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Abstract—Active learning is a common solution for reducing
labeling costs and maximizing the impact of human labeling
efforts in binary and multi-class classification settings. However,
when we are faced with extreme levels of class imbalance, a
situation in which it is not safe to assume that we have a represen-
tative sample of the minority class, it has been shown effective to
replace the binary classifiers with a one-class classifiers. In such a
setting, traditional active learning methods, and many previously
proposed in the literature for one-class classifiers, prove to be
inappropriate, as they rely on assumptions about the data that
no longer stand.

In this paper, we propose a novel approach to active learning
designed for one-class classification. The proposed method does
not rely on many of the inappropriate assumptions of its
predecessors and leads to more robust classification performance.
The gist of this method consists of labeling, in priority, the
instances considered to fit the learned class the least by previous
iterations of a one-class classification model.

We provide empirical evidence for the merits of the proposed
method compared to the available alternatives, and discuss how
the method may have an impact in an applied setting.

I. INTRODUCTION

In many domains, particularly defense and security domains
such as intrusion detection [1] and helicopter gearbox moni-
toring [2], where data from one class (typically the anomalous
one) is rare and cannot be expected to form a coherent body,
a common solution is to use a one-class classifier rather than
the binary alternative, and to learn only the concept of one of
the two classes. One then separates the two classes based on
whether or not the one-class learner recognizes their data as
belonging to the class it learned. An important advantage of
using one-class classifiers instead of binary classifiers in such
a situation is that a model can be trained even if no data of
the rare class is available.

An important trait of many OCC problems, such as radiation
monitoring and disease diagnosis, is that the positive class
is the class of critical interest; thus, a fundamental issue in
OCC is the induction of a decision boundary that is highly
accurate on the positive class. To ensure such accuracy, it can
be necessary to select a model that misclassifies negatives
at a higher than ideal rate. This is problematic since, in
such domains, the detection of a positive instance during
application often results in a human analyst reviewing the
alarming instance in order to make the final decision on
an appropriate course of action. This implies that there is
significant motivation for minimizing the number of alarms
(false positives) whilst maintaining a high level of recall (true

positive rate). This dual goal is particularly difficult to achieve
in OCC as a result of the fact that few or, in certain cases, no
positive instances are available during training to refine the
border. Paradoxically, the inevitable utilization of a human
analyst’s input by the classifier enables the proposal of a
system which, in a manner inspired by active learning, is
constantly evolving to lower the false positive rate.

There have been attempts, in the literature, to apply active
learning to one-class classifiers. However, they have all relied
on assumptions which are often inaccurate in the applications
we are considering here. For instance, a common assumption
is that it is possible to build a representative sample of
the positive class (the one not used to train the classifier),
or that a large pool of unlabeled data can be expected to
contain instances of that class. These assumptions fail when,
like in our applications, one-class classifiers are applied to
extremely imbalanced domains where it may be the case that
we have no data from the positive class, and cannot safely
assume that we will find some amongst unlabeled instanced
(Note that we can’t assume the opposite either: there could
be such positive examples, and mislabeling them as negative
would be dangerous). In radiation monitoring, for example,
our task is to avoid a disaster with no instances of a disaster
having previously taken place that can be used to build a
representative sample or that would inadvertently be present
in a pool of unlabeled data but would have gone unnoticed.

In this paper, we thus propose a new strategy to apply active
learning to one-class classifiers, which avoids some of these
assumptions. The strategy, inspired by uncertainty sampling
[3], consists of selecting the instances from the unlabeled
pool which least fit the learned concept according to the
current version of the one-class classification model. Since
we are dealing with OCC rather than binary classification,
uncertainty sampling per se could not be applied and we had
to design a method that resembled it in the OCC context. Our
experiments suggest that this active learning strategy can lead
to significant improvements over state-of-the-art methods for
active learning in the OCC context. In addition, this method
has the advantage of convenience in many practical scenarios,
especially in anomaly detection, as it is usually the case that
instances that do not match the concept of “regular” data will
be reviewed by an expert anyway.

The remainder of this article is structured as follows:
Section II goes over the past work on one-class classification
and active learning. Section III provides the details of the
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proposed method. Section IV describes the experiments we
performed, where the merits of active learning for on one-class
classification are assessed versus state of the art alternatives.

