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Abstract—This work examines the application of machine
learning to an important area of medicine which aims to diagnose
paediatric patients with β-thalassemia minor, iron deficiency
anemia or the co-occurrence of these ailments. Iron deficiency
anemia is a major cause of microcytic anemia and is considered
an important task in global health. Whilst existing methods, based
on linear equations, are proficient at distinguishing between the
two classes of anemia, they fail to identify the co-occurrence of
this issues. Machine learning algorithms, however, can induce
non-linear decision boundaries that enable accurate classification
within complex domains. Through a multi-label classification
technique, known as problem transformations, we convert the
learning task to one that is appropriate for machine learning
and examine the effectiveness of machine learning algorithms on
this domain. Our results show that machine learning classifiers
produce good overall accuracy and are able to identify instances
of the co-occurrence class unlike the existing methods.

I. INTRODUCTION

β-thalassemia minor (β-thal) and iron deficiency anemia
(IDA) are the most common causes of anemia with small
red blood cells (microcytic anemias) in paediatric population.
They are considered global health challenges with a significant
burden on health care systems of countries where IDA and β-
thal are common. Differentiating between β-thal and IDA has
important implications in β-thalassemia carrier screening as
well as therapeutic intervention for iron deficiency anemia.

The confirmatory diagnosis of these conditions may be
expensive, especially on a national-scale; thus, several lin-
ear complete blood count (CBC)-based equations have been
proposed to differentiate between these two conditions. In
particular, Mentzer observed that the so-called Mentzer index
can be applied to distinguish between β-thal and IDA [1].
Subsequently, several other CBC-based equations have been
developed [2, 3, 4, 5]. These methods, however, fail at distin-

guishing occurrences of β-thalassemia from the co-occurrence
of IDA and β-thalassemia. Thus, the applicability of these
equations in populations with high rates of iron deficiency and
β-thalassemia, such as the Mediterranean and some developing
countries, is limited [6]. Hence, a simple, easy to use test to
differentiate these patients, and also those with both conditions
on a large scale, is of significant benefit, as it may result in
earlier diagnosis and a significant reduction of the cost on
health care systems.

Machine learning offers great potential in this domain, as
the data distributions are complex and there is a high degree of
overlap between the β-thalassemia class and the co-occurrence
class. Whilst methods based on linear equations are unable
to sufficiently cope with such complexity, advanced learning
algorithms induce non-linear decision boundaries that have
proven to be effective on challenging classification tasks.

The existence of the co-occurrence class β-thal+IDA make
this a particularly interesting problem. In the machine learning
context, the co-occurrence problem fits into the domain of
multi-label classification [7]. In this inaugural work, two
popular methods for transforming the co-occurrence class to
a standard learning form and five classification algorithms
are tested. In general, our results show that machine learning
increases our ability to discriminate between patients with β-
thal and those with both β-thal and IDA.

II. RELATED WORK

A. Machine Learning

Standard machine learning algorithms induce a function
h : X → Ω mapping an input x to its corresponding class
ωi where ωi ∈ Ω = ω1,ω2, ...,ωl. Each instance belongs to
exactly one of the l classes in Ω. Alternatively, the objective
of multi-label learning is to induce a function h : X → Ω
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Fig. 1. PCA transformation of the microcytic anemia data

mapping an input x to its corresponding set of classes Ωi where
Ωi ⊂ Ω. Thus, an instance may belong to one or more classes.

This works initiates the discussion of machine learning in
the domain of microcytic anemia. Specifically, we examine
the benefits of applying standard multi-class classifiers to
distinguish between β-thal, IDA and their co-occurrence class
(in order to do this, we first perform the multi-label classifi-
cation technique known as problem transformation, which is
discussed in Section II-B). The five classification algorithms
employed are multilayer perceptron (MLP), support vector
machines (SVM), decision tree (J48), naive Bayes’ (NB) and
k-nearest neighbours (kNN). As these are standard learning
algorithms, we omit a discussion of them here and direct the
reader to [8].

