than if we had trained OC classifiers
on the original distribution. This idea is illustrated in Figure 1.

In order to examine the effects of clustering for simplifying complex distribu-
tions, we conduct experiments using two different OC classifiers, an autoassoci-
ator (AA) [9] and a probability density estimator (PDEN) [7], on three different
types of datasets: two artificial datasets, seven datasets from the UCI reposi-
tory, and data modelled after the challenging CTBT domain. The results offer
evidence in support of the fact that clustering increases the performance of OC
classifiers when dealing with complex distributions.

The remainder of the paper is structured as follows. Section 2 contains an
overview of previous work in the field of OC classification, and the use of classi-
fication for the verification of the CTBT. A description of the basic framework of
the system and how classification is done within it, along with a mathematical for-
mulation and analysis of the framework are presented in Section 3. The artificial
dataset, the UCI datasets and the CTBT data are described in detail in Section 4.

A Complex Multimodal Distribution

Cluster into simpler

distributions

Build one-class

model over each

cluster

Final classi�ier composed of all models

Fig. 1. Framework for One-class classification using Clustering
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The experimental framework is described in detail in Section 5. The results of the
experiments are presented and discussed in detail in Section 6. Finally, we provide
concluding remarks and possible directions for further work in Section 7.

2 Related Work

This section is divided into three parts. In the first part, we provide an overview
of OC classification. This is followed by an overview of classification based veri-
fication of the CTBT and the data itself.

One-Class Classification: Many real-world situations are such that it is only
possible to have data from one class, the target class ; data from other classes, the
outlier classes, are either very difficult or impossible to obtain. Examples of such
domains include those in which there are almost an infinite number of instances
from the outlier classes, such as in typist recognition, or those in which obtaining
instances from the outlier classes is dependent upon the occurrence of a rare
event1, such as the detection of oil spills [10], the inclusion of journal articles for
systematic reviews [13], or, as in our particular case, the verification of the CTBT
by measuring concentration of radioxenon isotopes. A traditional approach to
OC classification is to use density estimation. This is performed by attempting
to fit a statistical distribution to the data from a single class (the target data),
and using the learnt density function to classify instances as belonging either to
the target class (high density values), or to the outlier class (low density values).
Parametric approaches rely on reliably estimating the distribution of the data
beforehand, a challenging and impractical task given that most real-world data
takes a complex distribution. An alternative approach to parametric techniques
would be to use non-parametric techniques, such as Parzen Windows. But, as
the dimensionality of the data increases, these methods suffer from the well
known curse-of-dimensionality problem, whereby the computational complexity
for density estimation increases drastically.

There are algorithms designed specifically for OC classification. An example
of a OC classifier is the AA, which can be thought of as a compression neural
network, where the aim is to try to recreate the input at the output, with the
compression taking place at the hidden layers. Hempstalk et al., in [7], describe a
method, PDEN, for estimating the probability density function of a single class
by first obtaining a rough estimate of the density of target class, generating
an artificial class based on it and then performing binary learning. Yet another
example of a OC classifier is the OC Support Vector Machine (OCSVM) [12].
OCSVMs assume the origin in the kernel space to be the second class, and,
subsequently, learn a boundary that separates the target class from the origin.

Classification-Based Verification of the CTBT: The CTBT was originally
introduced to the Machine Learning (ML) community in the form of an open

1 It is likely that the outlier class for classification is the target class in reality. However,
we use the term target class to denote the majority class, and it may or may not be
the intuitive target class.
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data mining competition at ICDM 2008 [15]. The competition invited teams to
partake in building classification models from a training set that was provided
by the Radiation Protection Bureau of Health Canada (HC). The models were
subsequently submitted, and assessed on a blind test set, which was similarly
produced by HC.

The competition’s data setwas composedofmeasured concentrations of 131mXe,
133Xe, 133mXe, and 135Xe, taken from five geographically distinct locations, and
synthesised explosiondata. The competition suggested a number of different tasks,
however, the most practical of these involved building a separatemodel for each lo-
cation (herein referred to as receptor sites). The top results ranged from anAUC of
0.75 to 0.83, and applied a series of sampling strategies in conjunction with binary
classification techniques, such as SVM.