II. RELATED WORK

A. One-Class Classification

As previously mentioned, when the goal is to distinguish
instances of two classes, but a representative sample can only
be obtained for one of these two classes, a common solution
is to use one-class classifiers. Hence, some of the strongest
ideas from binary classification have been adapted to the one-
class setting. For instance, the One-Class ϵSVM [4] learns
a hyperplane that separates the concept to be learned from
the origin, rather than separate two classes. The goal is that
the hyperplane should wrap tightly around the concept and
that instances that do not match the concept should be on
the origin’s side of the hyperplane. Similarly, an unsupervised
variant of feedforward neural networks, the autoassociator, can
be taught to reconstruct at its output level instances of the
available class. The reconstruction error can then be used to
distinguish instances that belong to that class from those that
do not [2].

Alternatively, one could choose to use methods of outlier
detection as one-class learners, where, as above, the detected
outliers are classified as not belonging to the learned class.
This opens the door to a vast selection of methods. There
are those inspired by statistics, such as the one described in
Section IV-B1 , where outliers are instances that are considered
unlikely by some statistical model (often a Gaussian model;
methods based on depth [5], where the “outlierness” of an
instance is based on the number of layers (convex hulls) of
the dataset one would have to peel off to reach that instance;
approaches based on distance, such as the KNN distance
approach described in Section IV-B2, or the DB(ε,π) Outliers
[6], where an instance is an outlier if less than some percentage
π of the other points are closer than some radius ε; and
density-based approaches, such as the Local Outlier Factor
[7], where an instance is an outlier if the data around it is
much sparser than it is around its nearest neighbours.

In comparison to traditional binary classifiers, an important
advantage of one-class methods is that they do not require
a representative sample of the second class. This is of high
importance in some domains, and especially in anomaly
detection, because we often do not know what members of
the second class will look like. For example, in gamma-
ray spectrum anomaly detection, one may know what normal
spectra look like, and have plenty of example data, but it is
much harder to characterize all possible gamma-ray anomalies,
including the ones we have not seen before.

While there have been attempts to leverage available data
from the second class to improve a one-class classifier’s
performance [8], they are left out of the scope of this paper,
where we instead investigate what can happen even if no data
from that class is available.

B. Active Learning
Active Learning is a form of semi-supervised learning where

two separate sets of data are used: a set of labeled instances,
used to train the initial model, and to which newly labeled
instances will be added; and a set of unlabeled instances, some
of which will be selected and labeled by a human expert before
being added to the training set for subsequent models.

The argument for active learning is purely economical: We
know larger training sets can often help us build a better
model. Given costly human resources for labeling and a
pool of unlabeled instances, we would like to label as few
instances as possible, while getting the best gain in classifier
performance. In other words, we want to rank the unlabeled
instances so that the instances with higher ranks are likely to
be informative instances that will help us refine the decision
boundary of our classifier. Obviously, within this framework,
the selection procedure is a very important component. Which
examples should we label first? The literature offers many
strategies. For instance:

Lewis and Gale [3] suggest uncertainty sampling. The idea
is to pick instances for which the current classifier is not
very confident in its prediction. Alternatively, we can use
margin sampling [9], which selects the instances for which the
difference in confidence between the top 2 classes is smallest.
Those are instances for which two classes seem equally likely,
and knowing the true label may help us refine our classifier.

Another popular approach, Query-By-Committee [10], main-
tains a committee of models that each output a prediction
for the unlabeled data. We then select for labeling instances
for which the members of the committee most disagree. The
intuition behind QBC is based on version spaces [11]: by
labeling instances in controversial areas of the instance space,
QBC effectively reduces the size of the space of hypotheses
that match the training data.

Next, there are selection strategies based on expected model
change, as introduced in [12]. These select instances for which,
regardless of the true label, the expected change in the model
when the instance is added to the training set is largest, as
measured by some gradient of the model. Similarly, expected
error reduction strategies [13] select instances that should lead
to a decrease in the error of the model.

Recently, some authors have proposed strategies to apply
active learning to one-class classification, and, relatedly, to
outlier detection:

Active-Outlier [14] generates artificial outliers before apply-
ing traditional active learning methods to the resulting classifi-
cation problem. However, this approach relies on assumptions
about the distribution of outliers, which our method does not
require, in order to generate synthetic instances.