B. Multi-Label Classification

Multi-label classification is a unique form of classification
problem in which a single instance may belong to more than
one class [7] (for example, in the classification of satellite
image of forest coverage [9]). In the domain explored here,
patients may have IDA, β-thal, or both. This complicates the
task of binary classification as the data-space can no longer be
partitioned into mutually exclusive subspaces.

Existing practices approach the task of multi-label learning
by either applying problem transformation or algorithm adap-
tion. Problem transformation converts the problem into one
or more single label tasks, and algorithm adaption extends
existing methods of single label classification to multi-label
classification. This work applies two popular problem trans-
formation methods; namely, the power set transformation and
the binary relevance transformation.

The label power set treats each unique label set as its
own class. A sample anemia dataset is depicted in Table I

TABLE I. EXEMPLARY MULTI-LABEL DATASET.

Instance Attributes Labels

1 x1 { IDA }
2 x2 { IDA, Thal }
3 x3 { Thal }
4 x4 { IDA, Thal }
5 x5 { Thal }
6 x6 { Thal }

TABLE II. POWER SET TRANSFORMATION OF EXEMPLARY

MULTI-LABEL DATASET.

Instance Attributes Labels

1 x1 { IDA }
2 x2 { IDA-β-thal }
3 x3 { Thal }
4 x4 { IDA-β-thal }
5 x5 { Thal }
6 x6 { Thal }

and its power set transformation in Table II. In the origi-
nal form, there are two classes, and instances 2 and 4 are
associated with both the IDA class the β-thal class. The
transformation adds an additional class that represents the co-
occurrence of IDA and β-thal. Thus, the label set becomes
Ω = {IDA,β−thal, (IDA β−thal)}. A significant drawback
of this transformation is its size complexity of min(n, 2k)
where n is the number of instances and k is the number of
classes. Given that there are only two classes, complexity is not
an issue here. In addition to the potential complexity, some el-
ements of the power set may be significantly underrepresented;
indeed, we see this issue in our data.

The binary relevance transformation creates a new dataset
for each class in the original classification task. The resulting
datasets are presented in Table III. This transformation creates
a set of one-versus-all tasks in which a classifier is induced for
each of the k datasets. If, for example, the two classifiers of the
BR transformation predict hIDA(xi) = 1, and hThal(xi) = 1,
then the final classification is {1, 1}⇒ {IDA, Thal}.

Unlike PS, the BR transformation method is not susceptible
to the explosion of classes in the learning task, nor is it
susceptible to the risk of class imbalance. However, by creating
a set of one-versus-all learning tasks, there is a significant risk
that any dependencies existing within the co-occurrence classes
will be lost. Moreover, the co-occurring instances appear as
positives in at least two of the derived datasets. Instance two,
for example, is listed as a positive in both datasets because it
co-occurs with both labels.

In spite of their limitations, these simple methods have
proven successful and remain popular as they can be applied
with off-the-shelf classifiers. For these reasons we utilize BR
and PS in this study. Alternative transformations that exist to
facilitate ranking, such as Ranking by pairwise comparison
[10] and Calibrated label ranking [11], may also prove bene-

TABLE III. BINARY RELEVANCE DATASETS PRODUCED FROM THE

EXEMPLARY MULTI-LABEL DATASET.

Ex Label

1 { ωIDA }
2 { ωIDA }
3 { ¬ωIDA }
4 { ωIDA }
5 { ¬ωIDA }
6 { ¬ωIDA }

Ex Label

1 { ¬ωThal }
2 { ωThal }
3 { ωThal }
4 { ωThal }
5 { ωThal }
6 { ωThal }
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Fig. 2. Plot of data with respect to RBC and Hb with the outlier removed.
The outlier had the values {Hb,RBC} = {6,33}.

ficial for medical domains and will be studied in future work.