Subsequent to the competition, HC continued to refine their data set, and
explore the application of ML techniques for the verification of the CTBT. To the
best of our knowledge, the most current results were published by Stocki et al.,
in [16]. They compared the performance of five off-of-the-shelf binary classifiers
to a linear discriminator, and found that it was outperformed by many of the
ML algorithms.

Finally, Bellinger and Oommen, in [3], argued that the problem of CTBT
verification is inherently a OC classification problem. Thus, the task should be
considered under that guise (i.e., the model must be learned from the background
class alone). In particular, explosions are, for all practical purposes, non-existent,
yet, due to the significant variability in the environment, the possible release sce-
narios and locations, the explosion-space is vast. Thus, an impractical number
explosion instances would be required in order to accurately model the distribu-
tion. As a result, this work continues to focus on OC classification solutions to
the verification of the CTBT. They found that AA, with an ensemble mean AUC
of 0.656, produced the best result. A low result that highlights the difficulty of
performing OC classification in this very challenging domain, and the need for
further research.

3 Framework: Description and Analysis

The framework consists of two parts: the OC classifier used to model the data,
and the clustering algorithm which clusters the data. Training is a two step
process; cluster the given data using the clustering method, and then build a
model using a OC classifier on each cluster. The final classifier is an ensemble
of all the various classifiers built on the clusters. Classification is done by a
simple method: If a datum is positively classified by at least one of the models,
then it is assigned to the target class; otherwise, it is classified as an outlier.
A mathematical formalization of this framework is presented in the following
subsection.
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3.1 Mathematical Analysis

Let X represent the set of instances under consideration, and ω be the class to
which they belong. What we are interested in obtaining is P (X |ω), the actual
posterior probability density function (pdf). Knowing this can allow for OC
classification by imposing a threshold τ on the value of this function, i.e.,

Classification(x ∈ X) =

{
target, if P (x ∈ X |ω) ≥ τ

outlier, otherwise
(1)

However, in practice, the best we can do is obtain an estimate P̂ (X |ω) of P (X |ω).
Given this estimate, and the classifier formulation given in Eq. (1), there are two
sources of error that can occur when using P̂ (X |ω):
εt: The probability that we classify a target instance as an outlier instance (a

false negative).
εo: The probability that we classify an outlier instance as a target instance (a

false positive).

Now, we cluster X to obtain c clusters Xi, where X =
⋃c

i=1 Xi. The clusters
may or may not be disjoint. We treat each cluster i as belonging its own unique
class ωi, having its unique pdf P (Xi|ωi). Performing OC classification on these
clusters is equivalent to obtaining an estimate P̂ (Xi|ωi) of P (Xi|ωi). As before,
each P̂ (Xi|ωi) will have its own two sources of error, namely εit and εio. Let ε

M
t

and εMo denote the error of the combined model, composed of the various models
built over the clusters.

Since each cluster represents a simpler distribution as compared to the original
distribution, a OC learner should be able to model a cluster more efficiently than
the original distribution2. In other words, ∀i ∈ [1, c], (εit ≤ εt) ∧ (εio ≤ εo), and
consequently, εMt ≤ εt and εMo ≤ εo.

We will now attempt to derive a relationship between the combined model
errors, εMt and εMo , and the error of the single model over X , εt and εo, for both
cases of error, using the assumption stated in the previous paragraph.

– Error of False Negatives: For the combined model, this will occur when a
target instance is rejected by all of the cluster models. Since the probability
of a single cluster model i rejecting a target instance is εit, and each εit is a
mutually independent event, the probability of the combined model rejecting
a target instance is

∏c
i=1 ε

i
t. Based on the aforementioned hypothesis, since

εit ≤ εt, we have
∏c

i=1 ε
i
t = εMt ≤ εt.

– Error of False Positives: For the combined model, this will occur when an
outlier instance is incorrectly accepted by any one of the cluster models.
Since the probability of a single cluster model i accepting an outlier is εio,
and each εio is a mutually independent event, the probability of the combined

2 It should be noted that since the cluster models are built only over their correspond-
ing clusters, the distribution of instances that they represent is not the original
distribution, but one represented by the corresponding clusters.
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model accepting an outlier instance is
∑c

i=1 ε
i
o. In order for εMo to be less

than or equal to εo, in the simplest case, if we assume all εio to be equal, a
necessary condition is that each εio ≤ εo

c . However, given that the distribution
of instances represented by the clusters is far simpler than the original, more
complex distribution, we assume that all εio will have values to ensure that∑c

i=1 ε
i
o ≤ εo.