In a manner similar to uncertainty sampling [3], the method
described in [15] applies active learning to support vector data
descriptions by labeling first instances which are located near
the surface of the SVDD sphere. Unlike our proposed ap-
proach, however, this method is limited to a single algorithm.

In [16], a variation of margin sampling is used to priori-
tize unlabeled instances for labeling. However, the particular
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method they use assumes that there is a significant number
of instances of the second class in the unlabeled pool, and
that differences between the distribution of the unlabeled data
and of the labeled normal data are caused by the presence
of this class. If data of the second class happen to be absent
in the unlabeled pool, Ghasemi et al.’s method breaks apart.
Our approach, on the other hand, does not make any such
assumption.

Finally, in [17], Ghasemi et al. use kernel density estimation
to identify instances in the unlabeled pool that fit the target
class best, and label these instances first. Hence, one expects
that the instances this method adds to the training set match
the current model’s idea of the target class. Our method does
quite the opposite: we add to the training set instances which
challenge our current model’s understanding of what fits the
learned class, hopefully leading it to refine the concept’s
border. Our experimental results, as described in section IV-E,
appear to give our method the upper hand.

III. PROPOSED METHOD

In the context of integrating one-class classification tech-
niques and active learning, we propose a method whose goal
is to maximize the performance gains associated with human
labeling efforts.

The heart of our method is in the active learning instance se-
lection procedure. In essence, our method’s selection strategy
is to first pick the instances which the initial model considers
to match the learned class the least. Obviously, as in all active
learning settings, the instances are not then blindly added to
the training set: they are sent to a domain expert for labeling.
The reasons behind our selection strategy are manifold:

We have to keep in mind that the only instances that will be
of use, in a one-class learning setup, are the ones that, during
labeling, receive the label of the class we are learning. Hence,
if our goal is to select informative instances, then we should
pick instances that, if they received the label of the learned
class, would be informative, or surprising, for the current
model. Indeed, instances that were previously considered to
be very different from the learned class and that turn out to
be members of that class are, in a way, surprising for the
model.

There is also a practical argument for this selection strategy:
in a live environment where experts already look at the
instances that are flagged as “different” by our system, those
that turn out to be false positives could be used to retrain the
model and to avoid repeating the same mistakes. In essence,
our selection strategy emulates just that. Therefore, if we
find that this selection strategy leads to better performance
improvements than random selection, then live systems could
be continuously improved by integrating the false positives
they produce into the training set.

In another vein, by selecting instances which do not look
like the learned class, but which, in reality, do belong to it,
we are possibly exploring underrepresented areas of the class.
Given the known difficulty that classifiers have learning small
disjuncts of a class [18], [19], obtaining more data from these

small disjuncts appears to be a reasonable objective towards
which our method might contribute.

Besides the selection strategy, the remainder of the active
learning framework is unchanged by our method. As it was
described in Section II-B, we first learn an initial model, use
it to identify instances that do not seem to belong to the
learned class, feed the false positives amongst those back into
the training set and, finally, train a final, hopefully improved,
model. The base classifier should be a one-class learner. The
techniques described in Section II-A would all be appropriate
choices.

IV. EXPERIMENTS: IMPACT OF OUR METHOD

In this section, we describe the experimental process used to
verify whether or not active learning has a positive impact on
one-class classifiers. This includes the experimental scenarios
that were compared, the base one-class classification methods
that were used within the active learning framework and
how their parameters were set, the evaluation methodology
(including the metrics used), and, finally, the datasets used.

A. Scenarios
We devise an experimental design with 4 scenarios:
• System based on the initial labeled training set
• System based on the training set augmented by randomly

choosing instances from the unlabeled examples pool
• System based on the training set augmented through

Ghasemi et al.’s method [17], which uses kernel density
estimation

• System based on the training set augmented through our
active learning selection procedure

Comparison between the latter 3 scenarios and the first will
indicate whether an increase in the size of the training set has
any benefits with respect to detection performance. To assess
the impact of our active learning selection procedure, however,
we must compare it to the performance on the randomly
augmented dataset. This is to ensure the results we observe
are due to the selection procedure’s choices rather than simply
to the increase in the training set size. We also compare it to
Ghasemi et al.’s method [17].