III. DATA

The microcytic anemia domain of classification considered
here has two classes: IDA and β-thal. These conditions co-
occur in some patients, in which case both classes should be
predicted. The dataset utilized in these experiments is relatively
small, with 562 instances. Of these, 59.3% are labelled IDA,
23.3% belong to β-thal class and 17.4% are co-occurrence
instances (IDA+β-thal). It is clear from this that the class
distribution has a significant level of relative imbalance [12].
This is particularly acute between IDA and the co-occurrence
class. The data is composed of just 6 features of the form:
{sex, age,Hb,Hct,RBC,RDW} = {(m, f), I,R,R,R,R}.
Specifically, Hb is haemoglobin, Hct is hematocrit, RBC is
the red blood cell count and RDW is the red cell distribution
width.

A. Preprocessing and Analysis

1) Preprocessing: The size of the dataset rendered pre-
processing a simple task. The data was originally stored
in an Excel file, and was subsequently converted to CSV
format with one column per variable and one row per in-
stance. The final column specifies the class label. The PS
transformation resulted in a new dataset with three classes
Ω = {IDA, Thal, IDA + Thal}. The class priors for this
transformation match those in the original form. The BR
transformation resulted in two new datasets D{ωIDA,¬ωIDA}
and D{ωThal,¬ωThal}. The class priors are (76.7%, 23.3%) in
the former dataset and (40.7%, 59.3%) in the latter.

TABLE IV. RESULTS OF FIVE FEATURE ANALYSIS TECHNIQUES.
THESE SHOW THE RELATIVE IMPORTANCE OF EACH FEATURE.

Method Feature ranking order
cfsSubsetEval RBC, RDW

Attribute Correlation RBC, age, RDW, Hb, Hct
Gain Ratio RBC, RDW, Hb, age, Hct, gender

Symmetrical Uncertainty RBC, RDW, Hb, age, Hct, gender
Information Gain RBC, RDW, Hb, age, Hct, gender

2) Data Analysis: In this subsection we analyze the data
to gain insight into its complexity and its possible impact on
classification. Principle component analysis (PCA) along with
two- and three-dimensional plots of the data-space were used
for this purpose. In addition, we identified an outlier in the
data through this process.

In order to rank the impact of the features and determine
which features to plot in our analysis, we utilized five feature
selection methods; the results are presented in Table IV. In all
cases, RBC is found to be the most important feature, with
RDW identified as the second most important four out of five
times. Gender is removed by the feature selection methods and
ranked last by the methods that rank features. Indeed, this is
consistent with medical knowledge.

A PCA plot of the data is presented in Fig 1. This plot
presents eigenvector and eigenvalues in terms of the direction
and length of the red arrows and the data in the PCA-space.
This gives an indication of the relative position of the classes
and the overall complexity of the data. In order to increase
readability, we only plot a subset of the instances. The PCA
plot suggests that this is a complex learning task with IDA
having many subconcepts and a high degree of spread. In
general, the main concept of IDA is visibly separable from
β-thal and the co-occurrence class. However, many instances
of the β-thal class and the co-occurrence class are clustered at
the origin.

For further analysis, the top ranked features are plotted
in their two-dimensional data-space in Figure 2 and Figure
3. As is suggested by the PCA plot, the densest concept in
IDA appears quite separable from β-thal and IDA+β-thal,
whilst the others are almost entirely overlapping. In Figure 3,
various combinations of RBC, RWD, age and Hb are plotted
on the three axes in order to view the data from different
angles. IDA appears most separable in Fig 3 where RBC and
Hb are plotted. None of the two-dimensional plots display
features that cause β-thal and the co-occurrence to appear
overly separable. Adding the third dimension to the plots
increases the separability to a certain extent. Nonetheless, β-
thal and β-thal+IDA remain extremely challenging.

From our analysis, it is clear that data overlap is a major
challenge in this domain. In addition, the distributions are
relatively complex and the data is imbalanced. These three
facts are considered in our analysis of the final results.

IV. EXPERIMENTAL METHODOLOGY

Each algorithm was trained and tested on the BR and PS
transformed datasets using 10x10-fold cross-validation, as it
is recommended over 10−fold cross validation and 5x2−fold
cross validation for choosing between classifiers [13]. On
each fold of each iteration, the precision, recall, f-meausure

827827



0 2 4 6 8 10

6
8

1
0

1
2

1
4

RBC

H
b

IDA
IDA+Thal
Thal

0 2 4 6 8 10

5
1

0
1
5

RBC

A
g

e

IDA
IDA+Thal
Thal

Fig. 3. The RBC, Hb and age features of the microcytic anemia data.