A theoretical proof of the aforementioned statement will be impossible to ob-
tain, since the error probabilities are dependent on the original distribution, the
clusters, the various thresholds and the learning model, all of which are highly
variable in practice. Thus, in the subsequent sections, we will conduct a series
of experiments in order to obtain evidence that would support the clustering
approach.

4 Description of the Data Sets

This section provides a description the various data sets used in the experiments.
We begin by describing the artificial datasets, followed by the UCI datasets and
finally, the CTBT dataset.

Artificial Data: The purpose of using artificial data is to create an idealized
data distribution on which we can test the clustering approach to OC classi-
fication. By the very fact that it is artificial, we make no attempt to use the
results from these datasets to generalize over to practical, real-world problems.
However, using artificial data is an important step since it provides a starting
point towards more practical, empirical evaluation; it is but a means to an end.

There are 20,000 target instances and 125 outlier instances, all part of a bi-
variate, multimodal distribution consisting of four Gaussian distributions for the
target class, and five Gaussian distributions for the outlier class. The high level of
imbalance results in the dataset being conducive for OC classification. The stan-
dard deviation for both dimensions for the target class is 3. The target class has
the following mean vector: {(5, 5), (25, 5), (5, 25), (25, 25)}. The outlier distribu-
tion has following mean vector: {(15, 2.5), (15, 15), (15, 27.5), (2.5, 15), (27.5, 15)},
and a standard deviation of 2.

Clustering should improve performance in multimodal distributions, but what
of unimodal, or simple distributions? In order to investigate this, we use a second
artificial dataset. The target class is a unimodal, bivariate Gaussian, having a
mean of (15, 15), and a standard deviation of 2.75. The outlier class is modelled
by four bivariate Gaussians, with {(5, 15), (25, 15), (15, 5), (15, 25)} as the mean
vector. Both distributions are illustrated in Fig. 2.

UCI Datasets: Although data from the UCI repository does not display the
sort of class imbalance that is ideal for OC classification, we have included the
following six datasets for completeness; a) diabetes, b) heart disease, c) hepatitis,
d) ionosphere, e) thyroid disease, f) sonar, and g) WBCD.

CTBT Dataset : Finally, the CTBT data, which we have presented as our pri-
mary domain, is the result of a series of simulated industrial radioxenon emitters
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Fig. 2. The two artificial datasets. The larger, denser clusters represent the target
classes, whereas the smaller, sparse clusters are the outliers.

and random clandestine tests [2]. The simulation is required here as no “real”
clandestine test data exists. The modelling and simulation framework operates
in two phases. With respect to the CTBT domain, the initial phase models the
affect of industrial sources of radioxenon on the surrounding environment, and
accounts for rates of release and variables within atmospheric environment. The
second phase models the SE event, in particular, the release of a radioxenon from
low-yield, clandestine nuclear test. Alternatively, earthquakes, tsunami waves or
unpredicted releases of industrial pollutants might be modelled as SE events.
In this application, the framework models background noise-like non-SE pollu-
tants as Gaussian plumes, and SE contaminants as Gaussian puffs. Both of these
Gaussian models have been extensively studied in the literature, and, thus, their
strengths and weaknesses are well understood (see [1,14], for example).

5 Experimental Framework

The experiments are aimed at evaluating the performance of two OC classifiers,
AA and PDEN, and their clustered versions3. However, we use several binary
classifiers (Multilayer Perceptron, the Näıve Bayes classifier, C4.5 Decision Trees,
AdaBoost, Bagging and Support Vector Machines) in the experiments conducted
on the multimodal artificial dataset, simply to illustrate their performance on
highly imbalanced datasets. All classifiers run with their default settings. This
is done so as to prevent any bias resulting from the fine tuning the parameters
in order to obtain optimal results from specific datasets.