B. One-Class Methods Used
Three different base one-class classification methods are

used, and the results for each are analyzed separately.
1) Mahalanobis distance classifier: The Mahalanobis dis-

tance [20] is a measure of distance from the mean of a set
of instances that differs from the Euclidean distance in that
it takes into account correlations in its dataset. Thus, two
instances with the same Euclidean distance from the mean of a
distribution, if they differ from the mean in different directions,
can have very different Mahalanobis distances from that mean.

We flag as belonging to the positive class those instances
that have high Mahalanobis distances to our training set of
negative instances. This technique has been used in the past
[21] on one of the datasets we used (the Saanich data, see
section IV-D).
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2) Distance to KNN: As an example of distance-based out-
lier detection, we use the distance to the Kth nearest neighbour
of an instance in the training set of negative instances as
an “anomaly” score, and flag as belonging to the positive
class instances that have high such scores. This method was
introduced by Ramaswamy et al in 2000 [22].

This follows the intuition that the negative class is sparser
around areas of the positive class, and thus the nearest negative
neighbors are further, whereas instances that have multiple
nearby negative neighbours are more likely to be negative
themselves.

3) One-Class ϵSVM: With the ϵSVM , like with regular
support vector machines [23], we learn a separating hyper-
plane, resting upon a selected set of training instances called
the support vectors, that serves as our decision boundary. The
hyperplane is in a space of higher dimensionality, to which
the data is mapped through a kernel function. The distinction
between the traditional SVM and the ϵSVM is that, unlike
the traditional SVM which use the hyperplane to separate
instances of two classes, with the one-class ϵSVM , we are
looking for a hyperplane that separates the instances of the
class we are learning from the origin of the higher dimensional
space.

Hence, at testing time, only instances that fall on the learned
class’ side of the hyperplane are considered to be of that class.

In our experiments, we use the LibSVM [24] implementa-
tion of ϵSVM

C. Evaluation Methodology
Our experiments consist of 10 folds of cross-validation. The

assignment of instances to each of the 10 folds is shared
across all scenarios, which is important because it allows these
iterations to be considered paired trials for the purpose of
statistical testing.

Of the 10 folds, we always use 1 for testing, 3 for training
the initial model, and 6 as the pool of unlabeled examples for
the active learning selection procedure to pick from. The folds
rotate so that each fold is used for each role evenly. The active
learning selection procedure was allowed to choose up to one
sixth of the examples in the unlabeled pool.

For each iteration, we draw ROC curves by using the scores
given to each of the testing background instances as thresholds,
alternately, and calculating, at each threshold, the number of
true and false positives. A curve is drawn for each of the 3
scenarios. In addition to plotting the curves, we calculate the
area underneath, which is used as our performance metric for
statistical testing purposes.

We also identify the point on the ROC curve closest to
the (0, 1) point (as measured by the Euclidean distance). This
point is used to calculate a true positive rate and a false positive
rate for the classifier. These two metrics offer a more applied
perspective of the classifier’s performance.

Friedman’s non-parametric test is used to assess whether
there is a difference in performance between the three scenar-
ios. When there is, Nemenyi’s post-hoc test is used to identify
the scenarios between which this difference is important.

Dataset Initial Random KDE Active
Pen Digits 0.9409 0.9415 0.9413 0.9352
MAGIC 0.8036 0.8035 0.8025 0.7969
Saanich 0.7126 0.7122 0.7128 0.7134

(a) Mahalanobis Distance

Dataset Initial Random KDE Active
Pen Digits 0.9876 0.9896 0.9872 0.9935
MAGIC 0.7708 0.7741 0.7734 0.7789
Saanich 0.7208 0.7191 0.7203 0.7219

(b) Distance to KNN

Dataset Initial Random KDE Active
Pen Digits 0.9929 0.9937 0.9930 0.9954
MAGIC 0.7805 0.7850 0.7839 0.7898
Saanich 0.7533 0.7547 0.7557 0.7587

(c) One-Class SVM
TABLE I

RESULTS OF THE FIRST EXPERIMENT (MEASUREMENTS ARE THE AUROC
AVERAGED OVER 10-FOLD CV)

D. Datasets Used

We test our method on three different datasets. The first two,
Pen Digits and the MAGIC Gamma Telescope datasets, were
taken from the UCI Machine Learning Repository [25]. Since
these are datasets generally used for multiclass classification,
they had to be converted to a binary format: classes were
combined into two groups, only one of which was used to
train the one-class classifier.