TABLE V. WEIGHTED MEAN CLASSIFICATION RESULTS ON THE PS
TRANSFORMED DATA.

PS Precision Recall FM AUC
MLP 0.7278 0.8308 0.7212 0.9102
SVM 0.7392 0.8160 0.7356 0.8065
DT 0.7136 0.7576 0.7097 0.8001
IBK 0.6219 0.6410 0.6146 0.6919
NB 0.6193 0.7854 0.6486 0.8323

and area-under-the-ROC curve (AUC) are recorded. For each
metric, the mean of the 100 results produced over the 10
iterations of 10-fold cross-validation are reported, and the t-
test is used to evaluate the significance of the results for each
algorithm across the transformations and between the best two
algorithms within each transformation. Each classifier is tested
with its default Weka1 parameter set.

V. RESULTS

A. Weighted Mean Results

On the PS transformed dataset, AUC(MLP ) is signifi-
cantly better than all other methods. These results are presented
in Table V. With respect to FM, precision and recall, MLP
and SVM achieve similar results. Table VI reports the results
produced on the BR transformed datasets. In terms of each
metric, the results produced by MLP, SVM, DT and IBK are
much closer. Indeed, no statistical significance can be found
in the difference between the classifiers.

In addition to the performance within each transformation,
we must consider which transformation leads to the best
results. For this we can consider the performance of the
individual classifiers on each method. MLP, for example, is
significantly better in terms of AUC on the PS data, where it

1http://www.cs.waikato.ac.nz/ml/weka/

TABLE VI. MEAN CLASSIFICATION RESULTS ON THE BR
TRANSFORMED DATA.

BR Precision Recall FM AUC
MLP 0.7195 0.5773 0.6000 0.7362
SVM 0.7155 0.6007 0.5898 0.7448
DT 0.6756 0.5458 0.5656 0.7113
IBK 0.6015 0.4667 0.4931 0.6572
NB NA NA NA NA

produced a score of 0.9102 in comparison to 0.7362 on the
BR data. Indeed, when comparing PS to BR, all classification
methods are superior in terms of their weighted means on
precision, recall, FM and AUC on the former transformation.

B. Results by Class

As a means of further understanding the performance of
MLP and SVM, we present their results in the form of pie
charts in Figure 4. In each figure, the size of the pies represents
the relative prior probability of the class; hence, the IDA pie
is the largest and the β-thal+IDA pie is the smallest. In each
case, the blue slice indicates the percentage of IDA predictions,
yellow indicates the percentage of β-thal predictions and green
corresponds to β-thal+IDA predictions. Thus, the larger the
blue portion in the IDA pie, the better the classifier did on the
IDA class. Likewise, ideally the β-thal pie would be primarily
yellow and the β-thal+IDA pie would be mostly covered by
the green slice.

This enables us to see the classes that are most accurately
classified and least accurately classified. Moreover, we gain
insight into the type of prediction errors made on each class.
A majority of the co-occurrence instances, for example, are
classified as β-thal by both SVM and MLP. This can likely
be explained by the degree of overlap between the β-thal and
β-thal+IDA classes, along with the class imbalance between
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Fig. 4. Pie charts of the predictions by MLP and SVM on both transformations. The MLP predictions and SVM predictions for PS are in the top left and
right, respectively. The bottom left and right have the MLP and SVM predictions for BR

them. In addition, it highlights the trade-off in terms of per-
class performance between induction on the PS transformation
and induction on the BR transformation

In general, both classifiers perform best on the IDA class.
With respect to the PS transformation, both classifiers falsely
associate IDA instances as one of the alternate classes 6% of
the time. When the BR transformation is applied, the number
increases to 11% for MLP and 9% for SVM.