PDEN has also been implemented in WEKA [6], and we use the Gaussian
Estimator as the density estimator, and AdaBoost with Decision Stumps as the

3 We present the results graphically and omit the actual g-mean values, as the em-
phasis is more on the performance trends rather than on the values.
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class probability estimator. Both of these were used with default settings. The
binary classifiers have also been used in WEKA.

The experiments with the AA were implemented using the AMORE4 R pack-
age, and run in R5. One hidden layer was used for the AA in all the experiments,
and the number of training iterations was set to 50. The momentum value was
set to 0.99, and the learning rate to 0.01. The number of hidden units for the
artificial datasets were set to 4. For all other datasets, they varied from 1 to the
number of dimensions of the particular dataset.

The number of clusters for the multimodal artificial dataset was set to 4,
given the nature of the dataset. For the unimodal artificial dataset, the number
of clusters ranged from 2 to 10. For all other datasets, they varied from 2 to 20.

The performance measure we use is the geometric mean of the per-class ac-
curacies. It is given by g − mean =

√
acc1 × acc2, where acci is the accuracy

of the classifier on instances belonging to class i. By definition, the metric is
immune to class imbalances, and sensitive to the per-class accuracies. It is for
these reasons that we selected it for our experiments. Evaluation is done using
stratified 10-fold cross validation.

The threshold value for the AA is selected from the set of reconstruction
errors over the target training set which maximizes the g-mean over the target
and outlier training sets. Note that the outlier training set is used only for this
purpose; it has no effect on learning.

6 Experimental Results

Results on Artificial Data: For the multimodal dataset, the results presented
are from running a single AA, a single PDEN, clustered versions of both and
a number of binary learning algorithms, and are shown in Figure 3(i). For the
unimodal dataset, the results presented are from running only the non-clustered
and clustered versions of the OC classifiers6, and are shown in Figure 3(ii).

We stressed earlier that the results over these toy datasets should not be in-
terpreted as a generalization of our method over all domains, and we reiterate
that fact here. These datasets merely serve as an illustration of the proposed ap-
proach. The multimodal dataset represents a scenario that has a high likelihood
of being encountered in practice, i.e., a complex, multimodal target distribution
along with a high imbalance ratio between the targets and outliers (in our case,
an imbalance ratio of 160:1). The results demonstrate a marked improvement in
performance of the OC classifiers when clustering is used, especially in the case of
the AA, thus offering evidence in support for the use of clustering. The inherent
imbalance of the dataset also demonstrates the failure of the binary classifiers.

4 AMORE: A MORE flexible neural network package,
http://cran.r-project.org/web/packages/AMORE/index.html

5 The R Project for Statistical Computing, http://www.r-project.org/
6 Tests on binary classifiers are omitted as the purpose of these tests are only to
observe the effect clustering has on simpler distributions.

http://cran.r-project.org/web/packages/AMORE/index.html
http://www.r-project.org/
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Fig. 3. The left figure shows the results of various classifiers over the multimodal
dataset. The right figure compares the results of the clustered and normal versions of
the OC learners over the unimodal dataset.

However, if the distribution is relatively simple, clustering will have a detrimen-
tal affect. This can be attributed to the fact that training recognition models on
clusters of simple distributions leads to a model that overfits the training data;
the simple distribution contains all the information needed to build the model,
and clustering reduces that, thereby, leading to over-generalization over sub-
regions of the distribution. This in turn causes a higher rate of misclassification
of unseen instances.

Results on UCI Datasets: Although none of these datasets are ideal for OC
classification, the target classes have complex distributions, and, as a result, we
hypothesize that the a-priori clustering will improved the performance of the
OC classifiers. Indeed, our experiments confirmed our expectation. In particular,
the clustered version of PDEN performs better than the regular version on all
datasets, whereas the clustered version of AA performs better on four out of the
seven datasets.

Results on the CTBT Data:We use three CTBT datasets, different only with
respect to the level of imbalance between the target (background) and outlier
(explosion) classes. The results of the OC classifiers over the dataset with an
imbalance ratio of 10 : 1 are presented in Figure 4 (i), over the dataset with an
imbalance ratio of 100 : 1 are presented in Figure 4 (ii), and over 250 : 1 are
presented in Figure 5.