The third dataset was given to us by our collaborators at
the Radiation Protection Bureau of Health Canada. It consists
of 19113 samples from a Sodium iodide detector in the city
of Saanich, British Columbia, collected over a period of 7
months. The sampling period was of 15 minutes. Each sample
consists of photon counts over 512 energy bins, but only the
first 250 were used following advice from domain experts.
The photon counts are non-negative integers. Of the 19113
instances, 95 are anomalies and 19018 are normal. On this
dataset, it was not possible to use Ghasemi et al.’s active
learning method because of the data’s dimensionality, which
causes sparsity: when applying kernel density estimation to the
Saanich dataset, the probability density around points in the
dataset was always so small that our MATLAB environment
rounded down to zero.

E. Results

Tables Ia, Ib and Ic present the results obtained with,
respectively, the Mahalanobis distance, the KNN distance and
the One-Class ϵSVM, on the three domains. The measurements
shown are the area under the ROC curve obtained by varying
the threshold at which instances are determined to belong to
one class or the other. We report the average measurement over
10 folds of cross-validation, for each of the four scenarios:
Initial, Randomly Augmented, Augmented through Ghasemi
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TPR FPR
Dataset Before After Before After
Pen Digits 0.8896 0.8800 0.1447 0.1550
MAGIC 0.7127 0.7107 0.2510 0.2592
Saanich 0.5611 0.5600 0.1586 0.1623

(a) Mahalanobis Distance

TPR FPR
Dataset Before After Before After
Pen Digits 0.9603 0.9697 0.0470 0.0302
MAGIC 0.6587 0.6555 0.2520 0.2280
Saanich 0.5863 0.5779 0.2016 0.1779

(b) Distance to KNN

TPR FPR
Dataset Before After Before After
Pen Digits 0.9698 0.9719 0.0370 0.0261
MAGIC 0.6678 0.6811 0.2467 0.2355
Saanich 0.6242 0.6337 0.2254 0.2344

(c) One-Class SVM
TABLE II

RESULTS OF THE FIRST EXPERIMENT (MEASUREMENTS ARE THE TRUE
AND FALSE POSITIVE RATES AVERAGED OVER 10-FOLD CV)

et al.’s method based on kernel density estimation (KDE) and
Augmented by Active Learning.

Tables IIa, IIb, and IIc present the true and false positive
rates obtained when using the initial training set (before) and
our active learning method (after). To calculate these true and
false positive rates, the point closest to (0, 1) on the ROC
curve was used.

The following subsections give an overview of statistical
tests on the AUROC results.

1) Mahalanobis Distance: As we can see from the results,
when using the Mahalanobis distance as the base method, the
active learning strategy seems to hurt performance rather than
help it.

This is confirmed to be statistically significant on the first
two domains: the probabilities of obtaining such results under
the null hypothesis of the Friedman’s test are, respectively,
4.155× 10−4 and 7.4× 10−3 for the pen digits and MAGIC
domains. In both cases, Nemenyi’s test indicates that the active
learning technique is significantly outperformed by the other
techniques.

On the Saanich dataset, Friedman’s test finds no significant
difference between the four scenarios.

2) KNN Distance: In this case, the active learning tech-
nique does seem to lead to better results on average. Its mean
performance rank is systematically better than the other two
scenarios across all three datasets. On the first two, Friedman’s
test gives us a p-value of 1.380× 10−6 and 4.709× 10−5. On
both, Nemenyi’s test indicates that the active learning scenario
outperforms the Initial and KDE scenarios.

On the Saanich dataset, although the trend seems to be the
same, with the active learning technique generally coming

out on top, the difference is not large enough for statistical
significance.

3) One-Class ϵSVM: Finally, with the one-class ϵSVM,
we obtain similar results to the KNN distance. Again, active
learning seems to lead to the best results.

Once again, on the first two domains, Friedman’s test
rejects the null hypothesis. The p-values are 4.7× 10−3 and
2.323× 10−6. On both, Nemenyi’s test finds that active learn-
ing leads to a significant improvement over the Initial and
KDE scenarios. Only on the first domain, Pen Digits, is the
advantage of Active over Random significant according to this
test.