MLP correctly identifies more of the β-thal instances and
fewer of the co-occurrences instances than SVM on the PS
transformed data. MLP identifies 77% and 12% respectively
and SVM identifies 70% and 21%.

Performance on the IDA class when the BR transfor-
mation is applied is relatively consistent with the perfor-
mance resulting from the PS transformation. With respect
to β-thal and β-thal+IDA, performance changes consider-
ably. Most notably, the total number of β-thal+IDA predic-
tions (true β-thal+IDA and false β-thal+IDA) increase from
{IDA, Thal, IDA + Thal} = {1%, 10%, 12%} by MLP to
{IDA, Thal, IDA+ Thal} = {6%, 33%, 38%}. Thus, many
more of the co-occurrence instances are correctly identified
and many more IDA instances and β-thal instances are falsely
identified as β-thal+IDA. SVM produces an even greater
number of β-thal+IDA predictions. Previously, it produced
{IDA, Thal, IDA + Thal} = {2%, 15%, 21%}; with BR, it

increases to {IDA, Thal, IDA+ Thal} = {8%, 54%, 49%}.
Interestingly, the large number of instances incorrectly classi-
fied as β-thal+IDA causes a large decrease in the number of
correctly identified β-thal instances.

VI. DISCUSSION

A. Data Complexity

Our initial analysis of the data demonstrates that it is both
complex in terms of class overlap as well as the presence of
subconcepts within the individual classes. In addition, there
is a degree of relative imbalance between the three classes,
with IDA having significantly more instances than β-thal, and
β-thal having more instances than the co-occurrence class.

Due to the overlap, discrimination between β-thal and
β-thal+IDA is very challenging. This is confirmed by the
results. Additional features, if available, may be very helpful
for increasing the performance on these classes. In addition,
addressing the imbalance either through machine learning
methods or accessing more examples may help to improve
the performance on the co-occurrence class. Our preliminary
experiments with bagged random undersampling [14] and
SMOTE [15] have demonstrated some potential to improve
the classification of β-thal+IDA.
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B. Multi-Label Classification

As an inaugural work, we only experimented with two
multi-class transformation methods. In doing so, we were
able to improve upon the existing results; however, other
transformation methods exists that may be helpful; the ranking
methods that are discussed in the cited work are perhaps
appropriate for this domain. They allow more flexibility in the
final decision due to the fact that experts can aid in selecting
appropriate classification thresholds and/or make case-by-case
decisions according to the emitted ranks.

In terms of the overall performance, PS is the clear winner
as it leads to significantly better classifiers. PS has the benefit
for preserving any dependence relationships that exist within
the co-occurrence class. This suggests that it would perform
well on the co-occurrence class. When the results are examined
in the pie charts, however, we see that this is not the case. We
can reasonably suspect that the degree of imbalance between
the classes is a cause for the weaker performance. Based on
this, we hypothesize that the reduced degree of imbalance that
occurs when BR is used leads to better performance on the
co-occurrence class. This is in spite to the lost dependency
information. Thus, this further suggests the imbalance in the
PS data should be directly managed.

VII. CONCLUSION

This work presents an exploration of the benefits of ap-
plying machine learning methods to the domain of microcytic
anemia. Existing methods for discriminating between patients
with IDA, β-thal are based on linear equations., and fail on
the complex co-occurrence class.

Our analysis demonstrates that the data forms a multi-label
classification task with imbalance between classes. Moreover,
the data is further complicated by subconcepts within the
classes and a significant degree of overlap.

Two multi-label transformations are applied to convert the
data into a form suitable for multi-class learning. All classifiers
induced on the PS transformation produce better weighted
scores. With the binary relevance transformation, however,
more of the co-occurrence class is correctly classified. MLP
and SVM are nearly always the best classifiers, with MLP
being significantly better according to the AUC.

The increasing availability of structured and unstructured
data in biomedical informatics, along with its potential power
to advance healthcare, makes this a field of significant impor-
tance [16, 17]. Thus, our future work will explore additional
avenues to mine the data and expand upon our study of multi-
label classification strategies.
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