In conducting this research, our domain of primary interest has been that
of the CTBT. This is specifically a result of the fact that previous attempts
at appropriately applying OC classification methods to the problem have fallen
short. We attribute this to the significant degree of complexity present within
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Fig. 4. Results of the clustered and non-clustered (normal) autoassociator and PDEN
over the CTBT datasets
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Fig. 5. Results of the clustered and non-clustered (normal) autoassociator and PDEN
over the CTBT datasets

the background class of the CTBT domain, which inhibits the development of a
strong model for recognition-based classification.

With the above in mind, we hypothesized that the utilization of clustering
to divide this complex, multimodal distribution into a series of simpler distri-
butions would facilitate the development of a superior classification model for
the verification of the CTBT. The results presented in the previous section con-
firm this hypothesis. In particular, both of the explored OC classifiers perform
significantly better when they are assisted by an a-priori clustering phase. It is
further encouraging to note that the most significant gains were made on the
dataset with an imbalance ratio of 100 : 1 and 250 : 1, which are both more
challenging and realistic. This is particularly apparent in the case of PDEN.
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Due to similarities in the paradigms, in that RBF networks derive centres
and hidden unit widths using k-means clustering, we have subsequently applied
them to this data. Our preliminary results show a significant advantage to our
method. We attribute this to our focus on OC learning.

Statistical Analysis: We perform a statistical test on the results obtained
on all the datasets (the multimodal artificial, the UCI datasets and the three
CTBT datasets) with AA, PDEN and their clustered versions using a one-sided
Wilcoxon Signed Rank Test. This test is more powerful than the paired t-test, as
it does not assume normal distributions, assumes commensurability of differences
and is less affected by outliers [4,8]. A significance level of 0.05 was selected. The
results are presented in Table 1

Table 1. Results of the Wilcoxon Signed Ranks test for the clustered and regular
versions of the OC Classifiers. R+ represents the minimum sum of ranks, which is
taken for those with a positive difference. The minimum sum of ranks should be less
than or equal to 10, for N = 11.

Classifier R+ p-value α-value Significant?

Autoassociator 8 0.0122 0.05 yes
PDEN 0 0.0004 0.05 yes

The results support the fact that for both OC classifiers, the clustered versions
outperform the non-clustered classifiers. It is inherently obvious for PDEN, since
the clustered version outperforms the non-clustered PDEN over all datasets,
thereby giving a minimum sum of ranks as 0.

7 Conclusion and Directions for the Future

Data from many real-world domains come from highly complex distributions,
along with high ratios of imbalance between the various classes, presenting ideal
scenarios for OC classification. For it to be effective, a OC classifier must be
able to model the data from the target class as precisely as possible. In our
particular case, we were interested in modelling the background data for the
purposes of compliance verification of the CTBT. In order to facilitate this,
we investigated the use of clustering for dividing the complex distribution into
simpler distributions, which can be modelled more easily by the OC classifiers.
We tested the clustering method not just on our own problem domain, but on
artificial datasets and datasets from the UCI Repository. The results showed
that there is, indeed, an improvement in performance of the OC classifiers, and
this was reaffirmed by statistical analysis done using the Wilcoxon Signed Ranks
Test.

There are several interesting directions for future research into the use of
clustering for OC classification. For the experiments presented here, we used
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a single clustering algorithm, the k-means algorithm, a simple yet relatively
effective algorithm for clustering. With respect to the OC classifiers, we only
used AA and PDEN. In future experiments, we will explore the use of clustering
algorithms apart from k-means, such as k-medoids or the EM algorithm, different
OC classifiers, such as OCSVM and OC nearest-neighbour. It is also likely that,
depending on the problem domain, an ensemble of OC classifiers can be used on
the clusters, where a different classifier is trained on each cluster.

Research into the detection of anomalous concentrations of radioneuclides
in the atmosphere has implications beyond the compliance verification of the
CTBT; the recent nuclear crisis in Japan is a stark reminder of the perils of
reactor malfunctions. Although this crisis was caused by a natural event and was
therefore inherently obvious, in more subtle cases, efficient systems for anomaly
detection can act as early warning signals of impending reactor malfunctions,
thereby allowing for timely intervention for rectification and preclusion of large
scale, possibly catastrophic, damage.
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