F. Discussion
The disparity between the results obtained with the Maha-

lanobis distance technique and the other two is an interesting
phenomenon. Although this would be difficult to prove, we
suspect it may be because of their respective parametric and
non-parametric natures.

At the core of the Mahalanobis distance classifier is the
assumption of a gaussian distribution. The distance is essen-
tially an indicator of how unlikely an instance is under that
distribution. The selection procedure we used essentially over-
samples the tails of this gaussian distribution, creating multiple
additional modes in the data’s distribution. Our hypothesis as
to why the Mahalanobis distance classifier performed worse
with the active learning is that it is unable to properly handle
this artificial multimodal distribution. Another way to see it
is through the characteristics of parametric classifiers. With a
finite number of parameters, the Mahalanobis model has no
choice but to change its parameters, to alter its representation
of the data it is modeling. Essentially, after the active learning
procedure is followed, it is given data with an artificially high
variance, because of the added anomalies.

On the other hand, non-parametric classifiers are capable
of growing in complexity when given more training data.
Rather than changing their understanding of the data they
learned, they can add onto it new subconcepts. The addition
of new knowledge does not require them to forget part of
what they knew before. This is particularly true with support
vector machines, in this case: these models select a set of
instances close to the decision boundary as support vectors.
The instances we add through active learning are likely to
become candidates for support vectors in the next model, if
they are close to the decision boundary. Hence, the active
learning process could be providing the SVM with a better
selection of support vectors.

Overall, there is still room for more research towards a
better understanding of the impact of active learning on one-
class SVMs. The results here give us the general trend, but
future work could look into more detail at how the models
evolve. As a primer on what might then be observed, we have
noticed through our experiments that, in general, the randomly
augmented training set leads to SVMs with more support
vectors than the original, which is not surprising given the
larger variety of instances to choose from, but that, ultimately,
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it was the training set augmented through active learning that
brought about the SVMs with the largest set of support vectors,
suggesting that active learning provided the learner with an
even better selection of potential support vectors than random
augmentation.

In another vein, we compared our method to Ghasemi et
al.’s. Our results suggest that, on these particular domains, and
with the two non-parametric one-class classifiers we used, our
method is the only one of the two which manages to effect
significant performance improvements. This may be because
the kernel density based method, by selecting instances in
dense areas of the majority class, does not actually provide
the distance-to-KNN and One-Class SVM classifiers with
useful instances, i.e. instances that will either become nearest
neighbours on the border of the class, or support vectors. It is
worth mentioning, however, that Ghasemi et al.’s did not, like
our method, adversely affect the Mahalanobis classifier.

Now if we look at the results for the true and false positive
rates, we have a better idea of how these AUROC results
may translate into concrete results for users of the resulting
system. As expected, the Mahalanobis distance results are
disappointing here as well. However, the Distance to KNN
results are much more interesting in this perspective: while
the true positive rate did not change much, the false positive
rate sometimes dropped by more than 2 percentage points,
i.e. 12% fewer false positives. Unfortunately, the One-Class
SVM results are less clear: while the true positive rate always
improved, the false positive rate did not improve on the
Saanich domain.

It is this reduction the false positive rate that we believe
may have the largest impact in applications of one-class
classifiers. A 12% decrease in the rate of false positives is
particularly encouraging when experts need to inspect every
instance flagged as positive.

V. CONCLUSION

In this paper, we discussed a method for performing active
learning with one-class classifiers. This method, in contrast
with what was already available in the literature, does not
make any assumptions about the availability of data from the
minority class.

Throughout our experiments, we compared the proposed
method to random sampling, and to the method by Ghasemi et
al. [17] Our results suggest that while our method may not be
appropriate with some parametric models such as a classifier
based on the Mahalanobis distance, it appears to outperform its
competition with the Distance to KNN and One-Class SVM.

In addition, the performance of our method in terms of its
impact on the number of true and false positives detected by a
system may make it a valuable addition in many applications.

We explored many avenues for further work, such as the link
between the number of labeled instances and the performance.
We unfortunately could not include these for lack of space.

ACKNOWLEDGMENT

The authors would like to thank Health Canada for their
gracious support of this research.

REFERENCES

[1] D. E. Denning, “An intrusion-detection model,” Software Engineering,
IEEE Transactions on, no. 2, pp. 222–232, 1987.

[2] N. Japkowicz, C. Myers, M. Gluck et al., “A novelty detection approach
to classification,” in IJCAI, 1995, pp. 518–523.

[3] D. D. Lewis and W. A. Gale, “A sequential algorithm for training
text classifiers,” in Proceedings of the 17th annual international ACM
SIGIR conference on Research and development in information retrieval.
Springer-Verlag New York, Inc., 1994, pp. 3–12.

[4] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribution,”
Neural computation, vol. 13, no. 7, pp. 1443–1471, 2001.

[5] J. W. Tukey, Exploratory Data Analysis. Addison-Wesley, 1977.
[6] E. M. Knorr and R. T. Ng, “A unified approach for mining outliers,” in

Proceedings of the 1997 conference of the Centre for Advanced Studies
on Collaborative research. IBM Press, 1997, p. 11.

[7] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” in ACM Sigmod Record, vol. 29, no. 2.
ACM, 2000, pp. 93–104.

[8] D. M. Tax, “One-class classification; concept-learning in the absence of
counter-examples,” ASCI dissertation series, vol. 65, 2001.

[9] T. Scheffer, C. Decomain, and S. Wrobel, “Active hidden markov models
for information extraction,” in Advances in Intelligent Data Analysis.
Springer, 2001, pp. 309–318.

[10] H. S. Seung, M. Opper, and H. Sompolinsky, “Query by committee,”
in Proceedings of the fifth annual workshop on Computational learning
theory. ACM, 1992, pp. 287–294.

[11] T. M. Mitchell, “Generalization as search,” Artificial intelligence, vol. 18,
no. 2, pp. 203–226, 1982.

[12] B. Settles, M. Craven, and S. Ray, “Multiple-instance active learning,”
Advances in Neural Information Processing Systems (NIPS), vol. 20, pp.
1289–1296, 2008b.

[13] N. Roy and A. McCallum, “Toward optimal active learning through
monte carlo estimation of error reduction,” ICML, Williamstown, 2001.

[14] N. Abe, B. Zadrozny, and J. Langford, “Outlier detection by active
learning,” in Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2006,
pp. 504–509.

[15] N. Görnitz, M. Kloft, and U. Brefeld, “Active and semi-supervised data
domain description,” in Machine Learning and Knowledge Discovery in
Databases. Springer, 2009, pp. 407–422.

[16] A. Ghasemi, H. R. Rabiee, M. Fadaee, M. T. Manzuri, and M. H.
Rohban, “Active learning from positive and unlabeled data,” in Data
Mining Workshops (ICDMW), 2011 IEEE 11th International Conference
on. IEEE, 2011, pp. 244–250.

[17] A. Ghasemi, M. T. Manzuri, H. R. Rabiee, M. H. Rohban, and
S. Haghiri, “Active one-class learning by kernel density estimation,”
in Machine Learning for Signal Processing (MLSP), 2011 IEEE Inter-
national Workshop on. IEEE, 2011, pp. 1–6.

[18] G. M. Weiss, “Learning with rare cases and small disjuncts,” in ICML,
1995, pp. 558–565.

[19] T. Jo and N. Japkowicz, “Class imbalances versus small disjuncts,” ACM
SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 40–49, 2004.

[20] P. C. Mahalanobis, “On the generalized distance in statistics,” Proceed-
ings of the National Institute of Sciences (Calcutta), vol. 2, pp. 49–55,
1936.

[21] S. Sharma, C. Bellinger, N. Japkowicz, R. Berg, and K. Ungar, “Anomaly
detection in gamma ray spectra: A machine learning perspective,”
in Computational Intelligence for Security and Defence Applications
(CISDA), 2012 IEEE Symposium on. IEEE, 2012, pp. 1–8.

[22] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for
mining outliers from large data sets,” in ACM SIGMOD Record, vol. 29,
no. 2. ACM, 2000, pp. 427–438.

[23] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[24] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, pp. 27:1–27:27, 2011, software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[25] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.
[Online]. Available: http://archive.ics.uci.edu/ml

395395


